In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data be...In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research.展开更多
Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a...Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a method for identifying the structural dynamic characteristics of wind turbines based on visual monitoring data fusion.Firstly,the Lucas-Kanade Tomasi(LKT)optical flow method and a multi-region of interest(ROI)monitoring structure are employed to track pixel displacements,which are subsequently subjected to band pass filtering and resampling operations.Secondly,the actual displacement time history is derived through double integration of the acquired acceleration data and subsequent band pass filtering.The scale factor is obtained by applying the least squares method to compare the visual displacement with the displacement derived from double integration of the acceleration data.Based on this,the multi-point displacement time histories under physical coordinates are obtained using the vision data and the scale factor.Subsequently,when visual monitoring of displacements becomes impossible due to issues such as image blurring or lens occlusion,the structural vibration equation and boundary condition constraints,among other key parameters,are employed to predict the displacements at unknown monitoring points,thereby enabling full-field displacement monitoring and dynamic characteristic testing of the structure.Finally,a small-scale shaking table test was conducted on a simulated wind turbine structure undergoing shutdown to validate the dynamic characteristics of the proposed method through test verification.The research results indicate that the proposed method achieves a time-domain error within the submillimeter range and a frequency-domain accuracy of over 99%,effectively monitoring the full-field structural dynamic characteristics of wind turbines and providing a basis for the condition assessment of wind turbine structures.展开更多
In common practice in the oil fields,the injection of water and gas into reservoirs is a crucial technique to increase production.The control of the waterflooding front in oil/gas exploitation is a matter of great con...In common practice in the oil fields,the injection of water and gas into reservoirs is a crucial technique to increase production.The control of the waterflooding front in oil/gas exploitation is a matter of great concern to reservoir engineers.Monitoring the waterflooding front in oil/gas wells plays a very important role in adjusting the well network and later in production,taking advantage of the remaining oil po-tential and ultimately achieving great success in improving the recovery rate.For a long time,micro-seismic monitoring,numerical simulation,four-dimensional seismic and other methods have been widely used in waterflooding front monitoring.However,reconciling their reliability and cost poses a significant challenge.In order to achieve real-time,reliable and cost-effective monitoring,we propose an innovative method for waterflooding front monitoring through the similarity analysis of passive source time-lapse seismic images.Typically,passive source seismic data collected from oil fields have extremely low signal-to-noise ratio(SNR),which poses a serious problem for obtaining structural images.The proposed method aims to visualize and analyze underground changes by highlighting time-lapse images and provide a strategy for underground monitoring using long-term passive source data under low SNR conditions.First,we verify the feasibility of the proposed method by designing a theoretical model.Then,we conduct an analysis of the correlation coefficient(similarity)on the passive source time-lapse seismic imaging results to enhance the image differences and identify the simulated waterflooding fronts.Finally,the proposed method is applied to the actual waterflooding front monitoring tasks in Shengli Oilfield,China.The research findings indicate that the monitoring results are consistent with the actual devel-opment conditions,which in turn demonstrates that the proposed method has great potential for practical application and is very suitable for monitoring common development tasks in oil fields.展开更多
Dynamic stress adjustment in deep-buried high geostress hard rock tunnels frequently triggers catastrophic failures such as rockbursts and collapses.While a comprehensive understanding of this process is critical for ...Dynamic stress adjustment in deep-buried high geostress hard rock tunnels frequently triggers catastrophic failures such as rockbursts and collapses.While a comprehensive understanding of this process is critical for evaluating surrounding rock stability,its dynamic evolution are often overlooked in engineering practice.This study systematically summarizes a novel classification framework for stress adjustment types—stabilizing(two-zoned),shallow failure(three-zoned),and deep failure(four-zoned)—characterized by distinct stress adjustment stages.A dynamic interpretation technology system is developed based on microseismic monitoring,integrating key microseismic parameters(energy index EI,apparent stressσa,microseismic activity S),seismic source parameter space clustering,and microseismic paths.This approach enables precise identification of evolutionary stages,stress adjustment types,and failure precursors,thereby elucidating the intrinsic linkage between geomechanical processes(stress redistribution)and failure risks.The study establishes criteria and procedures for identifying stress adjustment types and their associated failure risks,which were successfully applied in the Grand Canyon Tunnel of the E-han Highway to detect 50 instances of disaster risks.The findings offer invaluable insights into understanding the evolution process of stress adjustment and pinpointing the disaster risks linked to hard rock in comparable high geostress tunnels.展开更多
Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently d...Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently dynamic and need to be monitored using dynamic algorithms.Mainstream dynamic algorithms rely on concatenating current measurement with past data.This work proposes a new,alternative dynamic process monitoring algorithm,using dot product feature analysis(DPFA).DPFA computes the dot product of consecutive samples,thus naturally capturing the process dynamics through temporal correlation.At the same time,DPFA's online computational complexity is lower than not just existing dynamic algorithms,but also classical static algorithms(e.g.,principal component analysis and slow feature analysis).The detectability of the new algorithm is analyzed for three types of faults typically seen in process systems:sensor bias,process fault and gain change fault.Through experiments with a numerical example and real data from a thermal power plant,the DPFA algorithm is shown to be superior to the state-of-the-art methods,in terms of better monitoring performance(fault detection rate and false alarm rate)and lower computational complexity.展开更多
The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has b...The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms.展开更多
As a dynamic projection to latent structures(PLS)method with a good output prediction ability,dynamic inner PLS(DiPLS)is widely used in the prediction of key performance indi-cators.However,due to the oblique decompos...As a dynamic projection to latent structures(PLS)method with a good output prediction ability,dynamic inner PLS(DiPLS)is widely used in the prediction of key performance indi-cators.However,due to the oblique decomposition of the input space by DiPLS,there are false alarms in the actual industrial process during fault detection.To address the above problems,a dynamic modeling method based on autoregressive-dynamic inner total PLS(AR-DiTPLS)is proposed.The method first uses the regression relation matrix to decompose the input space orthogonally,which reduces useless information for the predic-tion output in the quality-related dynamic subspace.Then,a vector autoregressive model(VAR)is constructed for the predic-tion score to separate dynamic information and static informa-tion.Based on the VAR model,appropriate statistical indicators are further constructed for online monitoring,which reduces the occurrence of false alarms.The effectiveness of the method is verified by a Tennessee-Eastman industrial simulation process and a three-phase flow system.展开更多
The phase velocity of seismic waves varies with the propagation frequency, and thus frequency-dependent phenomena appear when CO2 gas is injected into a reservoir. By dynamically considering these phenomena with reser...The phase velocity of seismic waves varies with the propagation frequency, and thus frequency-dependent phenomena appear when CO2 gas is injected into a reservoir. By dynamically considering these phenomena with reservoir conditions it is thus feasible to extract the frequency-dependent velocity factor with the aim of monitoring changes in the reservoir both before and after CO2 injection. In the paper, we derive a quantitative expression for the frequency-dependent factor based on the Robinson seismic convolution model. In addition, an inversion equation with a frequency-dependent velocity factor is constructed, and a procedure is implemented using the following four processing steps: decomposition of the spectrum by generalized S transform, wavelet extraction of cross-well seismic traces, spectrum equalization processing, and an extraction method for frequency-dependent velocity factor based on the damped least-square algorithm. An attenuation layered model is then established based on changes in the Q value of the viscoelastic medium, and spectra of migration profiles from forward modeling are obtained and analyzed. Frequency-dependent factors are extracted and compared, and the effectiveness of the method is then verified using a synthetic data. The frequency-dependent velocity factor is finally applied to target processing and oil displacement monitoring based on real seismic data obtained before and after CO2 injection in the G89 well block within Shengli oilfield. Profiles and slices of the frequency-dependent factor determine its ability to indicate differences in CO2 flooding, and the predicting results are highly consistent with those of practical investigations within the well block.展开更多
Differential interferometric synthetic aperture radar (DInSAR) technology is a new method to monitor the dynamic surface subsidence. It can monitor the large scope of dynamic deformation process of surface subsidenc...Differential interferometric synthetic aperture radar (DInSAR) technology is a new method to monitor the dynamic surface subsidence. It can monitor the large scope of dynamic deformation process of surface subsidence basin and better reflect the surface subsidence form in different stages. But under the influence of factors such as noise and other factors, the tilt and horizontal deformation curves regularity calculated by DInSAR data are poorer and the actual deviation is larger. The tilt and horizontal deformations are the important indices for the safety of surface objects protection. Numerical simulation method was used to study the dynamic deformation of LW32 of West Cliff colliery in Australia based on the DInSAR monitoring data. The result indicates that the subsidence curves of two methods fit well and the correlation coefficient is more than 95%. The other deformations calculated by numerical simulation results are close to the theory form. Therefore, considering the influence, the surface and its subsidiary structures and buildings due to mining, the numerical simulation method based on the DInSAR data can reveal the distribution rules of the surface dynamic deformation values and supply the shortcomings of DInSAR technology. The research shows that the method has good applicability and can provide reference for similar situation.展开更多
Due to the existing“island”state of psychological and behavioral data,there is no way for anyone to access students’psychological and behavioral histories.This limits the comprehensive understanding and effective i...Due to the existing“island”state of psychological and behavioral data,there is no way for anyone to access students’psychological and behavioral histories.This limits the comprehensive understanding and effective intervention of college students’mental health status.Therefore,this article constructs an artificial intelligence-based psychological health and intervention system for college students.Firstly,this article obtains psychological health testing data of college students through online platforms or on-campus system design,distribution of questionnaires,feedback from close contacts of students,and internal campus resources.Then,the architecture of a mental health monitoring system is designed.Its overall architecture includes a data collection layer,a data processing layer,a decision tree algorithm layer,and an evaluation display layer.The system uses the C4.5 decision tree algorithm to calculate the information gain of the processed sample data,selects the attribute with the maximum value,and constructs a decision tree structure model to evaluate students’mental health.Finally,this article studies the evaluation of students’mental health status by combining multidimensional information such as the SCL-90 scale,self-assessment scale,and student behavior data.Experimental data shows that the system can effectively identify students’mental health problems and provide precise intervention measures based on their situation,with high accuracy and practicality.展开更多
Railway infrastructure is a crucial asset for the mobility of people and goods.The increased traffic frequency imposes higher loads and speeds,leading to accelerated infrastructure degradation.Asset managers require t...Railway infrastructure is a crucial asset for the mobility of people and goods.The increased traffic frequency imposes higher loads and speeds,leading to accelerated infrastructure degradation.Asset managers require timely information regarding the current(diagnosis)and future(prognosis)condition of their assets to make informed decisions on maintenance and renewal actions.In recent years,in-service vehicles equipped with on-board monitoring(OBM)measuring devices,such as accelerometers,have been introduced on railroad networks,traversing the network almost daily.This article explores the application of state-of-the-art OBM-based track quality indicators for railway infrastructure condition assessment and prediction,primarily under the prism of track geometry quality.The results highlight the similarities and advantages of applying track quality indicators generated from OBM measurements(high frequency and relatively lower accuracy data)compared to those generated from higher precision,yet temporally sparser,data collected by traditional track recording vehicles(TRVs)for infrastructure management purposes.The findings demonstrate the performance of the two approaches,further revealing the value of OBM information for monitoring the track status degradation process.This work makes a case for the advantageous use of OBM data for railway infrastructure management,and attempts to aid understanding in the application of OBM techniques for engineers and operators.展开更多
Foamed concrete is widely employed in highway transition sections,due to its lightweight,high-strength,and effective settlement control.It is crucial to investigate its dynamic response linked to the traffic-loading i...Foamed concrete is widely employed in highway transition sections,due to its lightweight,high-strength,and effective settlement control.It is crucial to investigate its dynamic response linked to the traffic-loading influence zone of embankment and transition section smoothness.In this study,in-situ truck tests were conducted in the road-culvert-bridge transition section to obtain the spatio-temporal response patterns.Based on the vertical response,the influence zone was ascertained.Depending on the longitudinal response,the smoothness was evaluated by equivalent dynamic stiffness(EDS)and acceleration variation rate(AVR).Furthermore,the response discrepancies of embankments with different fillings were compared.Findings reveal exponential attenuation of dynamic stress and acceleration with increasing depth.The acceleration and dynamic displacement exhibit U-shaped patterns in the culvert subsection and abrupt changes in the bridgehead subsection.The influence zone determined by the acceleration attenuation coefficient method,dynamic stress attenuation method,and stress diffusion angle method was 1.55 m,2.05 m,and 2.89 m,respectively.The maximum disparity in EDS occurs at the culvert subsection and bridge abutment,and the AVR ranges from 0 to 0.52 s^(-2).Moreover,94.1%attenuation of the dynamic stress occurred within the 1.5-meter foamed concrete embankment under the setting of 100 kN-60 km/h.展开更多
The study concentrates mainly on the development of failure process incomposite rock mass. By use of acoustic emission (AE), convergence inspection, pressure monitoring,level measurement techniques and the modem signa...The study concentrates mainly on the development of failure process incomposite rock mass. By use of acoustic emission (AE), convergence inspection, pressure monitoring,level measurement techniques and the modem signal analysis technology, as well as scan electronmicroscopy (SEM) experiment, various aspects of nonlinear dynamic damage of composite rock masssurrounding the transport roadway in Linglong gold mine are discussed. According to the monitoringresults, the stability of the rock mass can be synthetically evaluated, and the intrinsic relationbetween the damage and the characteristic parameters of acoustic emission can be determined. Thelocation of the damage of rock mass can also be detected based on the acoustic emission couplemonitoring signals. Finally, the key factors which influence the stability of the transport roadwaysupported by composite hard rock materials are found out.展开更多
The aim of this study was to evaluate the effects of low-dose tibolone therapy on ovarian area, uterine volume and endometrial thickness, and define the cut-off value of endometrial thickness for curettage during uter...The aim of this study was to evaluate the effects of low-dose tibolone therapy on ovarian area, uterine volume and endometrial thickness, and define the cut-off value of endometrial thickness for curettage during uterine bleeding. We followed 619 postmenopausal women, aged 40-60 years, for two years. There were 301 subjects in the low-dose tibolone treatment group and 318 subjects in the control group. The ovarian area, uterine volume and endometrial thickness in all participants were measured by transvaginal ultrasound prior to, one and two years post enrollment, respectively. Endometrial specimens were collected from all subjects with abnormal uterine bleeding during the follow-up period. We found that the uterine volume in the treatment group was greater than that in the control group, and the difference was significant (P〈0.05), but there were no significant differences in ovarian area and endometrial thickness between the two groups (P〉0.05). When the cut-off value for endometrial thickness was 7.35 ram, the sensitivity and specificity were 100% and 79.07%, respectively, and 85.71% and 93.02% when 7.55 mm was set as the cut-offduring tibolone therapy. The results indicate that low-dose tibolone therapy may postpone uterine atrophy and the cut-off value of endometrial thickness may be appropriately adjusted for curettage.展开更多
The level of deformation development of surrounding rocks is a vital predictor to evaluate impending coal mine disasters and it is important to establish accurate measurements of the deformed status to ensure coal min...The level of deformation development of surrounding rocks is a vital predictor to evaluate impending coal mine disasters and it is important to establish accurate measurements of the deformed status to ensure coal mine safety. Traditional deformation monitoring methods are mostly based on single parameter, in this paper, multiple approaches are integrated: firstly, both electric and elastic models are established,from which electric field distribution and seismic wave recording are calculated and finally, the resistivity profiles and source position information are determined using inversion methods, from which then the deformation and failure of mine floor are evaluated. According to the inversion results of both electric and seismic field signals, multiple-parameter dynamic monitoring of surrounding rock deformation in deep mine can be performed. The methodology is validated using numerical simulation results which shows that the multi-parameter dynamic monitoring methods have better results for surrounding rock deformation in deep mine monitoring than single parameter methods.展开更多
Based on digital image processing technique, a real-time system is developed to monitor and detect the dynamic displacement of engineering structures. By processing pictures with a self-programmed software, the real-t...Based on digital image processing technique, a real-time system is developed to monitor and detect the dynamic displacement of engineering structures. By processing pictures with a self-programmed software, the real-time coordinate of an object in a certain coordinate system can be obtained, and further dynamic displacement data and curve of the object can also be achieved. That is, automatic gathering and real-time processing of data can be carried out by this system simultaneously. For this system, first, an untouched monitoring technique is adopted, which can monitor or detect objects several to hundreds of meters apart; second, it has flexible installation condition and good monitoring precision of sub-millimeter degree; third, it is fit for dynamic, quasi-dynamic and static monitoring of large engineering structures. Through several tests and applications in large bridges, good reliability and dominance of the system is proved.展开更多
The underground hydropower projects in Southwest China is characterized by large excavation sizes,high geostresses,complicated geological conditions and multiple construction processes.Various disasters such as collap...The underground hydropower projects in Southwest China is characterized by large excavation sizes,high geostresses,complicated geological conditions and multiple construction processes.Various disasters such as collapses,large deformations,rockbursts are frequently encountered,resulting in serious casualties and huge economic losses.This review mainly presents some representative results on microseismic(MS)monitoring and forecasting for disasters in hydropower underground engineering.First,a set of new denoising,spectral analysis,and location methods were developed for better identification and location of MS signals.Then,the tempo-spatial characteristics of MS events were analyzed to understand the relationship between field construction and damages of surrounding rocks.Combined with field construction,geological data,numerical simulation and parametric analysis of MS sources,the focal mechanism of MS events was revealed.A damage constitutive model considering MS fracturing size was put forward and feedback analysis considering the MS damage of underground surrounding rocks was conducted.Next,an MS multi-parameter based risk assessment and early warning method for dynamic disasters were proposed.The technology for control of the damage and deformation of underground surrounding rocks was proposed for underground caverns.Finally,two typical underground powerhouses were selected as case studies.These achievements can provide significant references for prevention and control of dynamic disasters for underground engineering with similar complicated geological conditions.展开更多
The construction period of large cable-stayed bridges is long, and the structure deformation is complicated. Any error during construction will potentially affect the cantilever alignments and the internal forces. In ...The construction period of large cable-stayed bridges is long, and the structure deformation is complicated. Any error during construction will potentially affect the cantilever alignments and the internal forces. In order to ensure safety during construction and exactly determine the cantilever alignments, dynamic deformation monitoring is needed immediately when the con struction of the superstructure starts. This paper aims at the requirement of deformation monitoring during the Sutong Bridge construction, and introduces the realization and observing schemes of the GPS and georobot based on remote real-time dynamic geometrical deformation monitoring system, then researches the data processing methods and enumerates some of the application achievements. Long-term operation during the Sutong Bridge construction indicates that the system runs steadily and the results are reliable.展开更多
Time, cost, and quality are three key control factors in rockfill dam construction, and the tradeoff among them is important. Research has focused on the construction time-cost-quality tradeoff for the planning or des...Time, cost, and quality are three key control factors in rockfill dam construction, and the tradeoff among them is important. Research has focused on the construction time-cost-quality tradeoff for the planning or design phase, built on static empirical data. However, due to its intrinsic uncertainties, rockfill dam construction is a dynamic process which requires the tradeoffto adjust dynamically to changes in construction conditions. In this study, a dynamic time-cost-quality tradeoff (DTCQT) method is proposed to balance time, cost, and quality at any stage of the construction process. A time-cost-quality tradeoff model is established that considers time cost and quality cost. Time, cost, and quality are dynamically estimated based on real-time monitoring. The analytic hierarchy process (AHP) method is applied to quantify the decision preferences among time, cost, and quality as objective weights. In addition, an improved non-dominated sorting genetic algorithm (NSGA-II) coupled with the technique for order preference by similarity to ideal solution (TOPSIS) method is used to search for the optimal compromise solution. A case study project is analyzed to demonstrate the applicability of the method, and the efficiency of the proposed optimization method is compared with that of the linear weighted sum (LWS) and NSGA-II.展开更多
To improve the effectiveness of dam safety monitoring database systems,the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mod...To improve the effectiveness of dam safety monitoring database systems,the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mode.The optimal data model was confirmed by identifying data objects,defining relations and reviewing entities.The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely.On this basis,a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established,for which factual tables and dimensional tables have been designed.Finally,based on service design and user interface design,the dam safety monitoring system has been developed with Delphi as the development tool.This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design.It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers.展开更多
基金supported in part by the National Natural Science Foundation of China(62125306)Zhejiang Key Research and Development Project(2024C01163)the State Key Laboratory of Industrial Control Technology,China(ICT2024A06)
文摘In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research.
基金supported by the National Science Foundation of China(Grant Nos.52068049 and 51908266)the Science Fund for Distinguished Young Scholars of Gansu Province(No.21JR7RA267)Hongliu Outstanding Young Talents Program of Lanzhou University of Technology.
文摘Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a method for identifying the structural dynamic characteristics of wind turbines based on visual monitoring data fusion.Firstly,the Lucas-Kanade Tomasi(LKT)optical flow method and a multi-region of interest(ROI)monitoring structure are employed to track pixel displacements,which are subsequently subjected to band pass filtering and resampling operations.Secondly,the actual displacement time history is derived through double integration of the acquired acceleration data and subsequent band pass filtering.The scale factor is obtained by applying the least squares method to compare the visual displacement with the displacement derived from double integration of the acceleration data.Based on this,the multi-point displacement time histories under physical coordinates are obtained using the vision data and the scale factor.Subsequently,when visual monitoring of displacements becomes impossible due to issues such as image blurring or lens occlusion,the structural vibration equation and boundary condition constraints,among other key parameters,are employed to predict the displacements at unknown monitoring points,thereby enabling full-field displacement monitoring and dynamic characteristic testing of the structure.Finally,a small-scale shaking table test was conducted on a simulated wind turbine structure undergoing shutdown to validate the dynamic characteristics of the proposed method through test verification.The research results indicate that the proposed method achieves a time-domain error within the submillimeter range and a frequency-domain accuracy of over 99%,effectively monitoring the full-field structural dynamic characteristics of wind turbines and providing a basis for the condition assessment of wind turbine structures.
基金supported by the CNPC-SWPU Innovation Alliance Technology Cooperation Project(2020CX020000)the National Natural Science Foundation of China(42022028)+1 种基金the Natural Science Foundation of Sichuan Province(24NSFSC0808)the China Scholarship Council(202306440144)。
文摘In common practice in the oil fields,the injection of water and gas into reservoirs is a crucial technique to increase production.The control of the waterflooding front in oil/gas exploitation is a matter of great concern to reservoir engineers.Monitoring the waterflooding front in oil/gas wells plays a very important role in adjusting the well network and later in production,taking advantage of the remaining oil po-tential and ultimately achieving great success in improving the recovery rate.For a long time,micro-seismic monitoring,numerical simulation,four-dimensional seismic and other methods have been widely used in waterflooding front monitoring.However,reconciling their reliability and cost poses a significant challenge.In order to achieve real-time,reliable and cost-effective monitoring,we propose an innovative method for waterflooding front monitoring through the similarity analysis of passive source time-lapse seismic images.Typically,passive source seismic data collected from oil fields have extremely low signal-to-noise ratio(SNR),which poses a serious problem for obtaining structural images.The proposed method aims to visualize and analyze underground changes by highlighting time-lapse images and provide a strategy for underground monitoring using long-term passive source data under low SNR conditions.First,we verify the feasibility of the proposed method by designing a theoretical model.Then,we conduct an analysis of the correlation coefficient(similarity)on the passive source time-lapse seismic imaging results to enhance the image differences and identify the simulated waterflooding fronts.Finally,the proposed method is applied to the actual waterflooding front monitoring tasks in Shengli Oilfield,China.The research findings indicate that the monitoring results are consistent with the actual devel-opment conditions,which in turn demonstrates that the proposed method has great potential for practical application and is very suitable for monitoring common development tasks in oil fields.
基金supported by the National Natural Science Foundation of China(Nos.42177173,U23A20651 and 42130719)and the Outstanding Youth Science Fund Project of Sichuan Provincial Natural Science Foundation(No.2025NSFJQ0003)。
文摘Dynamic stress adjustment in deep-buried high geostress hard rock tunnels frequently triggers catastrophic failures such as rockbursts and collapses.While a comprehensive understanding of this process is critical for evaluating surrounding rock stability,its dynamic evolution are often overlooked in engineering practice.This study systematically summarizes a novel classification framework for stress adjustment types—stabilizing(two-zoned),shallow failure(three-zoned),and deep failure(four-zoned)—characterized by distinct stress adjustment stages.A dynamic interpretation technology system is developed based on microseismic monitoring,integrating key microseismic parameters(energy index EI,apparent stressσa,microseismic activity S),seismic source parameter space clustering,and microseismic paths.This approach enables precise identification of evolutionary stages,stress adjustment types,and failure precursors,thereby elucidating the intrinsic linkage between geomechanical processes(stress redistribution)and failure risks.The study establishes criteria and procedures for identifying stress adjustment types and their associated failure risks,which were successfully applied in the Grand Canyon Tunnel of the E-han Highway to detect 50 instances of disaster risks.The findings offer invaluable insights into understanding the evolution process of stress adjustment and pinpointing the disaster risks linked to hard rock in comparable high geostress tunnels.
基金supported in part by the National Science Fund for Distinguished Young Scholars of China(62225303)the National Natural Science Fundation of China(62303039,62433004)+2 种基金the China Postdoctoral Science Foundation(BX20230034,2023M730190)the Fundamental Research Funds for the Central Universities(buctrc202201,QNTD2023-01)the High Performance Computing Platform,College of Information Science and Technology,Beijing University of Chemical Technology
文摘Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems,such as thermal power plants being studied in this work.Industrial processes are inherently dynamic and need to be monitored using dynamic algorithms.Mainstream dynamic algorithms rely on concatenating current measurement with past data.This work proposes a new,alternative dynamic process monitoring algorithm,using dot product feature analysis(DPFA).DPFA computes the dot product of consecutive samples,thus naturally capturing the process dynamics through temporal correlation.At the same time,DPFA's online computational complexity is lower than not just existing dynamic algorithms,but also classical static algorithms(e.g.,principal component analysis and slow feature analysis).The detectability of the new algorithm is analyzed for three types of faults typically seen in process systems:sensor bias,process fault and gain change fault.Through experiments with a numerical example and real data from a thermal power plant,the DPFA algorithm is shown to be superior to the state-of-the-art methods,in terms of better monitoring performance(fault detection rate and false alarm rate)and lower computational complexity.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFB4200705)the National Natural Science Foundation of China(Grant No.52109146)。
文摘The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms.
基金supported by the National Natural Science Foundation of China(62273354,61673387,61833016).
文摘As a dynamic projection to latent structures(PLS)method with a good output prediction ability,dynamic inner PLS(DiPLS)is widely used in the prediction of key performance indi-cators.However,due to the oblique decomposition of the input space by DiPLS,there are false alarms in the actual industrial process during fault detection.To address the above problems,a dynamic modeling method based on autoregressive-dynamic inner total PLS(AR-DiTPLS)is proposed.The method first uses the regression relation matrix to decompose the input space orthogonally,which reduces useless information for the predic-tion output in the quality-related dynamic subspace.Then,a vector autoregressive model(VAR)is constructed for the predic-tion score to separate dynamic information and static informa-tion.Based on the VAR model,appropriate statistical indicators are further constructed for online monitoring,which reduces the occurrence of false alarms.The effectiveness of the method is verified by a Tennessee-Eastman industrial simulation process and a three-phase flow system.
基金supported by the Pilot Project of Sinopec(P14085)
文摘The phase velocity of seismic waves varies with the propagation frequency, and thus frequency-dependent phenomena appear when CO2 gas is injected into a reservoir. By dynamically considering these phenomena with reservoir conditions it is thus feasible to extract the frequency-dependent velocity factor with the aim of monitoring changes in the reservoir both before and after CO2 injection. In the paper, we derive a quantitative expression for the frequency-dependent factor based on the Robinson seismic convolution model. In addition, an inversion equation with a frequency-dependent velocity factor is constructed, and a procedure is implemented using the following four processing steps: decomposition of the spectrum by generalized S transform, wavelet extraction of cross-well seismic traces, spectrum equalization processing, and an extraction method for frequency-dependent velocity factor based on the damped least-square algorithm. An attenuation layered model is then established based on changes in the Q value of the viscoelastic medium, and spectra of migration profiles from forward modeling are obtained and analyzed. Frequency-dependent factors are extracted and compared, and the effectiveness of the method is then verified using a synthetic data. The frequency-dependent velocity factor is finally applied to target processing and oil displacement monitoring based on real seismic data obtained before and after CO2 injection in the G89 well block within Shengli oilfield. Profiles and slices of the frequency-dependent factor determine its ability to indicate differences in CO2 flooding, and the predicting results are highly consistent with those of practical investigations within the well block.
基金Project (20110023110014) supported by Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject (2010QD01) supported by Fundamental Research Funds for the Central Universities,China
文摘Differential interferometric synthetic aperture radar (DInSAR) technology is a new method to monitor the dynamic surface subsidence. It can monitor the large scope of dynamic deformation process of surface subsidence basin and better reflect the surface subsidence form in different stages. But under the influence of factors such as noise and other factors, the tilt and horizontal deformation curves regularity calculated by DInSAR data are poorer and the actual deviation is larger. The tilt and horizontal deformations are the important indices for the safety of surface objects protection. Numerical simulation method was used to study the dynamic deformation of LW32 of West Cliff colliery in Australia based on the DInSAR monitoring data. The result indicates that the subsidence curves of two methods fit well and the correlation coefficient is more than 95%. The other deformations calculated by numerical simulation results are close to the theory form. Therefore, considering the influence, the surface and its subsidiary structures and buildings due to mining, the numerical simulation method based on the DInSAR data can reveal the distribution rules of the surface dynamic deformation values and supply the shortcomings of DInSAR technology. The research shows that the method has good applicability and can provide reference for similar situation.
文摘Due to the existing“island”state of psychological and behavioral data,there is no way for anyone to access students’psychological and behavioral histories.This limits the comprehensive understanding and effective intervention of college students’mental health status.Therefore,this article constructs an artificial intelligence-based psychological health and intervention system for college students.Firstly,this article obtains psychological health testing data of college students through online platforms or on-campus system design,distribution of questionnaires,feedback from close contacts of students,and internal campus resources.Then,the architecture of a mental health monitoring system is designed.Its overall architecture includes a data collection layer,a data processing layer,a decision tree algorithm layer,and an evaluation display layer.The system uses the C4.5 decision tree algorithm to calculate the information gain of the processed sample data,selects the attribute with the maximum value,and constructs a decision tree structure model to evaluate students’mental health.Finally,this article studies the evaluation of students’mental health status by combining multidimensional information such as the SCL-90 scale,self-assessment scale,and student behavior data.Experimental data shows that the system can effectively identify students’mental health problems and provide precise intervention measures based on their situation,with high accuracy and practicality.
基金supported financially by the project OMISM from the ETH Zurich Mobility Initiative。
文摘Railway infrastructure is a crucial asset for the mobility of people and goods.The increased traffic frequency imposes higher loads and speeds,leading to accelerated infrastructure degradation.Asset managers require timely information regarding the current(diagnosis)and future(prognosis)condition of their assets to make informed decisions on maintenance and renewal actions.In recent years,in-service vehicles equipped with on-board monitoring(OBM)measuring devices,such as accelerometers,have been introduced on railroad networks,traversing the network almost daily.This article explores the application of state-of-the-art OBM-based track quality indicators for railway infrastructure condition assessment and prediction,primarily under the prism of track geometry quality.The results highlight the similarities and advantages of applying track quality indicators generated from OBM measurements(high frequency and relatively lower accuracy data)compared to those generated from higher precision,yet temporally sparser,data collected by traditional track recording vehicles(TRVs)for infrastructure management purposes.The findings demonstrate the performance of the two approaches,further revealing the value of OBM information for monitoring the track status degradation process.This work makes a case for the advantageous use of OBM data for railway infrastructure management,and attempts to aid understanding in the application of OBM techniques for engineers and operators.
基金National Natural Science Foundation of China under Grant Nos.52078205 and 42172322Joint Fund for High-Speed Railway Basic Research under Grant No.U2268213the Postgraduate Scientific Research Innovation Project of Hunan Province under Grant Nos.QL20230104 and CX20240431。
文摘Foamed concrete is widely employed in highway transition sections,due to its lightweight,high-strength,and effective settlement control.It is crucial to investigate its dynamic response linked to the traffic-loading influence zone of embankment and transition section smoothness.In this study,in-situ truck tests were conducted in the road-culvert-bridge transition section to obtain the spatio-temporal response patterns.Based on the vertical response,the influence zone was ascertained.Depending on the longitudinal response,the smoothness was evaluated by equivalent dynamic stiffness(EDS)and acceleration variation rate(AVR).Furthermore,the response discrepancies of embankments with different fillings were compared.Findings reveal exponential attenuation of dynamic stress and acceleration with increasing depth.The acceleration and dynamic displacement exhibit U-shaped patterns in the culvert subsection and abrupt changes in the bridgehead subsection.The influence zone determined by the acceleration attenuation coefficient method,dynamic stress attenuation method,and stress diffusion angle method was 1.55 m,2.05 m,and 2.89 m,respectively.The maximum disparity in EDS occurs at the culvert subsection and bridge abutment,and the AVR ranges from 0 to 0.52 s^(-2).Moreover,94.1%attenuation of the dynamic stress occurred within the 1.5-meter foamed concrete embankment under the setting of 100 kN-60 km/h.
基金This work was financially supported by the National Natural Science Foundation of China, No.50074002.
文摘The study concentrates mainly on the development of failure process incomposite rock mass. By use of acoustic emission (AE), convergence inspection, pressure monitoring,level measurement techniques and the modem signal analysis technology, as well as scan electronmicroscopy (SEM) experiment, various aspects of nonlinear dynamic damage of composite rock masssurrounding the transport roadway in Linglong gold mine are discussed. According to the monitoringresults, the stability of the rock mass can be synthetically evaluated, and the intrinsic relationbetween the damage and the characteristic parameters of acoustic emission can be determined. Thelocation of the damage of rock mass can also be detected based on the acoustic emission couplemonitoring signals. Finally, the key factors which influence the stability of the transport roadwaysupported by composite hard rock materials are found out.
基金supported by the Sci-tech Research Development Program of Shaanxi Province (No.2015SF015)
文摘The aim of this study was to evaluate the effects of low-dose tibolone therapy on ovarian area, uterine volume and endometrial thickness, and define the cut-off value of endometrial thickness for curettage during uterine bleeding. We followed 619 postmenopausal women, aged 40-60 years, for two years. There were 301 subjects in the low-dose tibolone treatment group and 318 subjects in the control group. The ovarian area, uterine volume and endometrial thickness in all participants were measured by transvaginal ultrasound prior to, one and two years post enrollment, respectively. Endometrial specimens were collected from all subjects with abnormal uterine bleeding during the follow-up period. We found that the uterine volume in the treatment group was greater than that in the control group, and the difference was significant (P〈0.05), but there were no significant differences in ovarian area and endometrial thickness between the two groups (P〉0.05). When the cut-off value for endometrial thickness was 7.35 ram, the sensitivity and specificity were 100% and 79.07%, respectively, and 85.71% and 93.02% when 7.55 mm was set as the cut-offduring tibolone therapy. The results indicate that low-dose tibolone therapy may postpone uterine atrophy and the cut-off value of endometrial thickness may be appropriately adjusted for curettage.
基金financial support from the Fundamental Research Funds for the Central Universities of China (No. 2015QNB19)the financial support from the Open Fund of Key Laboratory of Safety and High-efficiency Coal Mining, Ministry of Education of China (No. JYBSYS2015107)+2 种基金the National Natural Science Foundation of China (Nos. 51404254, 41430317 and U1261202)the China Postdoctoral Science Foundation of China (No. 2014M560465)the Jiangsu Planned Projects for Postdoctoral Research Funds of China (No. 1302050B)
文摘The level of deformation development of surrounding rocks is a vital predictor to evaluate impending coal mine disasters and it is important to establish accurate measurements of the deformed status to ensure coal mine safety. Traditional deformation monitoring methods are mostly based on single parameter, in this paper, multiple approaches are integrated: firstly, both electric and elastic models are established,from which electric field distribution and seismic wave recording are calculated and finally, the resistivity profiles and source position information are determined using inversion methods, from which then the deformation and failure of mine floor are evaluated. According to the inversion results of both electric and seismic field signals, multiple-parameter dynamic monitoring of surrounding rock deformation in deep mine can be performed. The methodology is validated using numerical simulation results which shows that the multi-parameter dynamic monitoring methods have better results for surrounding rock deformation in deep mine monitoring than single parameter methods.
基金Supported by the National Natural Science Foundation of China (No.50378041) and the Specialized Research Fund for the Doctoral Program of Higher Education (No.2003487016).
文摘Based on digital image processing technique, a real-time system is developed to monitor and detect the dynamic displacement of engineering structures. By processing pictures with a self-programmed software, the real-time coordinate of an object in a certain coordinate system can be obtained, and further dynamic displacement data and curve of the object can also be achieved. That is, automatic gathering and real-time processing of data can be carried out by this system simultaneously. For this system, first, an untouched monitoring technique is adopted, which can monitor or detect objects several to hundreds of meters apart; second, it has flexible installation condition and good monitoring precision of sub-millimeter degree; third, it is fit for dynamic, quasi-dynamic and static monitoring of large engineering structures. Through several tests and applications in large bridges, good reliability and dominance of the system is proved.
基金The authors are grateful for the financial support from the National Natural Science Foundation of China(Grant Nos.42177143,42277461)the Science Foundation for Distinguished Young Scholars of Sichuan Province(Grant No.2020JDJQ0011).Thanks to the Chn Energy Dadu River Hydropower Development Co.,Ltd,China Three Gorges Construction Engineering Corporation,Yalong River Hydropower Development Company,Ltd,Power China Chengdu Engineering Co.,Ltd,Power China Northwest Engineering Co.,Ltd,Power China Sinohydro Bureau 7 Co.,Ltd,China Gezhouba Group No.1 Engineering Co.,Ltd.,and the 5th Engineering Co.,Ltd.of China Railway Construction Bridge Engineering Bureau Group for the support and assistance.
文摘The underground hydropower projects in Southwest China is characterized by large excavation sizes,high geostresses,complicated geological conditions and multiple construction processes.Various disasters such as collapses,large deformations,rockbursts are frequently encountered,resulting in serious casualties and huge economic losses.This review mainly presents some representative results on microseismic(MS)monitoring and forecasting for disasters in hydropower underground engineering.First,a set of new denoising,spectral analysis,and location methods were developed for better identification and location of MS signals.Then,the tempo-spatial characteristics of MS events were analyzed to understand the relationship between field construction and damages of surrounding rocks.Combined with field construction,geological data,numerical simulation and parametric analysis of MS sources,the focal mechanism of MS events was revealed.A damage constitutive model considering MS fracturing size was put forward and feedback analysis considering the MS damage of underground surrounding rocks was conducted.Next,an MS multi-parameter based risk assessment and early warning method for dynamic disasters were proposed.The technology for control of the damage and deformation of underground surrounding rocks was proposed for underground caverns.Finally,two typical underground powerhouses were selected as case studies.These achievements can provide significant references for prevention and control of dynamic disasters for underground engineering with similar complicated geological conditions.
基金Supported by the National Key Project of Scientific and Technical Supporting Program(NO.2006BAG04B03)
文摘The construction period of large cable-stayed bridges is long, and the structure deformation is complicated. Any error during construction will potentially affect the cantilever alignments and the internal forces. In order to ensure safety during construction and exactly determine the cantilever alignments, dynamic deformation monitoring is needed immediately when the con struction of the superstructure starts. This paper aims at the requirement of deformation monitoring during the Sutong Bridge construction, and introduces the realization and observing schemes of the GPS and georobot based on remote real-time dynamic geometrical deformation monitoring system, then researches the data processing methods and enumerates some of the application achievements. Long-term operation during the Sutong Bridge construction indicates that the system runs steadily and the results are reliable.
基金Project supported by the Innovative Research Groups of the National Natural Science Foundation of China (No. 51621092), the National Basic Research Program (973 Program) of China (No. 2013CB035904), and the Natural Science Foundation of China (No. 51439005)
文摘Time, cost, and quality are three key control factors in rockfill dam construction, and the tradeoff among them is important. Research has focused on the construction time-cost-quality tradeoff for the planning or design phase, built on static empirical data. However, due to its intrinsic uncertainties, rockfill dam construction is a dynamic process which requires the tradeoffto adjust dynamically to changes in construction conditions. In this study, a dynamic time-cost-quality tradeoff (DTCQT) method is proposed to balance time, cost, and quality at any stage of the construction process. A time-cost-quality tradeoff model is established that considers time cost and quality cost. Time, cost, and quality are dynamically estimated based on real-time monitoring. The analytic hierarchy process (AHP) method is applied to quantify the decision preferences among time, cost, and quality as objective weights. In addition, an improved non-dominated sorting genetic algorithm (NSGA-II) coupled with the technique for order preference by similarity to ideal solution (TOPSIS) method is used to search for the optimal compromise solution. A case study project is analyzed to demonstrate the applicability of the method, and the efficiency of the proposed optimization method is compared with that of the linear weighted sum (LWS) and NSGA-II.
基金supported by the National Natural Science Foundation of China(Grant No.50539010,50539110,50579010,50539030 and 50809025)
文摘To improve the effectiveness of dam safety monitoring database systems,the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mode.The optimal data model was confirmed by identifying data objects,defining relations and reviewing entities.The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely.On this basis,a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established,for which factual tables and dimensional tables have been designed.Finally,based on service design and user interface design,the dam safety monitoring system has been developed with Delphi as the development tool.This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design.It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers.