A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source di...A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.展开更多
The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed...The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed out from such logic system. This article aims to rearticulate the underlying lucid multi-dimensional logic system, which faded in obscurity only because of time-out loss of the mid-right concept. Retracing this past tacit but important concept could uncover a multi-dimensional system over a point relating to all matters while capturing the central core of the matter. The seemingly unmanageable multidimensional logic was strengthened by verification processes which affirmed its further extensions, and made up the language of the people, the concepts of yin-yang(阴阳), and the development of extensions of Ba Gua(八卦) derivatives, which furthered the interpretation of the space-time properties and Chinese medicine.展开更多
This paper begins with a discussion of the trust issues that agricultural supply chain finance faces.It then examines the constraints of using blockchain technology to enhance trust in agricultural supply chain financ...This paper begins with a discussion of the trust issues that agricultural supply chain finance faces.It then examines the constraints of using blockchain technology to enhance trust in agricultural supply chain finance in accordance with the technological and institutional logic of combining blockchain with supply chains.This study then proposes the creation of an agricultural“blockchain+supply chain”information service platform and a financing trust mechanism that can effectively ensure the authenticity of the initial information input on the blockchain,consistency between on-chain transaction data and off-chain physical transactions,the controllability of risks in the set up and execution of smart contracts,and the removal of information constraints,resource allocation constraints,and institutional constraints in the agricultural supply chain financing.This aims to improve the efficiency of financing in agricultural supply chains and contribute to the industrial development of rural areas and rural revitalization.展开更多
Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial...Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs.展开更多
This paper explores whole-process engineering consulting,including its application models in public buildings and elderly-friendly projects,such as service integration and whole lifecycle management.It also addresses ...This paper explores whole-process engineering consulting,including its application models in public buildings and elderly-friendly projects,such as service integration and whole lifecycle management.It also addresses the construction of multi-dimensional collaborative theoretical models,public space streamline organization,and other aspects,emphasizing the importance of multi-dimensional collaboration.Additionally,it highlights the role of talent cultivation and digital transformation in enhancing project efficiency.展开更多
This study focuses on the main problems encountered by rural community education and explores the main problems in key aspects such as resource integration and allocation,multi-party collaboration and sustainable deve...This study focuses on the main problems encountered by rural community education and explores the main problems in key aspects such as resource integration and allocation,multi-party collaboration and sustainable development through empirical analysis according to the theoretical framework of integrated education.The study finds that from the three dimensions of integration subject,integrated curriculum and integration mode,an integrated education system should be created on the basis of community,the social support system should be improved,the implementation of the rural revitalization strategy should be promoted,and the goal of talent training should be realized.展开更多
The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themse...The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.展开更多
During the critical transformation period of landscape architecture major after the adjustment of disciplinary structure and the changes in market demand,private colleges and universities,as important places for culti...During the critical transformation period of landscape architecture major after the adjustment of disciplinary structure and the changes in market demand,private colleges and universities,as important places for cultivating local talents,have pain points such as uneven quality of teachers and students and weak innovation and practice.The practice system with“multi-dimensional Integration”integrates four dimensions:interdisciplinary integration,spatial and temporal intersection,historical inheritance,and behavioral activity,deepens the disciplinary connotation,and integrates the three elements of nature,humanity,and technology,aiming to provide a new path for private colleges and universities to cultivate application-oriented and compound talents with innovative capabilities.In terms of optimizing talent cultivation and adapting to industry changes,this system provides thinking and reference for landscape architecture major,helping the major reshape its core competitiveness and promoting educational innovation and industry development.展开更多
This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with...This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.展开更多
In machine vision,elliptical targets frequently appear within the camera's region of interest(ROI).Ellipse detection is essential for shape detection and geometric measurements in machine vision.However,existing e...In machine vision,elliptical targets frequently appear within the camera's region of interest(ROI).Ellipse detection is essential for shape detection and geometric measurements in machine vision.However,existing ellipse detection algorithms often face issues such as high computational complexity,strong dependence on initial conditions,sensitivity to noise,and lack of robustness to occlusions.In this paper,we propose a fast and robust ellipse detection method to address these challenges.This method first utilizes edge gradient and curvature information to segment the curve into circular arcs.Next,based on the convexity of the arcs,it divides them into different quadrants of the ellipse,groups and fits the arcs according to multiple geometric constraints at a low computational cost.Finally,it reduces the parameter space for hierarchical clustering and then segments the complete ellipse into several sectors for verification.We compare our method across seven datasets,including five public image datasets and two from industrial camera scenes.Experimental results show that our method achieves a precision ranging from 67.1%to 98.9%,a recall ranging from 48.1%to 92.9%,and an F-measure ranging from 58.0%to 95.8%.The average execution time per image ranges from 25 ms to 192 ms,demonstrating both high accuracy and efficiency.展开更多
Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)feat...Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)featured chromophore(HBT-DPI)that shows flexible emission tunability via the multidimensional regulation of intra-and intermolecular H-bonds.The feature of switchable intramolecular Hbonds is induced via incorporating several hydrogen bond acceptors and donors into one single HBT-DPI molecule,allowing the“turn on/off”of ESIPT process by forming isomers with distinct intramolecular Hbonds configurations.In response to different external H-bonding environments,the obtained four types of crystal/cocrystals vary in the contents of isomers and the molecular packing modes,which are mainly guided by the intermolecular H-bonds,exhibiting non-emissive features or emissions ranging from green to orange.Utilizing the feature of intermolecular H-bond guided molecular packing,we demonstrate the utility of this fluorescent material for visualizing hydrophobic/hydrophilic areas on large-scale heterogeneous surfaces of modified poly(1,1-difluoroethylene)(PVDF)membranes and quantitatively estimating the surface hydrophobicity,providing a new approach for hydrophobicity/hydrophilicity monitoring and measurement.Overall,this study represents a new design strategy for constructing multi-dimensional hydrogen bond regulated ESIPT-based fluorescent materials that enable multiple emissions and unique applications.展开更多
Background As visual simultaneous localization and mapping(SLAM)is primarily based on the assumption of a static scene,the presence of dynamic objects in the frame causes problems such as a deterioration of system rob...Background As visual simultaneous localization and mapping(SLAM)is primarily based on the assumption of a static scene,the presence of dynamic objects in the frame causes problems such as a deterioration of system robustness and inaccurate position estimation.In this study,we propose a YGC-SLAM for indoor dynamic environments based on the ORB-SLAM2 framework combined with semantic and geometric constraints to improve the positioning accuracy and robustness of the system.Methods First,the recognition accuracy of YOLOv5 was improved by introducing the convolution block attention model and the improved EIOU loss function,whereby the prediction frame converges quickly for better detection.The improved YOLOv5 was then added to the tracking thread for dynamic target detection to eliminate dynamic points.Subsequently,multi-view geometric constraints were used for re-judging to further eliminate dynamic points while enabling more useful feature points to be retained and preventing the semantic approach from over-eliminating feature points,causing a failure of map building.The K-means clustering algorithm was used to accelerate this process and quickly calculate and determine the motion state of each cluster of pixel points.Finally,a strategy for drawing keyframes with de-redundancy was implemented to construct a clear 3D dense static point-cloud map.Results Through testing on TUM dataset and a real environment,the experimental results show that our algorithm reduces the absolute trajectory error by 98.22%and the relative trajectory error by 97.98%compared with the original ORBSLAM2,which is more accurate and has better real-time performance than similar algorithms,such as DynaSLAM and DS-SLAM.Conclusions The YGC-SLAM proposed in this study can effectively eliminate the adverse effects of dynamic objects,and the system can better complete positioning and map building tasks in complex environments.展开更多
Free cash flow and financing constraints can exert significant influences on the operational development of enterprises.Based on the pecking order theory and using data from A-share listed companies in China,this pape...Free cash flow and financing constraints can exert significant influences on the operational development of enterprises.Based on the pecking order theory and using data from A-share listed companies in China,this paper employs fixed-effects models and moderation effect models to examine the relationship and mechanisms between enterprises'free cash flow generation capacity and their financing constraints.The study found that:(1)Free cash flow can alleviate corporate financing constraints.(2)Corporate performance plays a positive moderating role in the impact of free cash flow on financing constraints.(3)The impact of free cash flow on financing constraints is weaker in state-owned enterprises compared to non-state-owned enterprises.The findings of this paper imply that free cash flow can have a significant impact on corporate financing activities.Therefore,enterprises should pay more attention to their cash flow indicators,signaling their operational stability and risk management capabilities to the outside world,thereby reducing the level of financing constraints faced by the enterprise.展开更多
This study aimed to identify and compensate for the geometric errors of the double swiveling axes in a five-axis computer numerical control(CNC)machining center.Hence,a three-dimensional coordinate calculation algorit...This study aimed to identify and compensate for the geometric errors of the double swiveling axes in a five-axis computer numerical control(CNC)machining center.Hence,a three-dimensional coordinate calculation algorithm for a measured point with additional rotational rigid body motion constraints is proposed.The motion constraints of the rotational rigid body were analyzed,and a mathematical model of the measured point algorithm in the swiveling axes was established.The Levenberg-Marquard method was used to solve the nonlinear superstatically determined equations.The spatial coordinate error was used to separate the spatial deviation of the measured point.An identification model of the position-independent and position-dependent geometric errors was established.The three-dimensional coordinate-solving algorithm of the measured point in the swiveling axis and geometric error identification method based on the Monte Carlo method were analyzed numerically.Geometric error measurement and cutting experiments were performed on a VMC25100U five-axis machining center,which integrated two swiveling axes.Geometric errors of the A-and B-axes were identified and measured experimentally.The angular positioning errors before and after compensation were measured using a laser interferometer,which verified the effectiveness of the proposed algorithm.A cutting experiment of a round table part was performed.The shape and position accuracy of the processed part before and after compensation were detected using a coordinate measuring machine.It verified that the geometric error of the swiveling axis was effectively compensated by the algorithm proposed herein.展开更多
This study examines the moderating role of entrepreneurs’creative cognitive styles in the relationship between resource constraints and bricolage.Drawing on insights from cognitive psychology and entrepreneurial rese...This study examines the moderating role of entrepreneurs’creative cognitive styles in the relationship between resource constraints and bricolage.Drawing on insights from cognitive psychology and entrepreneurial research,we explore how divergent and convergent thinking influence the extent to which entrepreneurs engage in bricolage under resource limitations.Bricolage refers to the creative recombination of available resources to address challenges and seize opportunities,a process often adopted by firms facing financial or knowledge constraints.Yet,individual cognitive differences may determine how effectively entrepreneurs can employ bricolage as a strategic response to scarcity.We propose that divergent thinking—the capacity to generate multiple creative solutions and identify novel resource combinations—strengthens the positive association between resource constraints and bricolage.In contrast,convergent thinking,which emphasizes logical analysis and the pursuit of a single optimal solution,weakens this association.To test these propositions,we collected survey data from 183 entrepreneurs in the United States and employed moderated regression analyses to examine the interactions among cognitive styles,resource constraints,and bricolage behaviors.Our findings reveal that divergent thinking significantly enhances the effect of both financial and knowledge constraints on bricolage,enabling entrepreneurs to creatively leverage limited resources.Conversely,convergent thinking appears to diminish the likelihood of engaging in bricolage when resources are scarce.These results highlight the importance of individual cognitive styles in shaping strategic responses to resource scarcity and contribute to a more nuanced understanding of entrepreneurial bricolage.The study offers practical implications for firms operating in resource-constrained environments by suggesting that enhancing divergent thinking abilities may facilitate more effective resource recombination.Future research should investigate additional cognitive factors and employ longitudinal designs to capture the dynamic nature of entrepreneurial decision-making.These insights open new avenues for further innovative entrepreneurial practices.展开更多
As an important tool to achieve sustainable economic and environmental development,green finance can effectively alleviate the financing constraints of small and medium-sized enterprises(SMEs),especially in promoting ...As an important tool to achieve sustainable economic and environmental development,green finance can effectively alleviate the financing constraints of small and medium-sized enterprises(SMEs),especially in promoting green transformation plays a key role.SMEs play an important role in economic growth,innovation,and job creation,but due to a lack of collateral,imperfect credit history,and opaque financial information,they face great obstacles in the financing process,especially in the early capital investment required for green transformation.Green finance,through innovative financial instruments such as green credit and green bonds,provides new financing channels for SMEs,helping them reduce financing costs,optimize financing structure,and promote their green transformation and sustainable development.This paper analyzes the current situation and root causes of SMEs’financing dilemma from the perspective of green finance,and probes into the influence of green finance policies on financing behavior.展开更多
Digital financial inclusion provides financial services through digital platforms,aiming to improve the ability of MSMEs and low-income groups to access financial resources,thereby easing their financing constraints a...Digital financial inclusion provides financial services through digital platforms,aiming to improve the ability of MSMEs and low-income groups to access financial resources,thereby easing their financing constraints and promoting economic growth and inclusive development.As an innovative financial model,digital financial inclusion utilizes modern technological means to significantly improve the accessibility and convenience of financial services,especially in areas where traditional banking services are under-covered.Digital finance has promoted the popularization of financial services such as micro-credit,micro-savings,and micro-insurance,and helped improve the financing environment of low-income groups and small and micro enterprises.At the same time,digital financial inclusion promotes financial literacy education and digital inclusion construction,and enhances the acceptance and use of digital financial instruments by the general public,which is the key to achieving sustainable development of digital financial inclusion.Therefore,digital financial inclusion can better ease the financing constraints of small and medium-sized enterprises and promote economic development.展开更多
The rapid development of digital financial inclusion is profoundly changing the financing environment for small and medium-sized enterprises(SMEs).As an important driver of economic growth and innovation,SMEs account ...The rapid development of digital financial inclusion is profoundly changing the financing environment for small and medium-sized enterprises(SMEs).As an important driver of economic growth and innovation,SMEs account for a significant share of employment and GDP globally.However,the traditional bank credit model has long failed to effectively meet the financing needs of SMEs due to issues such as information asymmetry,high cost,and difficulty in risk assessment,resulting in serious financing constraints.Digital financial inclusion,through technological innovation and big data analysis,has significantly reduced credit costs,alleviated information asymmetry,and provided SMEs with more flexible and efficient financing channels.Research shows that digital financial inclusion can not only ease the financing constraints of SMEs,but also promote their innovation and growth,providing important support for building a more inclusive and sustainable financial ecosystem.展开更多
Under the socialist market economic system of our country,the government,through the“invisible hand,”carries on macro regulation and control to improve the financing constraints that small and medium-sized enterpris...Under the socialist market economic system of our country,the government,through the“invisible hand,”carries on macro regulation and control to improve the financing constraints that small and medium-sized enterprises are facing.But because of the huge base number of small and medium-sized enterprises in our country,there are many kinds,and the problem of financing constraints is still puzzling the development of enterprises at present.With the continuous promotion of inclusive finance in our country,the problems plaguing SMEs in the last mile of financing are gradually improved.In this context,small and medium-sized enterprises in Hainan Free Trade Port are taken as the research object to study the role of digital inclusive finance on the financing constraints of SMEs.The research shows that,first of all,small and medium-sized enterprises in Hainan Free Trade Port generally have financing problems.The development of digital inclusive finance solves the“last kilometer”problem of traditional finance,enhances financial access ability,broadens the financial service group,provides convenience and diversified services for SMEs'financing,and provides inexhaustible impetus for the long-term healthy development of SMEs.Secondly,digital inclusive finance alleviates the financing difficulties faced by SMEs on the island by reducing financial costs and expanding the scale of credit.展开更多
Semi-supervised clustering techniques attempt to improve clustering accuracy by utilizing a limited number of labeled data for guidance.This method effectively integrates prior knowledge using pre-labeled data.While s...Semi-supervised clustering techniques attempt to improve clustering accuracy by utilizing a limited number of labeled data for guidance.This method effectively integrates prior knowledge using pre-labeled data.While semi-supervised fuzzy clustering(SSFC)methods leverage limited labeled data to enhance accuracy,they remain highly susceptible to inappropriate or mislabeled prior knowledge,especially in noisy or overlapping datasets where cluster boundaries are ambiguous.To enhance the effectiveness of clustering algorithms,it is essential to leverage labeled data while ensuring the safety of the previous knowledge.Existing solutions,such as the Trusted Safe Semi-Supervised Fuzzy Clustering Method(TS3FCM),struggle with random centroid initialization,fixed neighbor radius formulas,and handling outliers or noise at cluster overlaps.A new framework called Active Safe Semi-Supervised Fuzzy Clustering with Pairwise Constraints Based on Cluster Boundary(AS3FCPC)is proposed in this paper to deal with these problems.It does this by combining pairwise constraints and active learning.AS3FCPC uses active learning to query only the most informative data instances close to the cluster boundaries.It also uses pairwise constraints to enforce the cluster structure,which makes the system more accurate and robust.Extensive test results on diverse datasets,including challenging noisy and overlapping scenarios,demonstrate that AS3FCPC consistently achieves superior performance compared to state-of-the-art methods like TS3FCM and other baselines,especially when the data is noisy and overlaps.This significant improvement underscores AS3FCPC’s potential for reliable and accurate semisupervised fuzzy clustering in complex,real-world applications,particularly by effectively managing mislabeled data and ambiguous cluster boundaries.展开更多
基金co-supported by the National Key R&D Program of China(No.2023YFB4704400)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24F030012)the National Natural Science Foundation of China General Project(No.62373033)。
文摘A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.
文摘The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed out from such logic system. This article aims to rearticulate the underlying lucid multi-dimensional logic system, which faded in obscurity only because of time-out loss of the mid-right concept. Retracing this past tacit but important concept could uncover a multi-dimensional system over a point relating to all matters while capturing the central core of the matter. The seemingly unmanageable multidimensional logic was strengthened by verification processes which affirmed its further extensions, and made up the language of the people, the concepts of yin-yang(阴阳), and the development of extensions of Ba Gua(八卦) derivatives, which furthered the interpretation of the space-time properties and Chinese medicine.
基金an initial outcome of the Research on the Trust Mechanism of Agricultural Supply Chain Financing in the Context of “Blockchain+Supply Chain” Integrated Governance (Project No:20AGL021)a key project under the National Social Science Fund of China (NSSFC)+3 种基金the Research on the Trust Mechanism of Online Bank Lending System Based on Online Social Capital of Long-tail Rural Households (Project No:19BGL155)a project under the NSSFCthe Research on the Cost Formation Mechanism of Data Factor Transactions and the Design of Transaction Mechanism (Project No:23CJY068)a youth project under the NSSFC
文摘This paper begins with a discussion of the trust issues that agricultural supply chain finance faces.It then examines the constraints of using blockchain technology to enhance trust in agricultural supply chain finance in accordance with the technological and institutional logic of combining blockchain with supply chains.This study then proposes the creation of an agricultural“blockchain+supply chain”information service platform and a financing trust mechanism that can effectively ensure the authenticity of the initial information input on the blockchain,consistency between on-chain transaction data and off-chain physical transactions,the controllability of risks in the set up and execution of smart contracts,and the removal of information constraints,resource allocation constraints,and institutional constraints in the agricultural supply chain financing.This aims to improve the efficiency of financing in agricultural supply chains and contribute to the industrial development of rural areas and rural revitalization.
基金the financial support from the Guangxi Natural Science Foundation(grant no.2021GXNSFDA075012,2023GXNSFGA026002)National Natural Science Foundation of China(52104298,22075073,52362027,52462029)Fundamental Research Funds for the Central Universities(531107051077).
文摘Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs.
文摘This paper explores whole-process engineering consulting,including its application models in public buildings and elderly-friendly projects,such as service integration and whole lifecycle management.It also addresses the construction of multi-dimensional collaborative theoretical models,public space streamline organization,and other aspects,emphasizing the importance of multi-dimensional collaboration.Additionally,it highlights the role of talent cultivation and digital transformation in enhancing project efficiency.
文摘This study focuses on the main problems encountered by rural community education and explores the main problems in key aspects such as resource integration and allocation,multi-party collaboration and sustainable development through empirical analysis according to the theoretical framework of integrated education.The study finds that from the three dimensions of integration subject,integrated curriculum and integration mode,an integrated education system should be created on the basis of community,the social support system should be improved,the implementation of the rural revitalization strategy should be promoted,and the goal of talent training should be realized.
文摘The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.
基金Sponsored by the Quality Engineering Project of Education Department of Anhui Province(2022jyxm671)Research Team Project of Anhui Xinhua University(kytd202202)+1 种基金Key Project of Scientific Research(Natural Science)of Higher Education Institutions in Anhui Province(2022AH051861)Teaching Reform Research and Practice Quality Engineering Project of Anhui Xinhua University(2024jy035).
文摘During the critical transformation period of landscape architecture major after the adjustment of disciplinary structure and the changes in market demand,private colleges and universities,as important places for cultivating local talents,have pain points such as uneven quality of teachers and students and weak innovation and practice.The practice system with“multi-dimensional Integration”integrates four dimensions:interdisciplinary integration,spatial and temporal intersection,historical inheritance,and behavioral activity,deepens the disciplinary connotation,and integrates the three elements of nature,humanity,and technology,aiming to provide a new path for private colleges and universities to cultivate application-oriented and compound talents with innovative capabilities.In terms of optimizing talent cultivation and adapting to industry changes,this system provides thinking and reference for landscape architecture major,helping the major reshape its core competitiveness and promoting educational innovation and industry development.
基金supported by the National Natural Science Foundation of China(72101025,72271049),the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities,FRF-IDRY-24-024)the Hebei Natural Science Foundation(F2023501011)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-20-073A1)the R&D Program of Beijing Municipal Education Commission(KM202411232015).
文摘This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.
基金supported by National Major Scientific Research Instrument Development Project of China(No.51927804)Science Fund for Shaanxi Provincial Department of Education's Youth Innovation Team Research Plan under Grant(No.23JP169).
文摘In machine vision,elliptical targets frequently appear within the camera's region of interest(ROI).Ellipse detection is essential for shape detection and geometric measurements in machine vision.However,existing ellipse detection algorithms often face issues such as high computational complexity,strong dependence on initial conditions,sensitivity to noise,and lack of robustness to occlusions.In this paper,we propose a fast and robust ellipse detection method to address these challenges.This method first utilizes edge gradient and curvature information to segment the curve into circular arcs.Next,based on the convexity of the arcs,it divides them into different quadrants of the ellipse,groups and fits the arcs according to multiple geometric constraints at a low computational cost.Finally,it reduces the parameter space for hierarchical clustering and then segments the complete ellipse into several sectors for verification.We compare our method across seven datasets,including five public image datasets and two from industrial camera scenes.Experimental results show that our method achieves a precision ranging from 67.1%to 98.9%,a recall ranging from 48.1%to 92.9%,and an F-measure ranging from 58.0%to 95.8%.The average execution time per image ranges from 25 ms to 192 ms,demonstrating both high accuracy and efficiency.
基金supported by the National Key R&D Program of China(No.2021YFC2103600)the National Natural Science Foundation of China(Nos.21878156,21978131,22275085,and 22278224)+2 种基金the Natural Science Foundation of Jiangsu Province(Nos.BK20200089 and BK20200691)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the State Key Laboratory of Materials-Oriented Chemical Engineering(No.KL21-08).
文摘Constructing multi-dimensional hydrogen bond(H-bond)regulated single-molecule systems with multiemission remains a challenge.Herein,we report the design of a new excited-state intramolecular proton transfer(ESIPT)featured chromophore(HBT-DPI)that shows flexible emission tunability via the multidimensional regulation of intra-and intermolecular H-bonds.The feature of switchable intramolecular Hbonds is induced via incorporating several hydrogen bond acceptors and donors into one single HBT-DPI molecule,allowing the“turn on/off”of ESIPT process by forming isomers with distinct intramolecular Hbonds configurations.In response to different external H-bonding environments,the obtained four types of crystal/cocrystals vary in the contents of isomers and the molecular packing modes,which are mainly guided by the intermolecular H-bonds,exhibiting non-emissive features or emissions ranging from green to orange.Utilizing the feature of intermolecular H-bond guided molecular packing,we demonstrate the utility of this fluorescent material for visualizing hydrophobic/hydrophilic areas on large-scale heterogeneous surfaces of modified poly(1,1-difluoroethylene)(PVDF)membranes and quantitatively estimating the surface hydrophobicity,providing a new approach for hydrophobicity/hydrophilicity monitoring and measurement.Overall,this study represents a new design strategy for constructing multi-dimensional hydrogen bond regulated ESIPT-based fluorescent materials that enable multiple emissions and unique applications.
基金Supported by Jiangsu Key R&D Program(BE2021622)Jiangsu Postgraduate Practice and Innovation Program(SJCX23_0395).
文摘Background As visual simultaneous localization and mapping(SLAM)is primarily based on the assumption of a static scene,the presence of dynamic objects in the frame causes problems such as a deterioration of system robustness and inaccurate position estimation.In this study,we propose a YGC-SLAM for indoor dynamic environments based on the ORB-SLAM2 framework combined with semantic and geometric constraints to improve the positioning accuracy and robustness of the system.Methods First,the recognition accuracy of YOLOv5 was improved by introducing the convolution block attention model and the improved EIOU loss function,whereby the prediction frame converges quickly for better detection.The improved YOLOv5 was then added to the tracking thread for dynamic target detection to eliminate dynamic points.Subsequently,multi-view geometric constraints were used for re-judging to further eliminate dynamic points while enabling more useful feature points to be retained and preventing the semantic approach from over-eliminating feature points,causing a failure of map building.The K-means clustering algorithm was used to accelerate this process and quickly calculate and determine the motion state of each cluster of pixel points.Finally,a strategy for drawing keyframes with de-redundancy was implemented to construct a clear 3D dense static point-cloud map.Results Through testing on TUM dataset and a real environment,the experimental results show that our algorithm reduces the absolute trajectory error by 98.22%and the relative trajectory error by 97.98%compared with the original ORBSLAM2,which is more accurate and has better real-time performance than similar algorithms,such as DynaSLAM and DS-SLAM.Conclusions The YGC-SLAM proposed in this study can effectively eliminate the adverse effects of dynamic objects,and the system can better complete positioning and map building tasks in complex environments.
文摘Free cash flow and financing constraints can exert significant influences on the operational development of enterprises.Based on the pecking order theory and using data from A-share listed companies in China,this paper employs fixed-effects models and moderation effect models to examine the relationship and mechanisms between enterprises'free cash flow generation capacity and their financing constraints.The study found that:(1)Free cash flow can alleviate corporate financing constraints.(2)Corporate performance plays a positive moderating role in the impact of free cash flow on financing constraints.(3)The impact of free cash flow on financing constraints is weaker in state-owned enterprises compared to non-state-owned enterprises.The findings of this paper imply that free cash flow can have a significant impact on corporate financing activities.Therefore,enterprises should pay more attention to their cash flow indicators,signaling their operational stability and risk management capabilities to the outside world,thereby reducing the level of financing constraints faced by the enterprise.
基金Supported by Shanxi Provincial Natural Science Foundation(Grant No.2021JM010)The Youth Innovation Team of Shaanxi Universities.
文摘This study aimed to identify and compensate for the geometric errors of the double swiveling axes in a five-axis computer numerical control(CNC)machining center.Hence,a three-dimensional coordinate calculation algorithm for a measured point with additional rotational rigid body motion constraints is proposed.The motion constraints of the rotational rigid body were analyzed,and a mathematical model of the measured point algorithm in the swiveling axes was established.The Levenberg-Marquard method was used to solve the nonlinear superstatically determined equations.The spatial coordinate error was used to separate the spatial deviation of the measured point.An identification model of the position-independent and position-dependent geometric errors was established.The three-dimensional coordinate-solving algorithm of the measured point in the swiveling axis and geometric error identification method based on the Monte Carlo method were analyzed numerically.Geometric error measurement and cutting experiments were performed on a VMC25100U five-axis machining center,which integrated two swiveling axes.Geometric errors of the A-and B-axes were identified and measured experimentally.The angular positioning errors before and after compensation were measured using a laser interferometer,which verified the effectiveness of the proposed algorithm.A cutting experiment of a round table part was performed.The shape and position accuracy of the processed part before and after compensation were detected using a coordinate measuring machine.It verified that the geometric error of the swiveling axis was effectively compensated by the algorithm proposed herein.
文摘This study examines the moderating role of entrepreneurs’creative cognitive styles in the relationship between resource constraints and bricolage.Drawing on insights from cognitive psychology and entrepreneurial research,we explore how divergent and convergent thinking influence the extent to which entrepreneurs engage in bricolage under resource limitations.Bricolage refers to the creative recombination of available resources to address challenges and seize opportunities,a process often adopted by firms facing financial or knowledge constraints.Yet,individual cognitive differences may determine how effectively entrepreneurs can employ bricolage as a strategic response to scarcity.We propose that divergent thinking—the capacity to generate multiple creative solutions and identify novel resource combinations—strengthens the positive association between resource constraints and bricolage.In contrast,convergent thinking,which emphasizes logical analysis and the pursuit of a single optimal solution,weakens this association.To test these propositions,we collected survey data from 183 entrepreneurs in the United States and employed moderated regression analyses to examine the interactions among cognitive styles,resource constraints,and bricolage behaviors.Our findings reveal that divergent thinking significantly enhances the effect of both financial and knowledge constraints on bricolage,enabling entrepreneurs to creatively leverage limited resources.Conversely,convergent thinking appears to diminish the likelihood of engaging in bricolage when resources are scarce.These results highlight the importance of individual cognitive styles in shaping strategic responses to resource scarcity and contribute to a more nuanced understanding of entrepreneurial bricolage.The study offers practical implications for firms operating in resource-constrained environments by suggesting that enhancing divergent thinking abilities may facilitate more effective resource recombination.Future research should investigate additional cognitive factors and employ longitudinal designs to capture the dynamic nature of entrepreneurial decision-making.These insights open new avenues for further innovative entrepreneurial practices.
文摘As an important tool to achieve sustainable economic and environmental development,green finance can effectively alleviate the financing constraints of small and medium-sized enterprises(SMEs),especially in promoting green transformation plays a key role.SMEs play an important role in economic growth,innovation,and job creation,but due to a lack of collateral,imperfect credit history,and opaque financial information,they face great obstacles in the financing process,especially in the early capital investment required for green transformation.Green finance,through innovative financial instruments such as green credit and green bonds,provides new financing channels for SMEs,helping them reduce financing costs,optimize financing structure,and promote their green transformation and sustainable development.This paper analyzes the current situation and root causes of SMEs’financing dilemma from the perspective of green finance,and probes into the influence of green finance policies on financing behavior.
文摘Digital financial inclusion provides financial services through digital platforms,aiming to improve the ability of MSMEs and low-income groups to access financial resources,thereby easing their financing constraints and promoting economic growth and inclusive development.As an innovative financial model,digital financial inclusion utilizes modern technological means to significantly improve the accessibility and convenience of financial services,especially in areas where traditional banking services are under-covered.Digital finance has promoted the popularization of financial services such as micro-credit,micro-savings,and micro-insurance,and helped improve the financing environment of low-income groups and small and micro enterprises.At the same time,digital financial inclusion promotes financial literacy education and digital inclusion construction,and enhances the acceptance and use of digital financial instruments by the general public,which is the key to achieving sustainable development of digital financial inclusion.Therefore,digital financial inclusion can better ease the financing constraints of small and medium-sized enterprises and promote economic development.
文摘The rapid development of digital financial inclusion is profoundly changing the financing environment for small and medium-sized enterprises(SMEs).As an important driver of economic growth and innovation,SMEs account for a significant share of employment and GDP globally.However,the traditional bank credit model has long failed to effectively meet the financing needs of SMEs due to issues such as information asymmetry,high cost,and difficulty in risk assessment,resulting in serious financing constraints.Digital financial inclusion,through technological innovation and big data analysis,has significantly reduced credit costs,alleviated information asymmetry,and provided SMEs with more flexible and efficient financing channels.Research shows that digital financial inclusion can not only ease the financing constraints of SMEs,but also promote their innovation and growth,providing important support for building a more inclusive and sustainable financial ecosystem.
文摘Under the socialist market economic system of our country,the government,through the“invisible hand,”carries on macro regulation and control to improve the financing constraints that small and medium-sized enterprises are facing.But because of the huge base number of small and medium-sized enterprises in our country,there are many kinds,and the problem of financing constraints is still puzzling the development of enterprises at present.With the continuous promotion of inclusive finance in our country,the problems plaguing SMEs in the last mile of financing are gradually improved.In this context,small and medium-sized enterprises in Hainan Free Trade Port are taken as the research object to study the role of digital inclusive finance on the financing constraints of SMEs.The research shows that,first of all,small and medium-sized enterprises in Hainan Free Trade Port generally have financing problems.The development of digital inclusive finance solves the“last kilometer”problem of traditional finance,enhances financial access ability,broadens the financial service group,provides convenience and diversified services for SMEs'financing,and provides inexhaustible impetus for the long-term healthy development of SMEs.Secondly,digital inclusive finance alleviates the financing difficulties faced by SMEs on the island by reducing financial costs and expanding the scale of credit.
文摘Semi-supervised clustering techniques attempt to improve clustering accuracy by utilizing a limited number of labeled data for guidance.This method effectively integrates prior knowledge using pre-labeled data.While semi-supervised fuzzy clustering(SSFC)methods leverage limited labeled data to enhance accuracy,they remain highly susceptible to inappropriate or mislabeled prior knowledge,especially in noisy or overlapping datasets where cluster boundaries are ambiguous.To enhance the effectiveness of clustering algorithms,it is essential to leverage labeled data while ensuring the safety of the previous knowledge.Existing solutions,such as the Trusted Safe Semi-Supervised Fuzzy Clustering Method(TS3FCM),struggle with random centroid initialization,fixed neighbor radius formulas,and handling outliers or noise at cluster overlaps.A new framework called Active Safe Semi-Supervised Fuzzy Clustering with Pairwise Constraints Based on Cluster Boundary(AS3FCPC)is proposed in this paper to deal with these problems.It does this by combining pairwise constraints and active learning.AS3FCPC uses active learning to query only the most informative data instances close to the cluster boundaries.It also uses pairwise constraints to enforce the cluster structure,which makes the system more accurate and robust.Extensive test results on diverse datasets,including challenging noisy and overlapping scenarios,demonstrate that AS3FCPC consistently achieves superior performance compared to state-of-the-art methods like TS3FCM and other baselines,especially when the data is noisy and overlaps.This significant improvement underscores AS3FCPC’s potential for reliable and accurate semisupervised fuzzy clustering in complex,real-world applications,particularly by effectively managing mislabeled data and ambiguous cluster boundaries.