Most developing countries continue to face challenges in accessing sustainable energy.This study investigates a solar panel and battery-powered system for an urban off-grid microgrid in Nigeria,where demand-sideflexib...Most developing countries continue to face challenges in accessing sustainable energy.This study investigates a solar panel and battery-powered system for an urban off-grid microgrid in Nigeria,where demand-sideflexibility and strategic interactions between households and utilities can optimize system sizing.A nonlinear programming model is built using bilevel problem formulation that incorporates both the households’willingness to reduce their energy consumption and the utility’s agreement to provide price rebates.The results show that,for an energy community of 10 households with annual energy demand of 7.8 MWh,an oversized solar-storage system is required(12 kWp of photovoltaic solar panels and 26 kWh of battery storage).The calculated average cost of 0.31€/kWh is three times higher than the current tariff,making it unaffordable for most Nigerian households.To address this,the utility company could implement Demand Response programs with direct load control that delay the use of certain appliances,such as fans,irons and air conditioners.If these measures reduce total demand by 5%,both the required system size and overall costs could decrease significantly,by approximately one-third.This adjustment leads to a reduced tariffof 0.20€/kWh.When Demand Response is imple-mented through negotiation between the utility and households,the amount of load-shaving achieved is lower.This is because house-holds experience discomfort from curtailment and are generally less willing to provideflexibility.However,negotiation allows for greaterflexibility than direct control,due to dynamic interactions and more active consumer participation in the energy transition.Nonetheless,tariffs remain higher than current market prices.Off-grid contracts could become competitive iffinancial support is pro-vided,such as low-interest loans and capital grants covering up to 75%of the upfront cost.展开更多
The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage...The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage systems is proposed in this study.Off-grid microgrids are self-sufficient electrical networks that are capable of effectively resolving electricity access problems in remote areas by providing stable and reliable power to local residents.A comprehensive review of the design,control strategies,energy management,and optimization of off-grid microgrids based on domestic and international research is presented in this study.It also explores the critical role of energy stor-age systems in enhancing microgrid stability and economic efficiency.Additionally,the capacity configurations of energy storage systems within off-grid networks are analyzed.Energy storage systems not only mitigate the intermittency and volatility of renewable energy gen-eration but also supply power support during peak demand periods,thereby improving grid stability and reliability.By comparing different energy storage technologies,such as lithium-ion batteries,pumped hydro storage,and compressed air energy storage,the optimal energy storage capacity configurations tailored to various application scenarios are proposed in this study.Finally,using a typical micro-grid as a case study,an empirical analysis of off-grid microgrids and energy storage integration has been conducted.The optimal con-figuration of energy storage systems is determined,and the impact of wind and solar power integration under various scenarios on grid balance is explored.It has been found that a rational configuration of energy storage systems can significantly enhance the utilization rate of renewable energy,reduce system operating costs,and strengthen grid resilience under extreme conditions.This study provides essential theoretical support and practical guidance for the design and implementation of off-grid microgrids in remote areas.展开更多
Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sam...Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sampling time period inevitably causes the wasteful use of communication resources.This paper proposes a self-triggered secondary control scheme under perturbations from false data injection(FDI)attacks.We designed a linear clock for each DG to trigger its controller at aperiodic and intermittent instants.Sub-sequently,a hash-based defense mechanism(HDM)is designed for detecting and eliminating malicious data infiltrated in the MGs.With the aid of HDM,a self-triggered control scheme achieves the secondary control objectives even in the presence of FDI attacks.Rigorous theoretical analyses and simulation results indicate that the introduced secondary control scheme significantly reduces communication costs and enhances the resilience of MGs under FDI attacks.展开更多
Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are explorin...Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are exploring the potential of DC microgrids across var-ious configurations.However,despite the sustainability and accuracy offered by DC microgrids,they pose various challenges when integrated into modern power distribution systems.Among these challenges,fault diagnosis holds significant importance.Rapid fault detection in DC microgrids is essential to maintain stability and ensure an uninterrupted power supply to critical loads.A primary chal-lenge is the lack of standards and guidelines for the protection and safety of DC microgrids,including fault detection,location,and clear-ing procedures for both grid-connected and islanded modes.In response,this study presents a brief overview of various approaches for protecting DC microgrids.展开更多
Interconnection planning involving bi-directional converters(BdCs)is crucial for enhancing the reliability and robustness of hybrid alternating current(AC)/direct current(DC)microgrid clusters with high penetrations o...Interconnection planning involving bi-directional converters(BdCs)is crucial for enhancing the reliability and robustness of hybrid alternating current(AC)/direct current(DC)microgrid clusters with high penetrations of renewable energy resources(RESs).However,challenges such as the non-convex nature of BdC efficiency and renewable energy uncertainty complicate the planning process.To address these issues,this paper proposes a tri-level BdC-based planning framework that incorporates dynamic BdC efficiency and a data-correlated uncertainty set(DcUS)derived from historical data patterns.The proposed framework employs a least-squares approximation to linearize BdC efficiency and constructs the DcUS to balance computational efficiency and solution robustness.Additionally,a fully parallel column and constraint generation algorithm is developed to solve the model efficiently.Numerical simulations on a practical hybrid AC/DC microgrid system demonstrate that the proposed method reduces interconnection costs by up to 21.8%compared to conventional uncertainty sets while ensuring robust operation under all considered scenarios.These results highlight the computational efficiency,robustness,and practicality of the proposed approach,making it a promising solution for modern power systems.展开更多
Recently, the smart grid has been considered as a next-generation power system to modernize the traditional grid to improve its security, connectivity, efficiency and sustainability.Unfortunately, the smart grid is su...Recently, the smart grid has been considered as a next-generation power system to modernize the traditional grid to improve its security, connectivity, efficiency and sustainability.Unfortunately, the smart grid is susceptible to malicious cyber attacks, which can create serious technical, economical, social and control problems in power network operations. In contrast to the traditional cyber attack minimization techniques, this paper proposes a recursive systematic convolutional(RSC) code and Kalman filter(KF) based method in the context of smart grids.Specifically, the proposed RSC code is used to add redundancy in the microgrid states, and the log maximum a-posterior is used to recover the state information, which is affected by random noises and cyber attacks. Once the estimated states are obtained by KF algorithm, a semidefinite programming based optimal feedback controller is proposed to regulate the system states, so that the power system can operate properly. Test results show that the proposed approach can accurately mitigate the cyber attacks and properly estimate and control the system states.展开更多
The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while ...The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while meeting the total charging/discharging power requirement is formulated and solved as a distributed control problem.Conditions on the communication topology among the battery units are established under which a control law is designed for each battery unit to solve the control problem based on distributed average reference power estimators and distributed average unit state estimators.Two types of estimators are proposed.One achieves asymptotic estimation and the other achieves finite time estimation.We show that,under the proposed control laws,SoC balancing of all battery units is achieved and the total charging/discharging power of the BESS tracks the desired power.A simulation example is shown to verify the theoretical results.展开更多
Microgrids are local power systems that may or may not be connected to the distribution system and are typically controlled by the local operator.Interest in microgrids is rising and it is likely that the number of mi...Microgrids are local power systems that may or may not be connected to the distribution system and are typically controlled by the local operator.Interest in microgrids is rising and it is likely that the number of microgrids connected to distribution networks will increase.Currently,there is no consensus on how microgrids will interact with the distribution system―they have the potential to threaten stability,or to assist.However microgrids,with their emphasis on sophisticated control in order to manage their particular challenges,address many of the problems that will be required to overcome in realizing the smart grid.This paper examines some of the issues involved in connecting microgrids to the distribution networks,and illustrates how microgrids have a key role to play in the development of the smart grid.展开更多
Base station operators deploy a large number of distributed photovoltaics to solve the problems of high energy consumption and high electricity costs of 5G base stations.In this study,the idle space of the base statio...Base station operators deploy a large number of distributed photovoltaics to solve the problems of high energy consumption and high electricity costs of 5G base stations.In this study,the idle space of the base station’s energy storage is used to stabilize the photovoltaic output,and a photovoltaic storage system microgrid of a 5G base station is constructed.Aiming at the capacity planning problem of photovoltaic storage systems,a two-layer optimal configuration method is proposed.The inner layer optimization considers the energy sharing among the base station microgrids,combines the communication characteristics of the 5G base station and the backup power demand of the energy storage battery,and determines an economic scheduling strategy for each photovoltaic storage system with the goal of minimizing the daily operation cost of the base station microgrid.The outer model aims to minimize the annual average comprehensive revenue of the 5G base station microgrid,while considering peak clipping and valley filling,to optimize the photovoltaic storage system capacity.The CPLEX solver and a genetic algorithm were used to solve the two-layer models.Considering the construction of the 5G base station in a certain area as an example,the results showed that the proposed model can not only reduce the cost of the 5G base station operators,but also reduce the peak load of the power grid and promote the local digestion of photovoltaic power.展开更多
This article presents a distributed periodic eventtriggered(PET)optimal control scheme to achieve generation cost minimization and average bus voltage regulation in DC microgrids.In order to accommodate the generation...This article presents a distributed periodic eventtriggered(PET)optimal control scheme to achieve generation cost minimization and average bus voltage regulation in DC microgrids.In order to accommodate the generation constraints of the distributed generators(DGs),a virtual incremental cost is firstly designed,based on which an optimality condition is derived to facilitate the control design.To meet the discrete-time(DT)nature of modern control systems,the optimal controller is directly developed in the DT domain.Afterward,to reduce the communication requirement among the controllers,a distributed event-triggered mechanism is introduced for the DT optimal controller.The event-triggered condition is detected periodically and therefore naturally avoids the Zeno phenomenon.The closed-loop system stability is proved by the Lyapunov synthesis for switched systems.The generation cost minimization and average bus voltage regulation are obtained at the equilibrium point.Finally,switch-level microgrid simulations validate the performance of the proposed optimal controller.展开更多
This paper addresses the problem of distributed secondary control for islanded AC microgrids with external disturbances.By using a full-order sliding-mode(FOSM)approach,voltage regulation and frequency restoration are...This paper addresses the problem of distributed secondary control for islanded AC microgrids with external disturbances.By using a full-order sliding-mode(FOSM)approach,voltage regulation and frequency restoration are achieved in finite time.For voltage regulation,a distributed observer is proposed for each distributed generator(DG)to estimate a reference voltage level.Different from some conventional observers,the reference voltage level in this paper is accurately estimated under directed communication topologies.Based on the observer,a new nonlinear controller is designed in a backstepping manner such that an FOSM surface is reached in finite time.On the surface,the voltages of DGs are regulated to the reference level in finite time.For frequency restoration,a distributed controller is further proposed such that a constructed FOSM surface is reached in finite time,on which the frequencies of DGs are restored to a reference level in finite time under directed communication topologies.Finally,case studies on a modified IEEE 37-bus test system are conducted to demonstrate the effectiveness,the robustness against load changes,and the plug-and-play capability of the proposed controllers.展开更多
Real-time scheduling as an on-line optimization process must output dispatch results in real time. However, the calculation time required and the economy have a trade-off relationship. In response to a real-time sched...Real-time scheduling as an on-line optimization process must output dispatch results in real time. However, the calculation time required and the economy have a trade-off relationship. In response to a real-time scheduling problem, this paper proposes a real-time scheduling strategy considering the operation interval division of distributed generators(DGs) and batteries in the microgrid. Rolling scheduling models, including day-ahead scheduling and hours-ahead scheduling, are established, where the latter considers the future state-of-charge deviations. For the real-time scheduling, the output powers of the DGs are divided into two intervals based on the ability to track the day-ahead and hours-ahead schedules. The day-ahead and hours-ahead scheduling ensure the economy, whereas the real-time scheduling overcomes the timeconsumption problem. Finally, a grid-connected microgrid example is studied, and the simulation results demonstrate the effectiveness of the proposed strategy in terms of economic and real-time requirements.展开更多
In this paper,a grid interface current control strategy is presented for a DC microgrid,which aims to reduce the disturbance from PV generation and the load variation to the main grid without a grid interface converte...In this paper,a grid interface current control strategy is presented for a DC microgrid,which aims to reduce the disturbance from PV generation and the load variation to the main grid without a grid interface converter.The grid interface current is directly controlled by a battery DC-DC converter within the DC microgrid.Based on a comprehensive analysis of the battery DC-DC converter and interface current control,the control system has been mathematically modelled.This enabled two transfer functions to be derived that reflect the dynamic response of the inductor current to the duty cycle variation(inner loop),and the dynamic response of the grid interface current to the inductor current variation(outer loop).Experimental study has been done to assess the effectiveness of the proposed control strategy.The experimental results indicate that the proposed control strategy has a good performance to control the grid interface current without an interface converter,regardless the variations of both PV and the load conditions.展开更多
A single-bus DC microgrid can represent a wide range of applications.Control objectives of such systems include high-performance bus voltage regulation and proper load sharing among multiple distributed generators(DGs...A single-bus DC microgrid can represent a wide range of applications.Control objectives of such systems include high-performance bus voltage regulation and proper load sharing among multiple distributed generators(DGs)under various operating conditions.This paper presents a novel decentralized control algorithm that can guarantee both the transient voltage control performance and realize the predefined load sharing percentages.First,the output-constrained control problem is transformed into an equivalent unconstrained one.Second,a two-step backstepping control algorithm is designed based on the transformed model for bus-voltage regulation.Since the overall control effort can be split proportionally and calculated with locally-measurable signals,decentralized load sharing can be realized.The control design requires neither accurate parameters of the output filters nor load measurement.The stability of the transformed systems under the proposed control algorithm can indirectly guarantee the transient bus voltage performance of the original system.Additionally,the high-performance control design is robust,flexible,and reliable.Switch-level simulations under both normal and fault operating conditions demonstrate the effectiveness of the proposed algorithm.展开更多
Communication-dependent and software-based distributed energy resources(DERs)are extensively integrated into modern microgrids,providing extensive benefits such as increased distributed controllability,scalability,and...Communication-dependent and software-based distributed energy resources(DERs)are extensively integrated into modern microgrids,providing extensive benefits such as increased distributed controllability,scalability,and observability.However,malicious cyber-attackers can exploit various potential vulnerabilities.In this study,a programmable adaptive security scanning(PASS)approach is presented to protect DER inverters against various power-bot attacks.Specifically,three different types of attacks,namely controller manipulation,replay,and injection attacks,are considered.This approach employs both software-defined networking technique and a novel coordinated detection method capable of enabling programmable and scalable networked microgrids(NMs)in an ultra-resilient,time-saving,and autonomous manner.The coordinated detection method efficiently identifies the location and type of power-bot attacks without disrupting normal NM operations.Extensive simulation results validate the efficacy and practicality of the PASS for securing NMs.展开更多
In this paper, we investigate the Toeplitz operators with positive measure symbols on the Bergman spaces of bounded multi-connected domains and show that a Toeplitz operator is bounded or compact if and only if the sy...In this paper, we investigate the Toeplitz operators with positive measure symbols on the Bergman spaces of bounded multi-connected domains and show that a Toeplitz operator is bounded or compact if and only if the symbol measure is a Carleson or vanishing Carleson measure respectively.展开更多
This work investigates the problem of controller design for the inverters in an islanded microgrid.Robust-synthesis controllers and local droop controllers are designed to regulate the output voltages of inverters and...This work investigates the problem of controller design for the inverters in an islanded microgrid.Robust-synthesis controllers and local droop controllers are designed to regulate the output voltages of inverters and share power among them,respectively.The designed controllers alleviate the need for additional sensors to measure the states of the system by relying only on output feedback.It is shown that the designed-synthesis controller properly damps resonant oscillations,and its performance is robust to the control-loop time delay and parameter uncertainties.The stability of a droop-controlled islanded microgrid including multiple distributed generation(DG)units is analyzed by linearizing the nonlinear power flow model around the nominal operating point and applying theorems from linear algebra.It is indicated that the droop controller stabilizes the microgrid system with dominantly inductive tie-line impedances for all values of resistive-inductive loads,while for the case of resistive-capacitive loads the stability is conditioned on an upper bound on the load susceptances.The robust performance of the designed-synthesis controller is studied analytically,compared with the similar analysis in an control(benchmark)framework,and verified by simulations for a four DG benchmark microgrid.Furthermore,the robustness of the droop controllers is analyzed by Monte Carlo simulations in the presence of local voltage fluctuations and phase differences among neighboring DGs.展开更多
This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and e...This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and energy storage system (ESS). The reliability of the MG system is modeled based on the loss of power supply probability (SPSP). For optimization, an enhanced Genetic Algorithm (GA) is used to minimize the total cost of the system over a 20-year period, while satisfying some reliability and operation constraints. A case study addressing optimal sizing of an off-grid hybrid microgrid in Nigeria is discussed. The result is compared with results obtained from the Brute Force and standard GA methods.展开更多
We propose a restoration strategy using microgrids for restoring power supply to critical loads after an extreme event and thereby enhancing the resilience of the distribution power grid.The limited capacities of dist...We propose a restoration strategy using microgrids for restoring power supply to critical loads after an extreme event and thereby enhancing the resilience of the distribution power grid.The limited capacities of distributed generators(DGs)within the microgrids and those of intermittent energy sources such as wind and photovoltaic power are considered.An enhanced strategy model of the distribution network is established for maximizing the power supply to critical loads.Firstly,the importance of the load is quantified by using the analytic hierarchy process(AHP)and the model of the microgrid output is further improved.In the demand response mechanism,an interruptible load is used to suppress the fluctuation in the distributed power output.Secondly,piecewise linearization method is applied to address the power flow constraints.Then,the resilience enhancement model of the distribution network is transformed into a mixed integer quadratic programming problem.The CPLEX solver is adopted to solve the above problem on the MATLAB platform.Finally,the proposed method is verified by applying it to practical scenarios.展开更多
This paper studies the influence of a finite container on an ideal gas.The trace of the heat kernel (t) =exp, where are the eigenvalues of the negative Laplacian -in Rn(n = 2 or 3), is studied for a general multi-conn...This paper studies the influence of a finite container on an ideal gas.The trace of the heat kernel (t) =exp, where are the eigenvalues of the negative Laplacian -in Rn(n = 2 or 3), is studied for a general multi-connected bounded drum ft which is surrounded by simply connected bounded domains Ωi with smooth boundaries Ωi(i = 1,… ,m) where the Dirichlet, Neumann and Robin boundary conditions on Ωi(i = 1,…,m) are considered. Some geometrical properties of Ω are determined. The thermodynamic quantities for an ideal gas enclosed in Ω are examined by using the asymptotic expansions of (t) for short-time t. It is shown that the ideal gas can not feel the shape of its container Ω, although it can feel some geometrical properties of it.展开更多
基金support from Nantes Universite through the project AAP II GENOME(Ges-tion des Energies Nouvelles et Optimisation Electrique)and LEAP-RE MiDiNa project,grant N°NR-23-LERE-0002-01.
文摘Most developing countries continue to face challenges in accessing sustainable energy.This study investigates a solar panel and battery-powered system for an urban off-grid microgrid in Nigeria,where demand-sideflexibility and strategic interactions between households and utilities can optimize system sizing.A nonlinear programming model is built using bilevel problem formulation that incorporates both the households’willingness to reduce their energy consumption and the utility’s agreement to provide price rebates.The results show that,for an energy community of 10 households with annual energy demand of 7.8 MWh,an oversized solar-storage system is required(12 kWp of photovoltaic solar panels and 26 kWh of battery storage).The calculated average cost of 0.31€/kWh is three times higher than the current tariff,making it unaffordable for most Nigerian households.To address this,the utility company could implement Demand Response programs with direct load control that delay the use of certain appliances,such as fans,irons and air conditioners.If these measures reduce total demand by 5%,both the required system size and overall costs could decrease significantly,by approximately one-third.This adjustment leads to a reduced tariffof 0.20€/kWh.When Demand Response is imple-mented through negotiation between the utility and households,the amount of load-shaving achieved is lower.This is because house-holds experience discomfort from curtailment and are generally less willing to provideflexibility.However,negotiation allows for greaterflexibility than direct control,due to dynamic interactions and more active consumer participation in the energy transition.Nonetheless,tariffs remain higher than current market prices.Off-grid contracts could become competitive iffinancial support is pro-vided,such as low-interest loans and capital grants covering up to 75%of the upfront cost.
基金funded by Humanities and Social Sciences of Ministry of Education Planning Fund of China(21YJA790009)National Natural Science Foundation of China(72140001).
文摘The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage systems is proposed in this study.Off-grid microgrids are self-sufficient electrical networks that are capable of effectively resolving electricity access problems in remote areas by providing stable and reliable power to local residents.A comprehensive review of the design,control strategies,energy management,and optimization of off-grid microgrids based on domestic and international research is presented in this study.It also explores the critical role of energy stor-age systems in enhancing microgrid stability and economic efficiency.Additionally,the capacity configurations of energy storage systems within off-grid networks are analyzed.Energy storage systems not only mitigate the intermittency and volatility of renewable energy gen-eration but also supply power support during peak demand periods,thereby improving grid stability and reliability.By comparing different energy storage technologies,such as lithium-ion batteries,pumped hydro storage,and compressed air energy storage,the optimal energy storage capacity configurations tailored to various application scenarios are proposed in this study.Finally,using a typical micro-grid as a case study,an empirical analysis of off-grid microgrids and energy storage integration has been conducted.The optimal con-figuration of energy storage systems is determined,and the impact of wind and solar power integration under various scenarios on grid balance is explored.It has been found that a rational configuration of energy storage systems can significantly enhance the utilization rate of renewable energy,reduce system operating costs,and strengthen grid resilience under extreme conditions.This study provides essential theoretical support and practical guidance for the design and implementation of off-grid microgrids in remote areas.
基金supported by Hainan Provincial Natural Science Foundation of China(No.524RC532)Research Startup Funding from Hainan Institute of Zhejiang University(No.0210-6602-A12202)Project of Sanya Yazhou Bay Science and Technology City(No.SKJC-2022-PTDX-009/010/011).
文摘Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sampling time period inevitably causes the wasteful use of communication resources.This paper proposes a self-triggered secondary control scheme under perturbations from false data injection(FDI)attacks.We designed a linear clock for each DG to trigger its controller at aperiodic and intermittent instants.Sub-sequently,a hash-based defense mechanism(HDM)is designed for detecting and eliminating malicious data infiltrated in the MGs.With the aid of HDM,a self-triggered control scheme achieves the secondary control objectives even in the presence of FDI attacks.Rigorous theoretical analyses and simulation results indicate that the introduced secondary control scheme significantly reduces communication costs and enhances the resilience of MGs under FDI attacks.
文摘Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are exploring the potential of DC microgrids across var-ious configurations.However,despite the sustainability and accuracy offered by DC microgrids,they pose various challenges when integrated into modern power distribution systems.Among these challenges,fault diagnosis holds significant importance.Rapid fault detection in DC microgrids is essential to maintain stability and ensure an uninterrupted power supply to critical loads.A primary chal-lenge is the lack of standards and guidelines for the protection and safety of DC microgrids,including fault detection,location,and clear-ing procedures for both grid-connected and islanded modes.In response,this study presents a brief overview of various approaches for protecting DC microgrids.
基金supported by the National Natural Science Foundation of China(72271213)the Shenzhen Science and Technology Program(JCYJ20220530143800001 and RCYX20221008092927070)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(2024A1515240024)the National Key Research and Development Program of China(2022YFB2403500).
文摘Interconnection planning involving bi-directional converters(BdCs)is crucial for enhancing the reliability and robustness of hybrid alternating current(AC)/direct current(DC)microgrid clusters with high penetrations of renewable energy resources(RESs).However,challenges such as the non-convex nature of BdC efficiency and renewable energy uncertainty complicate the planning process.To address these issues,this paper proposes a tri-level BdC-based planning framework that incorporates dynamic BdC efficiency and a data-correlated uncertainty set(DcUS)derived from historical data patterns.The proposed framework employs a least-squares approximation to linearize BdC efficiency and constructs the DcUS to balance computational efficiency and solution robustness.Additionally,a fully parallel column and constraint generation algorithm is developed to solve the model efficiently.Numerical simulations on a practical hybrid AC/DC microgrid system demonstrate that the proposed method reduces interconnection costs by up to 21.8%compared to conventional uncertainty sets while ensuring robust operation under all considered scenarios.These results highlight the computational efficiency,robustness,and practicality of the proposed approach,making it a promising solution for modern power systems.
文摘Recently, the smart grid has been considered as a next-generation power system to modernize the traditional grid to improve its security, connectivity, efficiency and sustainability.Unfortunately, the smart grid is susceptible to malicious cyber attacks, which can create serious technical, economical, social and control problems in power network operations. In contrast to the traditional cyber attack minimization techniques, this paper proposes a recursive systematic convolutional(RSC) code and Kalman filter(KF) based method in the context of smart grids.Specifically, the proposed RSC code is used to add redundancy in the microgrid states, and the log maximum a-posterior is used to recover the state information, which is affected by random noises and cyber attacks. Once the estimated states are obtained by KF algorithm, a semidefinite programming based optimal feedback controller is proposed to regulate the system states, so that the power system can operate properly. Test results show that the proposed approach can accurately mitigate the cyber attacks and properly estimate and control the system states.
基金relates to Department of Navy award(N00014-20-1-2858)。
文摘The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while meeting the total charging/discharging power requirement is formulated and solved as a distributed control problem.Conditions on the communication topology among the battery units are established under which a control law is designed for each battery unit to solve the control problem based on distributed average reference power estimators and distributed average unit state estimators.Two types of estimators are proposed.One achieves asymptotic estimation and the other achieves finite time estimation.We show that,under the proposed control laws,SoC balancing of all battery units is achieved and the total charging/discharging power of the BESS tracks the desired power.A simulation example is shown to verify the theoretical results.
基金supported by the Australian Department of Environment,Water, Heritage and the Arts under Grant No. RDG 08-29
文摘Microgrids are local power systems that may or may not be connected to the distribution system and are typically controlled by the local operator.Interest in microgrids is rising and it is likely that the number of microgrids connected to distribution networks will increase.Currently,there is no consensus on how microgrids will interact with the distribution system―they have the potential to threaten stability,or to assist.However microgrids,with their emphasis on sophisticated control in order to manage their particular challenges,address many of the problems that will be required to overcome in realizing the smart grid.This paper examines some of the issues involved in connecting microgrids to the distribution networks,and illustrates how microgrids have a key role to play in the development of the smart grid.
基金supported by the State Grid Science and Technology Project(KJ21-1-56).
文摘Base station operators deploy a large number of distributed photovoltaics to solve the problems of high energy consumption and high electricity costs of 5G base stations.In this study,the idle space of the base station’s energy storage is used to stabilize the photovoltaic output,and a photovoltaic storage system microgrid of a 5G base station is constructed.Aiming at the capacity planning problem of photovoltaic storage systems,a two-layer optimal configuration method is proposed.The inner layer optimization considers the energy sharing among the base station microgrids,combines the communication characteristics of the 5G base station and the backup power demand of the energy storage battery,and determines an economic scheduling strategy for each photovoltaic storage system with the goal of minimizing the daily operation cost of the base station microgrid.The outer model aims to minimize the annual average comprehensive revenue of the 5G base station microgrid,while considering peak clipping and valley filling,to optimize the photovoltaic storage system capacity.The CPLEX solver and a genetic algorithm were used to solve the two-layer models.Considering the construction of the 5G base station in a certain area as an example,the results showed that the proposed model can not only reduce the cost of the 5G base station operators,but also reduce the peak load of the power grid and promote the local digestion of photovoltaic power.
基金supported by the U.S.Office of Naval Research(N00014-21-1-2175)。
文摘This article presents a distributed periodic eventtriggered(PET)optimal control scheme to achieve generation cost minimization and average bus voltage regulation in DC microgrids.In order to accommodate the generation constraints of the distributed generators(DGs),a virtual incremental cost is firstly designed,based on which an optimality condition is derived to facilitate the control design.To meet the discrete-time(DT)nature of modern control systems,the optimal controller is directly developed in the DT domain.Afterward,to reduce the communication requirement among the controllers,a distributed event-triggered mechanism is introduced for the DT optimal controller.The event-triggered condition is detected periodically and therefore naturally avoids the Zeno phenomenon.The closed-loop system stability is proved by the Lyapunov synthesis for switched systems.The generation cost minimization and average bus voltage regulation are obtained at the equilibrium point.Finally,switch-level microgrid simulations validate the performance of the proposed optimal controller.
基金supported in part by the Australian Research Council Discovery Project(DP160103567)the program of Jiangsu Specially-Appointed Professor(RK043STP19001)+1 种基金the fund of high-level talents at NJUPT(XK0430919039)the fund of scientific and technological innovation projects for overseas students in Nanjing(RK043NLX19004)。
文摘This paper addresses the problem of distributed secondary control for islanded AC microgrids with external disturbances.By using a full-order sliding-mode(FOSM)approach,voltage regulation and frequency restoration are achieved in finite time.For voltage regulation,a distributed observer is proposed for each distributed generator(DG)to estimate a reference voltage level.Different from some conventional observers,the reference voltage level in this paper is accurately estimated under directed communication topologies.Based on the observer,a new nonlinear controller is designed in a backstepping manner such that an FOSM surface is reached in finite time.On the surface,the voltages of DGs are regulated to the reference level in finite time.For frequency restoration,a distributed controller is further proposed such that a constructed FOSM surface is reached in finite time,on which the frequencies of DGs are restored to a reference level in finite time under directed communication topologies.Finally,case studies on a modified IEEE 37-bus test system are conducted to demonstrate the effectiveness,the robustness against load changes,and the plug-and-play capability of the proposed controllers.
基金supported by the National Key R&D Program of China (2018YFA0702200)the Fundamental Research Funds of Shandong University。
文摘Real-time scheduling as an on-line optimization process must output dispatch results in real time. However, the calculation time required and the economy have a trade-off relationship. In response to a real-time scheduling problem, this paper proposes a real-time scheduling strategy considering the operation interval division of distributed generators(DGs) and batteries in the microgrid. Rolling scheduling models, including day-ahead scheduling and hours-ahead scheduling, are established, where the latter considers the future state-of-charge deviations. For the real-time scheduling, the output powers of the DGs are divided into two intervals based on the ability to track the day-ahead and hours-ahead schedules. The day-ahead and hours-ahead scheduling ensure the economy, whereas the real-time scheduling overcomes the timeconsumption problem. Finally, a grid-connected microgrid example is studied, and the simulation results demonstrate the effectiveness of the proposed strategy in terms of economic and real-time requirements.
基金funding from the U.K.EPSRC UKRI Innovation Fellowship scheme(EP/S001662/2)the European Union’s Horizon 2020 research and innovation programme under grant agreement No.734796.
文摘In this paper,a grid interface current control strategy is presented for a DC microgrid,which aims to reduce the disturbance from PV generation and the load variation to the main grid without a grid interface converter.The grid interface current is directly controlled by a battery DC-DC converter within the DC microgrid.Based on a comprehensive analysis of the battery DC-DC converter and interface current control,the control system has been mathematically modelled.This enabled two transfer functions to be derived that reflect the dynamic response of the inductor current to the duty cycle variation(inner loop),and the dynamic response of the grid interface current to the inductor current variation(outer loop).Experimental study has been done to assess the effectiveness of the proposed control strategy.The experimental results indicate that the proposed control strategy has a good performance to control the grid interface current without an interface converter,regardless the variations of both PV and the load conditions.
基金supported in part by the U.S.Office of Naval Research(N00014-16-1-3121,N00014-18-1-2185)the National Natural Science Foundation of China(61673347,U1609214,61751205)
文摘A single-bus DC microgrid can represent a wide range of applications.Control objectives of such systems include high-performance bus voltage regulation and proper load sharing among multiple distributed generators(DGs)under various operating conditions.This paper presents a novel decentralized control algorithm that can guarantee both the transient voltage control performance and realize the predefined load sharing percentages.First,the output-constrained control problem is transformed into an equivalent unconstrained one.Second,a two-step backstepping control algorithm is designed based on the transformed model for bus-voltage regulation.Since the overall control effort can be split proportionally and calculated with locally-measurable signals,decentralized load sharing can be realized.The control design requires neither accurate parameters of the output filters nor load measurement.The stability of the transformed systems under the proposed control algorithm can indirectly guarantee the transient bus voltage performance of the original system.Additionally,the high-performance control design is robust,flexible,and reliable.Switch-level simulations under both normal and fault operating conditions demonstrate the effectiveness of the proposed algorithm.
基金This work was supported in part by the National Science Foundation,USA(ECCS-2018492,CNS-2006828,ECCS-2002897,and OIA-2040599).
文摘Communication-dependent and software-based distributed energy resources(DERs)are extensively integrated into modern microgrids,providing extensive benefits such as increased distributed controllability,scalability,and observability.However,malicious cyber-attackers can exploit various potential vulnerabilities.In this study,a programmable adaptive security scanning(PASS)approach is presented to protect DER inverters against various power-bot attacks.Specifically,three different types of attacks,namely controller manipulation,replay,and injection attacks,are considered.This approach employs both software-defined networking technique and a novel coordinated detection method capable of enabling programmable and scalable networked microgrids(NMs)in an ultra-resilient,time-saving,and autonomous manner.The coordinated detection method efficiently identifies the location and type of power-bot attacks without disrupting normal NM operations.Extensive simulation results validate the efficacy and practicality of the PASS for securing NMs.
基金This work was supported by the NSF (19971061) of China and the Science Foundation ofFushun Petroleum Institute.
文摘In this paper, we investigate the Toeplitz operators with positive measure symbols on the Bergman spaces of bounded multi-connected domains and show that a Toeplitz operator is bounded or compact if and only if the symbol measure is a Carleson or vanishing Carleson measure respectively.
文摘This work investigates the problem of controller design for the inverters in an islanded microgrid.Robust-synthesis controllers and local droop controllers are designed to regulate the output voltages of inverters and share power among them,respectively.The designed controllers alleviate the need for additional sensors to measure the states of the system by relying only on output feedback.It is shown that the designed-synthesis controller properly damps resonant oscillations,and its performance is robust to the control-loop time delay and parameter uncertainties.The stability of a droop-controlled islanded microgrid including multiple distributed generation(DG)units is analyzed by linearizing the nonlinear power flow model around the nominal operating point and applying theorems from linear algebra.It is indicated that the droop controller stabilizes the microgrid system with dominantly inductive tie-line impedances for all values of resistive-inductive loads,while for the case of resistive-capacitive loads the stability is conditioned on an upper bound on the load susceptances.The robust performance of the designed-synthesis controller is studied analytically,compared with the similar analysis in an control(benchmark)framework,and verified by simulations for a four DG benchmark microgrid.Furthermore,the robustness of the droop controllers is analyzed by Monte Carlo simulations in the presence of local voltage fluctuations and phase differences among neighboring DGs.
文摘This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and energy storage system (ESS). The reliability of the MG system is modeled based on the loss of power supply probability (SPSP). For optimization, an enhanced Genetic Algorithm (GA) is used to minimize the total cost of the system over a 20-year period, while satisfying some reliability and operation constraints. A case study addressing optimal sizing of an off-grid hybrid microgrid in Nigeria is discussed. The result is compared with results obtained from the Brute Force and standard GA methods.
基金supported by the State Grid Science&Technology Project(Grant No.17H300000437)
文摘We propose a restoration strategy using microgrids for restoring power supply to critical loads after an extreme event and thereby enhancing the resilience of the distribution power grid.The limited capacities of distributed generators(DGs)within the microgrids and those of intermittent energy sources such as wind and photovoltaic power are considered.An enhanced strategy model of the distribution network is established for maximizing the power supply to critical loads.Firstly,the importance of the load is quantified by using the analytic hierarchy process(AHP)and the model of the microgrid output is further improved.In the demand response mechanism,an interruptible load is used to suppress the fluctuation in the distributed power output.Secondly,piecewise linearization method is applied to address the power flow constraints.Then,the resilience enhancement model of the distribution network is transformed into a mixed integer quadratic programming problem.The CPLEX solver is adopted to solve the above problem on the MATLAB platform.Finally,the proposed method is verified by applying it to practical scenarios.
文摘This paper studies the influence of a finite container on an ideal gas.The trace of the heat kernel (t) =exp, where are the eigenvalues of the negative Laplacian -in Rn(n = 2 or 3), is studied for a general multi-connected bounded drum ft which is surrounded by simply connected bounded domains Ωi with smooth boundaries Ωi(i = 1,… ,m) where the Dirichlet, Neumann and Robin boundary conditions on Ωi(i = 1,…,m) are considered. Some geometrical properties of Ω are determined. The thermodynamic quantities for an ideal gas enclosed in Ω are examined by using the asymptotic expansions of (t) for short-time t. It is shown that the ideal gas can not feel the shape of its container Ω, although it can feel some geometrical properties of it.