A modified multi-component solute diffusion equation described with diffusion flux was derived in detail based on the classical MaxwellStefan diffusion theory. The friction between the solute species and the soil skel...A modified multi-component solute diffusion equation described with diffusion flux was derived in detail based on the classical MaxwellStefan diffusion theory. The friction between the solute species and the soil skeleton wall, which is proportional to the relative velocity between the solute species and the soil skeleton, is introduced. The chemical potential gradient is considered the driving force. A one-dimensional model for transport of multi-component solute in saturated soil was developed based on the modified diffusion equation and the modified competitive Langmuir adsorption equation. Numerical calculation of a case of two heavy metal ion species, which was chosen as an example, was carried out using the finite element software COMSOL Multiphysics. A comparative analysis was performed between the multi-component solute transport model developed in this study and the convection-diffusion transport model of single-component solute based on Fick's law. Simulation results show that the transport behavior of each species in a multi-component solute system is different from that in a single-component system, and the friction characteristics considered in the developed model contribute to obstructing the movement of each solute component. At the same time,the influence of modified competitive Langmuir adsorption on solute transport was investigated. These research results can provide strong theoretical support for the design of antifouling barriers in landfills and the maintenance of operation stability.展开更多
Firstly, the macroscopic chemical equilibrium state of a series of chemical reactions between intercrystal brine and its media salt layer (salt deposit) in Qarhan Salt Lake was studied by using the Pitzer theory. Th...Firstly, the macroscopic chemical equilibrium state of a series of chemical reactions between intercrystal brine and its media salt layer (salt deposit) in Qarhan Salt Lake was studied by using the Pitzer theory. The concept of macroscopic solubility product and its relation with accumulated ore dissolving ratio were presented, which are used in the numerical model of dissolving and driving exploitation of potassium salt in Qarhan Salt Lake. And secondly, with a model forming idea of transport model for reacting solutes in the multi-component fresh groundwater system in porous media being a reference, a two-dimensional transport model coupled with a series of chemical reactions in a multi-component brine porous system (salt deposits) was developed by using the Pitzer theory. Meanwhile, the model was applied to model potassium/magnesium transport in Qarhan Salt Lake in order to study the transfer law of solid and liquid phases in the dissolving and driving process and to design the optimal injection/abstraction strategy for dissolving and capturing maximum Potassium/ Magnesium in the mining of salt deposits in Qarhan Salt Lake.展开更多
The Cahn, Lücke and Stüwe theory remains the backbone of more complex analysis dealing with solute drag, however, the mathematical treatment is rather involved. A new approach based on solute pinning the bou...The Cahn, Lücke and Stüwe theory remains the backbone of more complex analysis dealing with solute drag, however, the mathematical treatment is rather involved. A new approach based on solute pinning the boundary has therefore recently been suggested, which has the main advantage of a simpler mathematical treatment. In the present paper this approach has been generalized to take into account the influence of different types of solute atoms in the high solute content/low driving force regime.展开更多
An empiric equation, G ex H 2O /(1- x (H 2O)) 2= α+β·x (H 2O)/ln( x (H 2O)), representing the relation between the excess free energy G ex H 2O and mole fraction of water x (H 2O) in binary electrolyte solution...An empiric equation, G ex H 2O /(1- x (H 2O)) 2= α+β·x (H 2O)/ln( x (H 2O)), representing the relation between the excess free energy G ex H 2O and mole fraction of water x (H 2O) in binary electrolyte solution, was developed and the parameters α and β in the equation were determined by fitting the experimental data for some binary aqueous systems of electrolytes such as CuCl 2, NiCl 2, HCl, NaCl, KCl, CaCl 2 and BaCl 2. The activities of water in such ternary and multi component systems composed of 7 binaries as HClH 2OCuCl 2, HClH 2ONiCl 2, HClH 2ONaCl, NaClH 2OKCl, NaCl H 2OCaCl 2, KClH 2OCaCl 2, NaClH 2OBaCl 2, KClH 2OCaCl 2 and NaClH 2OKClBaCl 2 were predicted by a simplified sub regular solution model developed by authors from the corresponding binary systems. The predicted results are in good agreement with the measured ones. [展开更多
In this paper, new Jacobi elliptic function solutions of multi-component mKdV equation are obtained directly in a unified way. When the modulus m → 1, those periodic solutions degenerate as the corresponding hyperbol...In this paper, new Jacobi elliptic function solutions of multi-component mKdV equation are obtained directly in a unified way. When the modulus m → 1, those periodic solutions degenerate as the corresponding hyperbolic function solutions. Then, to the three-component mKdV equation, five types of effective solution are presented in detail.展开更多
In the realm of nonlinear integrable systems,the presence of decompositions facilitates the establishment of linear superposition solutions and the derivation of novel coupled systems exhibiting nonlinear integrabilit...In the realm of nonlinear integrable systems,the presence of decompositions facilitates the establishment of linear superposition solutions and the derivation of novel coupled systems exhibiting nonlinear integrability.By focusing on single-component decompositions within the potential BKP hierarchy,it has been observed that specific linear superpositions of decomposition solutions remain consistent with the underlying equations.Moreover,through the implementation of multi-component decompositions within the potential BKP hierarchy,successful endeavors have been undertaken to formulate linear superposition solutions and novel coupled Kd V-type systems that resist decoupling via alterations in dependent variables.展开更多
Multi-component transition group metal borides(MMB_(2))have become a research hotspot due to their new composition design concepts and superior properties compared with conventional ceramics.Most of the current method...Multi-component transition group metal borides(MMB_(2))have become a research hotspot due to their new composition design concepts and superior properties compared with conventional ceramics.Most of the current methods,however,are complicated and time-consuming,the mass production remains a chal-lenge.Herein,we proposed a new high-efficiency strategy for synthesis of MMB_(2)using molten aluminum as the medium for the first time.The prepared Al-containing multi-component borides(TiZrHfNbTa)B_(2)microcrystals had a homogeneous composition with a hexagonal AlB_(2)structure and ultra-high hardness value of∼35.3 GPa,which was much higher than data reported in the literature and the rule of mix-ture estimations.Furthermore,combined with the First-principles calculation results,we found that the Poisson’s ratio(v)values exhibit a clearly ascending trend from 0.17 at VEC=3.5 to 0.18 at VEC=3.4,then to 0.201 at VEC=3.2 with the increasing of Al content.This indicates that the intrinsic toughness of multi-component boride microcrystals is obviously enhanced by the trace-doped Al elements.Besides,the fabricated Al-containing multi-component boride microcrystals have superior oxidation activation en-ergy and structural stability.The enhanced oxidation resistance is mainly attributed to the formation of a protective Al2 O3 oxide layer and the lattice distortion,both of which lead to sluggish diffusion of O_(2).These findings propose a new unexplored avenue for the fabrication of MMB_(2)materials with supe-rior comprehensive performance including ultra-hardness and intrinsically improved thermo-mechanical properties.展开更多
The present work extends the search of Jacobi elliptic function solutions for the multi-component modified Korteweg-de Vries equations. When the modulum m →1, those periodic solutions degenerate as the corresponding ...The present work extends the search of Jacobi elliptic function solutions for the multi-component modified Korteweg-de Vries equations. When the modulum m →1, those periodic solutions degenerate as the corresponding solitary wave and shock wave ones. Especially, exact solutions for the three-component system are presented in detail and graphically.展开更多
A convenient photocatalytic multi-component reaction of alkenes,quinoxalin-2(1H)-ones,and diazo compounds has been developed in the presence of water.A number of ester-containing quinoxalin-2(1H)-ones could be efficie...A convenient photocatalytic multi-component reaction of alkenes,quinoxalin-2(1H)-ones,and diazo compounds has been developed in the presence of water.A number of ester-containing quinoxalin-2(1H)-ones could be efficiently obtained in moderate to good yields at room temperature.This metal-free visiblelight-driven tandem reaction was conducted through proton-coupled electron transfer(PCET)process using water as the hydrogen donor and 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene(4CzIPN)as the photocatalyst.展开更多
With the evolution of nickel-based single crystal superalloys,there is an increase in heavy elements such as Re and Ru.This has made solutal convection more pronounced during the directional solidification process,lea...With the evolution of nickel-based single crystal superalloys,there is an increase in heavy elements such as Re and Ru.This has made solutal convection more pronounced during the directional solidification process,leading to solute redistribution and increasing the risk of casting defects such as low-angle grain boundaries.To avoid casting defects,downward directional solidification(DWS)method is adopted to eliminate solutal convection and change solute redistribution.However,there is currently no in-situ characterization or quantitative simulation studying the solute redistribution during DWS and upward directional solidification(UWS)processes.A multicomponent phase field simulation coupled with lattice Boltzmann method was employed to quantitatively investigate changes in dendrite morphology,solutal convection and deviation of dendrite tips from the perspective of solute redistribution during UWS and DWS processes.The simulation of microstructure agrees well with the experimental results.The mechanism that explains how solutal convection affects side branching behavior is depicted.A novel approach is introduced to characterize dendrite deviation,elucidating the reasons why defects are prone to occur under the influence of natural convection and solute redistribution.展开更多
To investigate groundwater flow and solute transport characteristics of the karst trough zone in China,tracer experiments were conducted at two adjacent typical karst groundwater flow systems(Yuquandong(YQD)and Migong...To investigate groundwater flow and solute transport characteristics of the karst trough zone in China,tracer experiments were conducted at two adjacent typical karst groundwater flow systems(Yuquandong(YQD)and Migongquan(MGQ))in Sixi valley,western Hubei,China.Highresolution continuous monitoring was utilized to obtain breakthrough curves(BTCs),which were then analyzed using the multi-dispersion model(MDM)and the two-region nonequilibrium model(2RNE)with basic parameters calculated by CXTFIT and QTRACER2.Results showed that:(1)YQD flow system had a complex infiltration matrix with overland flow,conduit flow and fracture flow,while the MGQ flow system was dominated by conduit flow with fast flow transport velocity,but also small amount of fracture flow there;(2)They were well fitted based on the MDM(R^2=0.928)and 2RNE(R^2=0.947)models,indicating that they had strong adaptability in the karst trough zone;(3)conceptual models for YQD and MGQ groundwater systems were generalized.In YQD system,the solute was transported via overland flow during intense rainfall,while some infiltrated down into fissures and conduits.In MGQ system,most were directly transported to spring outlet in the fissureconduit network.展开更多
Interface segregation of solute atoms has a profound effect on properties of engineering alloys.In this study,we report a novel strategy for breaking the strength-ductility dilemma of Mg alloy via solute segregation.T...Interface segregation of solute atoms has a profound effect on properties of engineering alloys.In this study,we report a novel strategy for breaking the strength-ductility dilemma of Mg alloy via solute segregation.The hot extruded Mg-1.8Gd-0.3Zr(wt.%)alloy sheet was subjected to three different passes of rolling,and then heat-treated at 200℃.The high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)reveals a remarkable segregation of solute Gd atoms along high and low-angel grain boundaries(GBs).Under almost precipitation-free conditions,the strength and ductility of rolled alloy sheets are simultaneously improved after annealing.Especially for the annealed 3-passes-rolled specimen,the yield strength,ultimate tensile strength,and elongation are simultaneously increased by 11.2%,7.3%,and 18%,respectively.The solute segregation endows the rolled plate with excellent grain size stability and provides a prominent extra solute cluster strengthening,which completely resists the other softening effects,including dislocation annihilation and grain coarsening during the heating.Meanwhile,the directional migration of Gd atoms and the annihilation of dislocations provide a“clear”space within the grain,which is beneficial for the moving and accumulating of subsequent dislocations.This work sheds light on the solute partitioning behavior and realizes a good application of GB segregation in improving the comprehensive mechanical properties of Mg alloys.展开更多
In this study,a novel strategy for breaking the strength-ductility dilemma of Mg-1.5Zn-0.6Gd(wt%)alloy via solute segregation was reported.The hot extruded alloy sheet was subjected to rolling deformation,and then hea...In this study,a novel strategy for breaking the strength-ductility dilemma of Mg-1.5Zn-0.6Gd(wt%)alloy via solute segregation was reported.The hot extruded alloy sheet was subjected to rolling deformation,and then heat-treated at 200℃.The high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)reveals a remarkable segregation of solute Zn atoms along both high and lowangle grain boundaries(GBs).As compared with as-rolled plate,the yield strength,ultimate tensile strength,and the elongation of annealed sample is increased by 15.6%,14%,and 8.4%,respectively,acquiring an obvious strength-ductility synergy effect.The solute segregation endows the rolled plate with excellent grain size stability and provides a prominent extra solute cluster strengthening,which completely resists the other softening effects including dislocation annihilation and grain coarsening.Meanwhile,the directional migration of Zn atoms and the annihilation of dislocations provide a"clear"space within the grain,which is beneficial for the moving and accumulating of subsequent dislocations.This work sheds light on the solute partitioning behavior and realizes a good application of GB segregation in improving the comprehensive mechanical properties of Mg alloys.展开更多
In order to investigate the segregation process and clarify its effect on the formation of TiN during the solidification of a micro-alloy steel containing titanium(Ti),a new mathematical model concerning solute transp...In order to investigate the segregation process and clarify its effect on the formation of TiN during the solidification of a micro-alloy steel containing titanium(Ti),a new mathematical model concerning solute transportation,solidification,as well as TiN precipitation was successfully established and verified.The transportation of solute elements was described using the Brody-Fleming microsegregation model,while the thermodynamic principles governing the precipitation of TiN were derived within the framework of the model.Additionally,the model accounts for variations in the diffusion coefficient due to phase transition and the influence of non-equilibrium solidification on solute distribution.High-temperature tests were conducted to validate the mathematical model.Results show that during solidification,due to selective crystallization,there is positive segregation of Ti and N in the solidifying front.What’s more,due to the high cooling rate near the surface of this steel,negative segregation is easier to be formed in the surface area.The highest concentration of TiN precipitation is found in the 1/4 width of this steel.High-temperature experiment shows that when the solidifying front reaches the 1/4 width of the specimen,the concentration product of Ti and N elements biased at the solidifying front reaches the thermodynamic conditions of TiN precipitation,and exists a higher concentration of TiN distributed in this region.To address this phenomenon,a comparative analysis of the effects of cooling rate and initial solute element content on TiN precipitation behavior was conducted.An increase in the surface cooling rate accelerates the progression of the solidification front and diminishes solute segregation near the front,thereby reducing TiN precipitation.However,with the increase of the initial solute element content,the concentration product of Ti and N elements rises,then the content of TiN precipitation increases.The results of this model provide important insight into the micro segregation and TiN precipitation mechanism of the micro-alloy steels bearing titanium.展开更多
The control of solute segregation at grain boundaries is of significance in engineering alloy properties.However,there is currently a lack of a physics-informed predictive model for estimating solute segre-gation ener...The control of solute segregation at grain boundaries is of significance in engineering alloy properties.However,there is currently a lack of a physics-informed predictive model for estimating solute segre-gation energies.Here we propose novel electronic descriptors for grain-boundary segregation based on the valence,electronegativity and size of solutes.By integrating the non-local coordination number of surfaces,we build a predictive analytic framework for evaluating the segregation energies across various solutes,grain-boundary structures,and segregation sites.This framework uncovers not only the coupling rule of solutes and matrices,but also the origin of solute-segregation determinants,which stems from the d-and sp-states hybridization in alloying.Our scheme establishes a novel picture for grain-boundary segregation and provides a useful tool for the design of advanced alloys.展开更多
Second period elements(B,C,N,and O)usually appear at the grain boundary(GB)and strongly affect the mechanical performance in austenitic stainless steels.Therefore,it is significant to investigate the effect of solute ...Second period elements(B,C,N,and O)usually appear at the grain boundary(GB)and strongly affect the mechanical performance in austenitic stainless steels.Therefore,it is significant to investigate the effect of solute elements(B,C,N,and O)on the GB.The first-principles calculation based on the density function theory was applied to explore the effect of B,C,N,and O onγ-FeΣ5(210)[001]GB.The GB energy,the segregation energy,the Voronoi volume,and the theoretical tensile test were calculated to investigate the segregation behavior and the strengthening effect.The structural change and electronic evolution were also investigated by bond change,charge density distribution,and density of states.The results show that B is favored to segregate at the capped trigonal prism(CTP)position with a large void and has a strengthening effect on the GB strength,while O and N are preferred to locate at the octahedral(OCT)site and have an embrittling effect on GB cohesion.C can segregate at both the CTP site and the OCT location with little energy difference.As C segregates at the OCT site,it is beneficial for GB strength.However,it is detrimental at the CTP position.It can be seen that the influence of solutes is closely related to the element type and segregated position.展开更多
A novel core-shell structured Al_(8)Mn_(4)Y-Al_(2)Ca phase and controllable solute-segregation are elaborately designed in dilute Mg-0.6Al-0.5Mn-0.1Ca-0.1Y alloy(wt.%),via incomplete peritectic transformation during t...A novel core-shell structured Al_(8)Mn_(4)Y-Al_(2)Ca phase and controllable solute-segregation are elaborately designed in dilute Mg-0.6Al-0.5Mn-0.1Ca-0.1Y alloy(wt.%),via incomplete peritectic transformation during twin-roll casting.When soaked in 3.5 wt.%NaCl solution,Al_(2)Ca shell with a low electrochemical potential prevents direct contact of noble Al_(8)Mn_(4)Y with Mg matrix,mitigating the micro-galvanic corrosion and meanwhile accelerating the formation of uniform corrosion film.Thereafter,solute(Al,Ca)-segregation motivates the formation of heterogeneous multilayered corrosion product films,enhancing corrosion resistance and even achieving self-healing upon long-term corrosion.Notably,the dilute Mg alloy exhibits a corrosion rate as low as 0.22±0.05 mm·y^(−1).展开更多
A microscopic understanding of the complex solute-defect interaction is pivotal for optimizing the alloy’s macroscopic mechanical properties.Simulating solute segregation in a plastically deformed crystalline system ...A microscopic understanding of the complex solute-defect interaction is pivotal for optimizing the alloy’s macroscopic mechanical properties.Simulating solute segregation in a plastically deformed crystalline system at atomic resolution remains challenging.The objective is to efficiently model and predict a phys-ically informed segregated solute distribution rather than simulating a series of diffusion kinetics.To ad-dress this objective,we coupled molecular dynamics(MD)and Monte Carlo(MC)methods using a novel method based on virtual atoms technique.We applied our MD-MC coupling approach to model off-lattice carbon(C)solute segregation in nanoindented Fe-C samples containing complex dislocation networks.Our coupling framework yielded the final configuration through efficient parallelization and localized en-ergy computations,showing C Cottrell atmospheres near dislocations.Different initial C concentrations resulted in a consistent trend of C atoms migrating from less crystalline distortion to high crystalline distortion regions.Besides unraveling the strong spatial correlation between local C concentration and defect regions,our results revealed two crucial aspects of solute segregation preferences:(1)defect ener-getics hierarchy and(2)tensile strain fields near dislocations.The proposed approach is generic and can be applied to other material systems as well.展开更多
The multi-component oxide (Al0.88Fe0.67Zn0.28O3)) surface (abbreviated as MCOS) was prepared to optimize the effectiveness of the elimination of As (III) from aqueous solution. The oxide surface was synthe-sized by co...The multi-component oxide (Al0.88Fe0.67Zn0.28O3)) surface (abbreviated as MCOS) was prepared to optimize the effectiveness of the elimination of As (III) from aqueous solution. The oxide surface was synthe-sized by co-precipitation method using corresponding metal carbonates. It was characterized by XRD, TGA and DSC. The surface morphology of MCOS was observed in SEM and the elemental analysis was accomplished by EDX. The composition of Al2O3, Fe2O3 & ZnO was 23.6, 39.9 and 20.6 wt% respectively in XRF analysis. The specific surface area was found 389.85 m2 g-1. Batch experiments were performed to remove As (III) from aqueous solution considering various parameters such as effect of pH, contact time, initial arsenic concentration, temperature and sor-bent dosage. The maximum sorption capacity of the surface was almost steady from pH 4 to pH 9. Kinetic study shows that As (III) sorption is following second order rate equation with the rate constant of 80×10-2 g mg-1 min-1 at room temperature and this rate was increased with increasing temperature which indicates the sorption was endothermic process. The free energy change, ΔGo was negative which proves that the sorption was spontaneous and thermodynamically favorable. Sorption isotherm was interpreted by Langmuir equation and the maximum sorption capacity of oxide monolayer was 13×10-2 mg g-1.展开更多
Grain boundary segregation(GBS)of solutes influences the grain size,texture,and strength of Mg wrought alloys.So far,solutes'GBS in Mg has mostly been investigated by qualitative experimental observations.In this ...Grain boundary segregation(GBS)of solutes influences the grain size,texture,and strength of Mg wrought alloys.So far,solutes'GBS in Mg has mostly been investigated by qualitative experimental observations.In this work,we develop a quantitative model to compute the grain boundary segregation energy(ΔE_(seg))in binary Mg based alloys that takes the relative atomic density of GB into account.The model is utilized to computeΔE_(seg)of Al,Zn,Ca,Sn,Y,Gd,and Nd solutes in Mg.The result suggests that rare earth elements and Ca are more prone to GBS than Al,Zn,and Sn.Segregation of Gd solutes can explain the smaller grain size and slower grain growth in Mg-Gd extruded alloys than Mg-Al and Mg-Zn counterparts.It also provides an explanation for the weak extrusion texture in Mg-Gd.展开更多
基金supported by the National Basic Research Program of China(Grant No.2014CB744702)the Beijing Natural Science Foundation Key Projects(Grant No.8171001)the National Natural Science Foundation of China(Grant No.51678012)
文摘A modified multi-component solute diffusion equation described with diffusion flux was derived in detail based on the classical MaxwellStefan diffusion theory. The friction between the solute species and the soil skeleton wall, which is proportional to the relative velocity between the solute species and the soil skeleton, is introduced. The chemical potential gradient is considered the driving force. A one-dimensional model for transport of multi-component solute in saturated soil was developed based on the modified diffusion equation and the modified competitive Langmuir adsorption equation. Numerical calculation of a case of two heavy metal ion species, which was chosen as an example, was carried out using the finite element software COMSOL Multiphysics. A comparative analysis was performed between the multi-component solute transport model developed in this study and the convection-diffusion transport model of single-component solute based on Fick's law. Simulation results show that the transport behavior of each species in a multi-component solute system is different from that in a single-component system, and the friction characteristics considered in the developed model contribute to obstructing the movement of each solute component. At the same time,the influence of modified competitive Langmuir adsorption on solute transport was investigated. These research results can provide strong theoretical support for the design of antifouling barriers in landfills and the maintenance of operation stability.
基金the National Natural Science Foundation of China
文摘Firstly, the macroscopic chemical equilibrium state of a series of chemical reactions between intercrystal brine and its media salt layer (salt deposit) in Qarhan Salt Lake was studied by using the Pitzer theory. The concept of macroscopic solubility product and its relation with accumulated ore dissolving ratio were presented, which are used in the numerical model of dissolving and driving exploitation of potassium salt in Qarhan Salt Lake. And secondly, with a model forming idea of transport model for reacting solutes in the multi-component fresh groundwater system in porous media being a reference, a two-dimensional transport model coupled with a series of chemical reactions in a multi-component brine porous system (salt deposits) was developed by using the Pitzer theory. Meanwhile, the model was applied to model potassium/magnesium transport in Qarhan Salt Lake in order to study the transfer law of solid and liquid phases in the dissolving and driving process and to design the optimal injection/abstraction strategy for dissolving and capturing maximum Potassium/ Magnesium in the mining of salt deposits in Qarhan Salt Lake.
基金supported by a KMB project(project number:193179/I40),in Norwayfinancial support by the Research Council of Norway and the industrial partners,Hydro Aluminium and Sapa Technology is gratefully acknowledged.
文摘The Cahn, Lücke and Stüwe theory remains the backbone of more complex analysis dealing with solute drag, however, the mathematical treatment is rather involved. A new approach based on solute pinning the boundary has therefore recently been suggested, which has the main advantage of a simpler mathematical treatment. In the present paper this approach has been generalized to take into account the influence of different types of solute atoms in the high solute content/low driving force regime.
文摘An empiric equation, G ex H 2O /(1- x (H 2O)) 2= α+β·x (H 2O)/ln( x (H 2O)), representing the relation between the excess free energy G ex H 2O and mole fraction of water x (H 2O) in binary electrolyte solution, was developed and the parameters α and β in the equation were determined by fitting the experimental data for some binary aqueous systems of electrolytes such as CuCl 2, NiCl 2, HCl, NaCl, KCl, CaCl 2 and BaCl 2. The activities of water in such ternary and multi component systems composed of 7 binaries as HClH 2OCuCl 2, HClH 2ONiCl 2, HClH 2ONaCl, NaClH 2OKCl, NaCl H 2OCaCl 2, KClH 2OCaCl 2, NaClH 2OBaCl 2, KClH 2OCaCl 2 and NaClH 2OKClBaCl 2 were predicted by a simplified sub regular solution model developed by authors from the corresponding binary systems. The predicted results are in good agreement with the measured ones. [
基金The project supported by the Education Foundation of Zhejiang Province of China under Grant No. 20030557 and the Science Foundation of Zhejiang Forestry College
文摘In this paper, new Jacobi elliptic function solutions of multi-component mKdV equation are obtained directly in a unified way. When the modulus m → 1, those periodic solutions degenerate as the corresponding hyperbolic function solutions. Then, to the three-component mKdV equation, five types of effective solution are presented in detail.
基金sponsored by the National Natural Science Foundations of China under Grant Nos.12301315,12235007,11975131the Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ20A010009。
文摘In the realm of nonlinear integrable systems,the presence of decompositions facilitates the establishment of linear superposition solutions and the derivation of novel coupled systems exhibiting nonlinear integrability.By focusing on single-component decompositions within the potential BKP hierarchy,it has been observed that specific linear superpositions of decomposition solutions remain consistent with the underlying equations.Moreover,through the implementation of multi-component decompositions within the potential BKP hierarchy,successful endeavors have been undertaken to formulate linear superposition solutions and novel coupled Kd V-type systems that resist decoupling via alterations in dependent variables.
基金financially supported by the National Natural Science Foundation of China(Nos.52271033 and 52071179)the Key program of National Natural Science Foundation of China(No.51931003)+2 种基金Natural Science Foundation of Jiangsu Province,China(No.BK20221493)Jiangsu Province Leading Edge Technology Basic Research Major Project(No.BK20222014)Foundation of“Qinglan Project”for Colleges and Universities in Jiangsu Province.
文摘Multi-component transition group metal borides(MMB_(2))have become a research hotspot due to their new composition design concepts and superior properties compared with conventional ceramics.Most of the current methods,however,are complicated and time-consuming,the mass production remains a chal-lenge.Herein,we proposed a new high-efficiency strategy for synthesis of MMB_(2)using molten aluminum as the medium for the first time.The prepared Al-containing multi-component borides(TiZrHfNbTa)B_(2)microcrystals had a homogeneous composition with a hexagonal AlB_(2)structure and ultra-high hardness value of∼35.3 GPa,which was much higher than data reported in the literature and the rule of mix-ture estimations.Furthermore,combined with the First-principles calculation results,we found that the Poisson’s ratio(v)values exhibit a clearly ascending trend from 0.17 at VEC=3.5 to 0.18 at VEC=3.4,then to 0.201 at VEC=3.2 with the increasing of Al content.This indicates that the intrinsic toughness of multi-component boride microcrystals is obviously enhanced by the trace-doped Al elements.Besides,the fabricated Al-containing multi-component boride microcrystals have superior oxidation activation en-ergy and structural stability.The enhanced oxidation resistance is mainly attributed to the formation of a protective Al2 O3 oxide layer and the lattice distortion,both of which lead to sluggish diffusion of O_(2).These findings propose a new unexplored avenue for the fabrication of MMB_(2)materials with supe-rior comprehensive performance including ultra-hardness and intrinsically improved thermo-mechanical properties.
基金supported by National Natural Science Foundation of China under Grant Nos. 60772023 and 60372095the Key Project of the Ministry of Education under Grant No. 106033+3 种基金the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. SKLSDE-07-001Beijing University of Aeronautics and Astronautics,the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20060006024the Ministry of Education
文摘The present work extends the search of Jacobi elliptic function solutions for the multi-component modified Korteweg-de Vries equations. When the modulum m →1, those periodic solutions degenerate as the corresponding solitary wave and shock wave ones. Especially, exact solutions for the three-component system are presented in detail and graphically.
基金supported by Sichuan Science and Technology Program(No.2023NSFSC0101)the 2024 Provincial platform project of Chengdu Normal University(No.GNFZ202404)+1 种基金Natural Science Foundation of Shandong Province(No.ZR2021MB065)National Natural Science Foundation of China(No.22101237)。
文摘A convenient photocatalytic multi-component reaction of alkenes,quinoxalin-2(1H)-ones,and diazo compounds has been developed in the presence of water.A number of ester-containing quinoxalin-2(1H)-ones could be efficiently obtained in moderate to good yields at room temperature.This metal-free visiblelight-driven tandem reaction was conducted through proton-coupled electron transfer(PCET)process using water as the hydrogen donor and 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene(4CzIPN)as the photocatalyst.
基金supported by the stable support project and the Major National Science and Technology Project(2017-VII-0008-0101).
文摘With the evolution of nickel-based single crystal superalloys,there is an increase in heavy elements such as Re and Ru.This has made solutal convection more pronounced during the directional solidification process,leading to solute redistribution and increasing the risk of casting defects such as low-angle grain boundaries.To avoid casting defects,downward directional solidification(DWS)method is adopted to eliminate solutal convection and change solute redistribution.However,there is currently no in-situ characterization or quantitative simulation studying the solute redistribution during DWS and upward directional solidification(UWS)processes.A multicomponent phase field simulation coupled with lattice Boltzmann method was employed to quantitatively investigate changes in dendrite morphology,solutal convection and deviation of dendrite tips from the perspective of solute redistribution during UWS and DWS processes.The simulation of microstructure agrees well with the experimental results.The mechanism that explains how solutal convection affects side branching behavior is depicted.A novel approach is introduced to characterize dendrite deviation,elucidating the reasons why defects are prone to occur under the influence of natural convection and solute redistribution.
基金supported by the National Natural Science Foundation of China(Nos.42007178 and 41907327)the Natural Science Foundation of Hubei(Nos.2020CFB463 and 2019CFB372)+4 种基金China Geological Survey(Nos.DD20160304 and DD20190824)Fundamental Research Funds for the Central Universities(Nos.CUG 190644 and CUGL180817)National Key Research and Development Program(No.2019YFC1805502)Key Laboratory of Karst Dynamics,MNR and GZAR(Institute of Karst Geology,CAGS)Guilin(No.KDL201703)Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification,MNR and IRCK by UNESCO(No.KDL201903)。
文摘To investigate groundwater flow and solute transport characteristics of the karst trough zone in China,tracer experiments were conducted at two adjacent typical karst groundwater flow systems(Yuquandong(YQD)and Migongquan(MGQ))in Sixi valley,western Hubei,China.Highresolution continuous monitoring was utilized to obtain breakthrough curves(BTCs),which were then analyzed using the multi-dispersion model(MDM)and the two-region nonequilibrium model(2RNE)with basic parameters calculated by CXTFIT and QTRACER2.Results showed that:(1)YQD flow system had a complex infiltration matrix with overland flow,conduit flow and fracture flow,while the MGQ flow system was dominated by conduit flow with fast flow transport velocity,but also small amount of fracture flow there;(2)They were well fitted based on the MDM(R^2=0.928)and 2RNE(R^2=0.947)models,indicating that they had strong adaptability in the karst trough zone;(3)conceptual models for YQD and MGQ groundwater systems were generalized.In YQD system,the solute was transported via overland flow during intense rainfall,while some infiltrated down into fissures and conduits.In MGQ system,most were directly transported to spring outlet in the fissureconduit network.
基金supported by the National Natural Science Foundation of China(No.52225101)the Fundamental Research Funds for the Central Universities(2023CDJYXTD-002)+1 种基金supported by the Special Fund for Special Posts of Guizhou University(No.202353)Guizhou Provincial Basic Research Program(Natural Science)(Qingnian Yindao No.2024-123).
文摘Interface segregation of solute atoms has a profound effect on properties of engineering alloys.In this study,we report a novel strategy for breaking the strength-ductility dilemma of Mg alloy via solute segregation.The hot extruded Mg-1.8Gd-0.3Zr(wt.%)alloy sheet was subjected to three different passes of rolling,and then heat-treated at 200℃.The high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)reveals a remarkable segregation of solute Gd atoms along high and low-angel grain boundaries(GBs).Under almost precipitation-free conditions,the strength and ductility of rolled alloy sheets are simultaneously improved after annealing.Especially for the annealed 3-passes-rolled specimen,the yield strength,ultimate tensile strength,and elongation are simultaneously increased by 11.2%,7.3%,and 18%,respectively.The solute segregation endows the rolled plate with excellent grain size stability and provides a prominent extra solute cluster strengthening,which completely resists the other softening effects,including dislocation annihilation and grain coarsening during the heating.Meanwhile,the directional migration of Gd atoms and the annihilation of dislocations provide a“clear”space within the grain,which is beneficial for the moving and accumulating of subsequent dislocations.This work sheds light on the solute partitioning behavior and realizes a good application of GB segregation in improving the comprehensive mechanical properties of Mg alloys.
基金Project supported by the National Natural Science Foundation of China(52301041)Guizhou Provincial Science and Technology Projects(Qingnian No.2024-123)the Special Fund for Special Posts of Guizhou University(2023-26,2023-53)。
文摘In this study,a novel strategy for breaking the strength-ductility dilemma of Mg-1.5Zn-0.6Gd(wt%)alloy via solute segregation was reported.The hot extruded alloy sheet was subjected to rolling deformation,and then heat-treated at 200℃.The high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)reveals a remarkable segregation of solute Zn atoms along both high and lowangle grain boundaries(GBs).As compared with as-rolled plate,the yield strength,ultimate tensile strength,and the elongation of annealed sample is increased by 15.6%,14%,and 8.4%,respectively,acquiring an obvious strength-ductility synergy effect.The solute segregation endows the rolled plate with excellent grain size stability and provides a prominent extra solute cluster strengthening,which completely resists the other softening effects including dislocation annihilation and grain coarsening.Meanwhile,the directional migration of Zn atoms and the annihilation of dislocations provide a"clear"space within the grain,which is beneficial for the moving and accumulating of subsequent dislocations.This work sheds light on the solute partitioning behavior and realizes a good application of GB segregation in improving the comprehensive mechanical properties of Mg alloys.
基金supported by the National Natural Science Foundation of China(Grant Nos.52174321,52274339,52204348)the Jiangsu Achievement Transformation Fund Project(Grant No.SBA2023030047)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX24_3310).
文摘In order to investigate the segregation process and clarify its effect on the formation of TiN during the solidification of a micro-alloy steel containing titanium(Ti),a new mathematical model concerning solute transportation,solidification,as well as TiN precipitation was successfully established and verified.The transportation of solute elements was described using the Brody-Fleming microsegregation model,while the thermodynamic principles governing the precipitation of TiN were derived within the framework of the model.Additionally,the model accounts for variations in the diffusion coefficient due to phase transition and the influence of non-equilibrium solidification on solute distribution.High-temperature tests were conducted to validate the mathematical model.Results show that during solidification,due to selective crystallization,there is positive segregation of Ti and N in the solidifying front.What’s more,due to the high cooling rate near the surface of this steel,negative segregation is easier to be formed in the surface area.The highest concentration of TiN precipitation is found in the 1/4 width of this steel.High-temperature experiment shows that when the solidifying front reaches the 1/4 width of the specimen,the concentration product of Ti and N elements biased at the solidifying front reaches the thermodynamic conditions of TiN precipitation,and exists a higher concentration of TiN distributed in this region.To address this phenomenon,a comparative analysis of the effects of cooling rate and initial solute element content on TiN precipitation behavior was conducted.An increase in the surface cooling rate accelerates the progression of the solidification front and diminishes solute segregation near the front,thereby reducing TiN precipitation.However,with the increase of the initial solute element content,the concentration product of Ti and N elements rises,then the content of TiN precipitation increases.The results of this model provide important insight into the micro segregation and TiN precipitation mechanism of the micro-alloy steels bearing titanium.
基金support from the National Natural Science Foundation of China(Nos.22173034,11974128,52130101)the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure(No.SKL202206SIC)+2 种基金the Program of Innovative Research Team(in Science and Technology)in University of Jilin Province,the Program for JLU(Jilin University)Science and Technology Innovative Research Team(No.2017TD-09)the Fundamental Research Funds for the Central Universitiesthe computing resources of the High Performance Computing Center of Jilin University,China.
文摘The control of solute segregation at grain boundaries is of significance in engineering alloy properties.However,there is currently a lack of a physics-informed predictive model for estimating solute segre-gation energies.Here we propose novel electronic descriptors for grain-boundary segregation based on the valence,electronegativity and size of solutes.By integrating the non-local coordination number of surfaces,we build a predictive analytic framework for evaluating the segregation energies across various solutes,grain-boundary structures,and segregation sites.This framework uncovers not only the coupling rule of solutes and matrices,but also the origin of solute-segregation determinants,which stems from the d-and sp-states hybridization in alloying.Our scheme establishes a novel picture for grain-boundary segregation and provides a useful tool for the design of advanced alloys.
基金supported by National Key R&D Program of China(No.2022YFB3705202)National Natural Science Foundation of China(Nos.51831008,52171049 and 52104330).
文摘Second period elements(B,C,N,and O)usually appear at the grain boundary(GB)and strongly affect the mechanical performance in austenitic stainless steels.Therefore,it is significant to investigate the effect of solute elements(B,C,N,and O)on the GB.The first-principles calculation based on the density function theory was applied to explore the effect of B,C,N,and O onγ-FeΣ5(210)[001]GB.The GB energy,the segregation energy,the Voronoi volume,and the theoretical tensile test were calculated to investigate the segregation behavior and the strengthening effect.The structural change and electronic evolution were also investigated by bond change,charge density distribution,and density of states.The results show that B is favored to segregate at the capped trigonal prism(CTP)position with a large void and has a strengthening effect on the GB strength,while O and N are preferred to locate at the octahedral(OCT)site and have an embrittling effect on GB cohesion.C can segregate at both the CTP site and the OCT location with little energy difference.As C segregates at the OCT site,it is beneficial for GB strength.However,it is detrimental at the CTP position.It can be seen that the influence of solutes is closely related to the element type and segregated position.
基金supported by National Natural Science Foundation of China under Grant Nos.52234009 and 52274383Partial financial support came from the Fundamental Research Funds for the Central Universities,JLU,Program for JLU Science and Technology Innovative Research Team(JLUSTIRT,2017TD-09)Program for the Central University Youth Innovation Team.
文摘A novel core-shell structured Al_(8)Mn_(4)Y-Al_(2)Ca phase and controllable solute-segregation are elaborately designed in dilute Mg-0.6Al-0.5Mn-0.1Ca-0.1Y alloy(wt.%),via incomplete peritectic transformation during twin-roll casting.When soaked in 3.5 wt.%NaCl solution,Al_(2)Ca shell with a low electrochemical potential prevents direct contact of noble Al_(8)Mn_(4)Y with Mg matrix,mitigating the micro-galvanic corrosion and meanwhile accelerating the formation of uniform corrosion film.Thereafter,solute(Al,Ca)-segregation motivates the formation of heterogeneous multilayered corrosion product films,enhancing corrosion resistance and even achieving self-healing upon long-term corrosion.Notably,the dilute Mg alloy exhibits a corrosion rate as low as 0.22±0.05 mm·y^(−1).
基金the funding from the Ger-man Research Foundation(DFG)-BE 5360/1-1 and ThyssenKrupp Europe.
文摘A microscopic understanding of the complex solute-defect interaction is pivotal for optimizing the alloy’s macroscopic mechanical properties.Simulating solute segregation in a plastically deformed crystalline system at atomic resolution remains challenging.The objective is to efficiently model and predict a phys-ically informed segregated solute distribution rather than simulating a series of diffusion kinetics.To ad-dress this objective,we coupled molecular dynamics(MD)and Monte Carlo(MC)methods using a novel method based on virtual atoms technique.We applied our MD-MC coupling approach to model off-lattice carbon(C)solute segregation in nanoindented Fe-C samples containing complex dislocation networks.Our coupling framework yielded the final configuration through efficient parallelization and localized en-ergy computations,showing C Cottrell atmospheres near dislocations.Different initial C concentrations resulted in a consistent trend of C atoms migrating from less crystalline distortion to high crystalline distortion regions.Besides unraveling the strong spatial correlation between local C concentration and defect regions,our results revealed two crucial aspects of solute segregation preferences:(1)defect ener-getics hierarchy and(2)tensile strain fields near dislocations.The proposed approach is generic and can be applied to other material systems as well.
文摘The multi-component oxide (Al0.88Fe0.67Zn0.28O3)) surface (abbreviated as MCOS) was prepared to optimize the effectiveness of the elimination of As (III) from aqueous solution. The oxide surface was synthe-sized by co-precipitation method using corresponding metal carbonates. It was characterized by XRD, TGA and DSC. The surface morphology of MCOS was observed in SEM and the elemental analysis was accomplished by EDX. The composition of Al2O3, Fe2O3 & ZnO was 23.6, 39.9 and 20.6 wt% respectively in XRF analysis. The specific surface area was found 389.85 m2 g-1. Batch experiments were performed to remove As (III) from aqueous solution considering various parameters such as effect of pH, contact time, initial arsenic concentration, temperature and sor-bent dosage. The maximum sorption capacity of the surface was almost steady from pH 4 to pH 9. Kinetic study shows that As (III) sorption is following second order rate equation with the rate constant of 80×10-2 g mg-1 min-1 at room temperature and this rate was increased with increasing temperature which indicates the sorption was endothermic process. The free energy change, ΔGo was negative which proves that the sorption was spontaneous and thermodynamically favorable. Sorption isotherm was interpreted by Langmuir equation and the maximum sorption capacity of oxide monolayer was 13×10-2 mg g-1.
基金supported by the National Key Research and Development Program of China(No.2021YFB3702602)the National Natural Science Foundation of China(Nos.51825101,52425101)。
文摘Grain boundary segregation(GBS)of solutes influences the grain size,texture,and strength of Mg wrought alloys.So far,solutes'GBS in Mg has mostly been investigated by qualitative experimental observations.In this work,we develop a quantitative model to compute the grain boundary segregation energy(ΔE_(seg))in binary Mg based alloys that takes the relative atomic density of GB into account.The model is utilized to computeΔE_(seg)of Al,Zn,Ca,Sn,Y,Gd,and Nd solutes in Mg.The result suggests that rare earth elements and Ca are more prone to GBS than Al,Zn,and Sn.Segregation of Gd solutes can explain the smaller grain size and slower grain growth in Mg-Gd extruded alloys than Mg-Al and Mg-Zn counterparts.It also provides an explanation for the weak extrusion texture in Mg-Gd.