The segregation modes and characteristics of 1-6 mm multi-component lignite were studied in a microporous, vibrated, gas-fluidized bed of Φ110 mm ×400 mm. The effects of particle density and size, vibration freq...The segregation modes and characteristics of 1-6 mm multi-component lignite were studied in a microporous, vibrated, gas-fluidized bed of Φ110 mm ×400 mm. The effects of particle density and size, vibration frequency and amplitude, and gas velocity on these characteristics were considered. The average size, average density, size deviation coefficient, and density deviation coefficient were used to identify lignite size and density. The separation efficiency was adopted to evaluate the segregation performance,and the segregation mechanisms were explored. The results show that ε(size,max) of heterogeneous multisize-component lignite with K_(size) = 65% reaches 80% at f= 20 Hz, A = 5 mm, and N =(1,3). ε_(density,max) Of heterogeneous multi-density-component lignite with K_(density)= 25% reaches 50% at f = 15 Hz, A = 5 mm,and N =(1,1.5). The density segregations of 1-3 and 3-6 mm multi-component mixtures are remarkable,ε_(density,max)= 42% and 31% at f= 14 and 16 Hz, and A = 3 and 5 mm, respectively. The size segregation of 1-6 mm multi-component mixture is prominent and ε_(size,max)= 55% at f= 15 Hz, A = 5 mm. The mediumsized mixture with a narrow size distribution at low frequency is favorable for density segregation,and a mixture with a wider size distribution at high frequency is most favorable for size segregation.Precise control of gas flow and vibration as well as optimal design of the fluidized bed can improve the performance of segregation in the vibrated gas-fluidized bed.展开更多
The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbi...The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbide nanowires using lignite and waste silicon powder as raw materials through carbothermal reduction.The staggered structure of nanowires promotes the creation of interfacial polarization,impedance matching,and multiple loss mechanisms,leading to enhanced electromagnetic absorption performance.The silicon carbide nanowires demonstrate outstanding electromagnetic absorption capabilities with the minimum reflection loss of-48.09 d B at10.08 GHz and an effective absorption bandwidth(the reflection loss less than-10 d B)ranging from 8.54 to 16.68 GHz with a thickness of 2.17 mm.This research presents an innovative approach for utilizing solid waste in an environmentally friendly manner to produce broadband silicon carbide composite absorbers.展开更多
In order to explore the remediation effects of lignite and biochar on Zn-contaminated soil,this experiment studied the impacts of adding lignite and biochar on soil respiration,soil enzyme activity,and organic carbon ...In order to explore the remediation effects of lignite and biochar on Zn-contaminated soil,this experiment studied the impacts of adding lignite and biochar on soil respiration,soil enzyme activity,and organic carbon in Zn-contaminated soil through soil culture experiments,which provided a theoretical basis for the remediation and improvement as well as for the development and utilization of Zn-contaminated soil.The study was an L8(4×2^(2))orthogonal experimental design with eight treatments,in which there were four levels of Zn contamination concentration(Z0:0;Z1:125 mg•kg^(-1);Z2:250 mg•kg^(-1);Z3:500 mg•kg^(-1)),low-Zn(125-250 mg•kg^(-1))and high-Zn(500 mg•kg^(-1)),two levels of lignite(H0:0;H1:13.33 g•kg^(-1)),two levels of biochar(C0:0;C1:3.33 g•kg^(-1)),with four replicates per treatment.The results showed that lignite or biochar and their interaction had extremely significant effects on both respiration rate and accumulation in Zn-contaminated soil.Among the high Zn-contaminated treatments,the mixed application of lignite and biochar(Z3H1C1 treatment)had the fastest soil respiration rate and the highest soil respiration accumulation.Lignite,biochar and their interaction had significant or extremely significant effects on sucrase,catalase and polyphenol oxidase activities in Zn-contaminated soil.Among the high Zn-contaminated treatments(Z3),the addition of biochar alone had the most significant effects on the increase of soil sucrase and catalase enzyme activities,while the mixed application of lignite and biochar had the most significant effects on the increase of soil polyphenol oxidase activity.Lignite,biochar and their interaction had significant or extremely significant effects on the total organic carbon,active organic carbon and microbial carbon content of Zn-contaminated soils.Soil total organic carbon content in general peaked at day 80.Among the high Zn-contaminated treatments,the addition of biochar alone had the most significant effects on the total organic carbon content of the soil,while the mixed application of lignite and biochar had the most significant effect on the microbiomass carbon content.展开更多
In the realm of nonlinear integrable systems,the presence of decompositions facilitates the establishment of linear superposition solutions and the derivation of novel coupled systems exhibiting nonlinear integrabilit...In the realm of nonlinear integrable systems,the presence of decompositions facilitates the establishment of linear superposition solutions and the derivation of novel coupled systems exhibiting nonlinear integrability.By focusing on single-component decompositions within the potential BKP hierarchy,it has been observed that specific linear superpositions of decomposition solutions remain consistent with the underlying equations.Moreover,through the implementation of multi-component decompositions within the potential BKP hierarchy,successful endeavors have been undertaken to formulate linear superposition solutions and novel coupled Kd V-type systems that resist decoupling via alterations in dependent variables.展开更多
Multi-component transition group metal borides(MMB_(2))have become a research hotspot due to their new composition design concepts and superior properties compared with conventional ceramics.Most of the current method...Multi-component transition group metal borides(MMB_(2))have become a research hotspot due to their new composition design concepts and superior properties compared with conventional ceramics.Most of the current methods,however,are complicated and time-consuming,the mass production remains a chal-lenge.Herein,we proposed a new high-efficiency strategy for synthesis of MMB_(2)using molten aluminum as the medium for the first time.The prepared Al-containing multi-component borides(TiZrHfNbTa)B_(2)microcrystals had a homogeneous composition with a hexagonal AlB_(2)structure and ultra-high hardness value of∼35.3 GPa,which was much higher than data reported in the literature and the rule of mix-ture estimations.Furthermore,combined with the First-principles calculation results,we found that the Poisson’s ratio(v)values exhibit a clearly ascending trend from 0.17 at VEC=3.5 to 0.18 at VEC=3.4,then to 0.201 at VEC=3.2 with the increasing of Al content.This indicates that the intrinsic toughness of multi-component boride microcrystals is obviously enhanced by the trace-doped Al elements.Besides,the fabricated Al-containing multi-component boride microcrystals have superior oxidation activation en-ergy and structural stability.The enhanced oxidation resistance is mainly attributed to the formation of a protective Al2 O3 oxide layer and the lattice distortion,both of which lead to sluggish diffusion of O_(2).These findings propose a new unexplored avenue for the fabrication of MMB_(2)materials with supe-rior comprehensive performance including ultra-hardness and intrinsically improved thermo-mechanical properties.展开更多
Lignite provides energy security and contributes economically.However,it also causes dirty outcomes in terms of climate aspect.In addition to the energy and climate dimensions of the Sustainable Development Goals,ther...Lignite provides energy security and contributes economically.However,it also causes dirty outcomes in terms of climate aspect.In addition to the energy and climate dimensions of the Sustainable Development Goals,there is also a water issue:lignite is usually found submerged below the local groundwater tables.Mining lignite could be exploited to achieve drinkable and agriculturally usable water.In today’s literature,while the impact of lignite production on global warming and emissions are already highly discussed,the water management side of the issue is regularly omitted.However,considering the complex interlink between these three areas(the Water-Energy-Climate(WEC)nexus)is necessary within policy coherence,which is mostly ignored even though it is one of the development targets.Here in this framework,Turkiye,which aims to reduce its heavy dependency on energy imports,is worth studying because almost all of its coal,the country’s largest fossil resource,is lignite.Therefore,this study examines the WEC nexus related to lignite production and combustion and seeks policy coherence between their outputs in the context of Turkiye’s historical steps to climate change mitigation,specifically oriented with the Paris Agreement.This story expands from the absence of specific development policy objectives to the practicalities of politics and economics.展开更多
Water scarcity and soil salinization pose significant challenges to agriculture in the West Liaohe Plain,eastern Inner Mongolia,China.Shallow-buried drip irrigation can improve soil water use efficiency to alleviate w...Water scarcity and soil salinization pose significant challenges to agriculture in the West Liaohe Plain,eastern Inner Mongolia,China.Shallow-buried drip irrigation can improve soil water use efficiency to alleviate water shortage in agriculture and the application of lignite humic acid reduces the adverse effects of soil salinization.However,further research is needed to investigate the effects of different application rates of lignite humic acid and humic acid-based combined amendment on soil physicochemical properties,nutrient contents,and crop yield in saline-sodic farmlands under shallow-buried drip irrigation.A two-year field experiment was conducted with control without any amendment(CK),three treatments amended with 3 t/ha(H1),6 t/ha(H2),and 12 t/ha(H3)lignite humic acid,and three application rates with 15 t/ha(T1),22.5 t/ha(T2),and 30 t/ha(T3)lignite humic acid-based combined amendment in 2021 and2022.The results showed that H3 reduced soil bulk density,p H,electrical conductivity,and total alkalinity,while increasing the contents of soil organic matter,total nitrogen,and available potassium in the two-year experiment.Moreover,the maize yield in H3 increased by an average of 35.5%.T2 decreased soil bulk density,p H,total alkalinity,and increased maize yield by 16.2%,compared to the first year.These results suggest that T2 consistently improved both soil quality and crop yield.Correlation analyses showed that lignite humic acid and its complexes promote maize growth and increase yield by increasing soil organic matter and total nitrogen while reducing soil salinity and total alkalinity.Based on the comprehensive analysis of the field data and the results of the comprehensive evaluation of soil quality,it was determined that the appropriate improvement measures for saline-sodic farmlands under shallow-buried drip irrigation are the application of 12 t/ha of lignite humic acid and 22.5 t/ha of lignite humic acid-based combined amendment.This study demonstrates the effectiveness of lignite humic acid and its combined amendment in mitigating the constraints of saline-sodic farmlands and enhancing crop yields,providing a sustainable solution for improving saline-sodic farmlands in the West Liaohe Plain.展开更多
The hardening mechanism of multi-component carbide ceramic has been investigated in detail through a combination of experiments,first-principles calculations,and ab initio molecular dynamics(AIMD).Eight dense carbide ...The hardening mechanism of multi-component carbide ceramic has been investigated in detail through a combination of experiments,first-principles calculations,and ab initio molecular dynamics(AIMD).Eight dense carbide ceramics were prepared by spark plasma sintering.Compulsorily,all the multi-component carbide samples have similar carbon content,grain size,and uniform compositional distribution by optimizing the sintering process and adjusting the initial raw materials.Hence the interference of other factors on the hardness of multi-component carbide ceramics is minimized.The effects of changes in the elemental species on the lattice distortion,bond strength,bonding properties,and electronic structure of multi-component carbide ceramics were thoroughly analyzed.These results show that the hardening of multi-component carbide ceramic can be attributed to the coupling of solid solution strengthening caused by lattice distortion and covalent bond strengthening.Besides,the“host lattice”of multi-component carbide ceramics is defined based on the concept of supporting lattice.The present work is of great significance for a deeper understanding of the hardening mechanism of multi-component carbide ceramics and the design of superhard multi-component carbides.展开更多
In this paper,the effect of vibration intensity on the spatial distribution of sulfur content in bed particles was studied.The effects of vibration and airflow on the mechanical characteristics of particles were studi...In this paper,the effect of vibration intensity on the spatial distribution of sulfur content in bed particles was studied.The effects of vibration and airflow on the mechanical characteristics of particles were studied,the collision behavior mode of particles was determined,the spatial saltation law of particles was investigated,the spatial functional axis of beds was determined,and the saltation separation period of particles was determined.The test results show that:When separation bed provides inlet airflow velocity(U_(in)) is 2.55 m/s,the airflow distribution interval of I,II and III areas were U_(I)=2.55-2.57 m/s,U_(II)=1.33-1.35 m/s,U_(III)=0.35-0.38 m/s,respectively;when separation bed vibration amplitude (A)A=2.4-2.5 mm,separation bed vibration frequency (f) f=23-24 Hz,the desulfurization effect is the best.When vibration intensity (Γ)Γ=1.22,U_(in)=1.05 m/s,the particles have disordered contact and collision behavior.WhenΓ=14.89,U_(in)=3.18 m/s,the particles have a transition cataclastic collision.WhenΓ=5.80,U_(in)=2.55 m/s,the particles have directional collision behavior.It is determined that the OX axis is the transverse stable diffusion axis of the material,the OY axis is the longitudinal gradient transport axis of the material,and the OZ axis is the vertical density cascade distribution axis of the material.When separation time (T) T=0-10 s was the period of disorderly diffusion and mixing of particles,T=10-20 s was the period of directional migration and stratification of particles,and T=20-30 s was the period of cascade distribution and separation of particles.Finally,separation experiments conducted under optimal operating parameters demonstrated that the clean coal yield was 72.02%with a sulfur content of 0.98%.展开更多
A convenient photocatalytic multi-component reaction of alkenes,quinoxalin-2(1H)-ones,and diazo compounds has been developed in the presence of water.A number of ester-containing quinoxalin-2(1H)-ones could be efficie...A convenient photocatalytic multi-component reaction of alkenes,quinoxalin-2(1H)-ones,and diazo compounds has been developed in the presence of water.A number of ester-containing quinoxalin-2(1H)-ones could be efficiently obtained in moderate to good yields at room temperature.This metal-free visiblelight-driven tandem reaction was conducted through proton-coupled electron transfer(PCET)process using water as the hydrogen donor and 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene(4CzIPN)as the photocatalyst.展开更多
A multi-component system has the long fixed maintenance time, so the opportunistic maintenance policy is adopted to put preventive replacement and corrective replacement together, so that the long fixed maintenance ti...A multi-component system has the long fixed maintenance time, so the opportunistic maintenance policy is adopted to put preventive replacement and corrective replacement together, so that the long fixed maintenance time can be shared by more than one component, and the system availability can be improved. Then, the generation characteristics of the random failure time are researched based on the replacement maintenance and the minima[ maintenance. Furthermore, by choosing the opportunistic replacement ages of each component as opti- mized variables, a simulation algorithm based on an opportunistic maintenance policy is designed to maximize the total availability. Finally, the simulation result shows the validity of the algorithm by an example.展开更多
The adsorption characteristics of virgin and potassium permanganate modified lignite semi-coke (SC) for gaseous Hg were investigated in an attempt to produce more effective and lower price adsorbents for the control...The adsorption characteristics of virgin and potassium permanganate modified lignite semi-coke (SC) for gaseous Hg were investigated in an attempt to produce more effective and lower price adsorbents for the control of elemental mercury emission. Brunauer-Emmett- Teller (BET) measurements, X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to analyze the surface physical and chemical properties of SC, Mn-SC and Mn-H-SC before and after mercury adsorption. The results indicated that potassium permanganate modification had significant influence on the properties of semi-coke, such as the specific surface area, pore structure and surface chemical functional groups. The mercury adsorption efficiency of modified semi-coke was lower than that of SC at low temperature, but much higher at high temperature. Amorphous Mn7+, Mn6+ and Mn4+ on the surface of Mn-SC and Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg~, which oxidized the elemental mercury into Hg2+ and captured it. Thermal treatment reduced the average oxidation degree of Mn2+ on the surface of Mn-SC from 3.80 to 3.46. However, due to the formation of amorphous MnOx, the surface oxidation active sites for gaseous Hg0 increased, which gave Mn-H-SC higher mercury adsorption efficiency than that of Mn-SC at high temperature.展开更多
A process of recovering Ge by chlorinating masting was put forward. GeCl4 was separated and recovered from lignite ash because of its low boiling point. Kinetic analysis indicates that the chlorinating roasting proces...A process of recovering Ge by chlorinating masting was put forward. GeCl4 was separated and recovered from lignite ash because of its low boiling point. Kinetic analysis indicates that the chlorinating roasting process fits with the unreacted-core shrinking model and the reaction rate equation corresponds to 1 - 2a/3 - (1 - a)2/3 = kt. The apparent activation energy Ea is calculated to be 22.36 kJ·mol^-1. The diffusion of product layer serves as the rate-controlling step in this process. When the roasting temperature is 250℃, the roasting time is 60 min, the con- centration of hydrochloric acid is 10 mol/L, and the ratio of liquid to solid is 10 (mHCl/ash = 10), and 90% Ge in lignite ash can be recovered.展开更多
Soluble portions(SPs) 1-4(SP1-SP4) were afforded from sequentially dissolution and alkanolyses of Baiyinhua lignite(BL) in cyclohexane,CH3OH,CH3CH2OH,and(CH3)2CHOH at 300℃.They were analyzed with a gas chromatograph/...Soluble portions(SPs) 1-4(SP1-SP4) were afforded from sequentially dissolution and alkanolyses of Baiyinhua lignite(BL) in cyclohexane,CH3OH,CH3CH2OH,and(CH3)2CHOH at 300℃.They were analyzed with a gas chromatograph/mass spectrometer and quadrupole exactive orbitrap mass spectrometer(QEOTMS) with an atmosphere pressure chemical ionization source in positive-ion mode,while BL was characterized with an X-ray photoelectron spectrometer(XRPES).The results show that the yields of SP2 and SP3 are much higher than those of SP1 and SP4,and the total SP yield is ca.39.0%.According to the analysis with XRPES,pyrrolic nitrogen atoms are the most abundant nitrogen existing forms in BL.Thousands of nitrogen-containing aromatics(NCAs) were resolved with QEOTMS and their molecular masses are mainly in the range of 200-450 u.The main NCAs are N1O1 and N1O2 class species with double bond equivalent values of 4-18 and carbon numbers of 7-30.The nitrogen atoms appear in pyridine s,quinolines,benzoquinolines or acridine,and dibenzoquinolines or naphthoquinolines,while the oxygen atoms exist in methoxy and furan rings.展开更多
With lignite after vacuum drying as the raw material,a series of Zn-based sorbents were prepared by static impregnation,ultrasonic-assisted impregnation,bubbling-assisted impregnation and high-pressure impregnation.Th...With lignite after vacuum drying as the raw material,a series of Zn-based sorbents were prepared by static impregnation,ultrasonic-assisted impregnation,bubbling-assisted impregnation and high-pressure impregnation.The physical properties and the desulfurization performances of Zn-based sorbents were studied systematically by XRD,BET,AAS characterization techniques and the fixed-bed desulfurization evaluation apparatus.The sorbents obtained by high-pressure impregnation method have a larger specific surface area,pore volume and pore diameter comparing with other methods,which is conducive to the sulfidation reaction of hydrogen sulfide gas in the sorbent.The effects of pressure during the high-pressure impregnation and concentration of Zn(NO3)2 precursor solution on the sorbents properties and desulfurization behavior were investigated.The higher the impregnation pressure and the concentration of impregnation solution are,the greater the amount of the active components are uploaded.However,overhigh impregnation pressure can cause collapse and blocking of the carrier pore.The optimal operating condition of high-pressure impregnation method for preparing the sorbents was the impregnation pressure of 20 atm and the solution concentration of 41%.Under that condition,the sorbent had the best desulfurization ability with a sulfur capacity of 13.94 gS/100 gsorbent and a breakthrough time of 54 h.Its desulfurization precision and efficiency of removing H2S before sorbent breakthrough from the middle temperature gases of 400℃ can reach【5 ppm and】99%,respectively.Sorbents could be regenerated under the condition of 1 vol%O2,20 vol% H2O,0.5 vol% NH3,and N2balance gas.The regenerated sorbent could be used for repeated absorption of H2S with a slight decrease in desulfurization effect.展开更多
This review focuses on the recent research progress in the multi-component assembly of luminescent rare earth hybrid materials, which is based on the luminescent rare earth compounds and two or more other building uni...This review focuses on the recent research progress in the multi-component assembly of luminescent rare earth hybrid materials, which is based on the luminescent rare earth compounds and two or more other building units, including the other photoactive species. It covers the multi-component luminescent rare earth hybrids which was assembled with different(a) organic-inorganic polymeric units,(b)nanoporous units,(c) nanoparticle composites or(d) other developing special units. Finally, future challenges and opportunities in this field are discussed. Herein it mainly focuses on the work of Yan's group in recent years.展开更多
Lignite bio-solubilization is a promising technology for converting solid lignite into oil.This study concerns the adsorption of lignite-solubilizing enzymes onto the lignite surface.Adsorption capacity, infrared spec...Lignite bio-solubilization is a promising technology for converting solid lignite into oil.This study concerns the adsorption of lignite-solubilizing enzymes onto the lignite surface.Adsorption capacity, infrared spectral analysis and driving forces analysis are studied as a way to help understand the bio-solubilization mechanism.The results show that the amount of lignite bio-solubilization is proportional to the amount of adsorbed lignite-solubilizing enzymes.An increase in lignite-solubilizing enzyme adsorption of 10% leads to a 7% increase in lignite bio-solubilization.However, limited amounts of enzymes can be adsorbed by the lignite, thus resulting in low percentages of bio-solubilization.Infrared spectral analysis shows that side chains, such as hy-droxyl and carbonyl, of the lignite structure are the main, and necessary, structures where lignite-solubilizing enzymes attachto the lignite.Furthermore, driving force analysis indicates that the electrostatic force between lignite and enzymes is the main adsorption mechanism.The forces are influenced by solution pH levels, the zeta potential of the lignite and the isoelectric points of the en-zymes.展开更多
Petroleum coke and lignite are two important fossil fuels that have not been widely used in China. Petroleum coke-lignite slurry (PCLS), a mixture of petro- leum coke, lignite, water, and additives, efficiently util...Petroleum coke and lignite are two important fossil fuels that have not been widely used in China. Petroleum coke-lignite slurry (PCLS), a mixture of petro- leum coke, lignite, water, and additives, efficiently utilizes the two materials. In this study, we investigate the effects of the proportion (7) of petroleum coke on slurryability, rheo- logical behavior, stability, and increasing temperature characteristics of PCLSs. The results show that the fixed- viscosity solid concentration (COo) increases with increasing 7. The ~Oo of lignite-water slurry (LWS, ~ = 0) is 46.7 %, compared to 71.3 % for the petroleum coke-water slurry (PCWS, c~ --- i00 %), while that of PCLS is in between the two values. The rheological behavior of PCLS perfectly fits the power-law model. The PCWS acts as a dilatant fluid. As decreases, the slurry behaves first as an approximate Newtonian fluid, and then turns into a pseudo-plastic fluid that exhibits shear-thinning behavior. With increasing ct, the rigid sedimentation and water separation ratio (WSR) increase, indicating a decrease in the stability of PCLS. When α is 60-70 %, the result is a high-quality slurry fuel for industrial applications, which has high slurryability (ω0 = 57-60 %), good stability (WSR 〈 2 %), and superior pseudo-plastic behavior (n = 0.9).展开更多
The extraction residue from Shengli lignite was sequentially dissolved in cyclohexane, benzene, methanol, ethanol, and isopropanol in an autoclave at 320℃ to afford soluble portions(SPs) 1–5(SP_1-SP_5) and the final...The extraction residue from Shengli lignite was sequentially dissolved in cyclohexane, benzene, methanol, ethanol, and isopropanol in an autoclave at 320℃ to afford soluble portions(SPs) 1–5(SP_1-SP_5) and the final residue(FR). The total yield of SP_1-SP_5 is ca. 55.1%. The FR was subjected to ruthenium ioncatalyzed oxidation and the resulting products were isolated from the reaction mixture and esterified.Both the esterified products and SP_1-SP_5 were analyzed with a gas chromatograph/mass spectrometer.In total, 342 compounds were identified in SP_1-SP_5. They can be classified into normal alkanes, branched alkanes, alkenes, alkanedienes, arenes, alkanols, methylcycloalkanes, alkenols, alkylbenzenemethanols,arenols, anisol and substituted anisols, polymethyldihydrobenzofurans, arenofurans, dibenzofurans,ethoxymethylbenzenes, aldehydes, ketones, esters, nitrogen-containing organic compounds, sulfurcontaining organic compounds, and other compounds. Among the compounds, arenols are predominant in SP_1 and SP_2 and the main compounds in SP_3, while the main compounds in SP_4 and SP_5 are esters and arenes, respectively. According to the esterified products identified, the products from the FR oxidation can be grouped into non-benzene ring carboxylic acids(NBCAs) and benzenepolycarboxylic acids(BPCAs). The total yield of BPCAs is much higher than that of NBCAs, suggesting that the FR is rich in condensed aromatic moieties.展开更多
A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and...A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.展开更多
基金the National Natural Science Foundation of China (Nos. 51774283, 51174203)the Major International (Regional) Joint Research Project of NSFC (No. 51620105001) for the financial supports
文摘The segregation modes and characteristics of 1-6 mm multi-component lignite were studied in a microporous, vibrated, gas-fluidized bed of Φ110 mm ×400 mm. The effects of particle density and size, vibration frequency and amplitude, and gas velocity on these characteristics were considered. The average size, average density, size deviation coefficient, and density deviation coefficient were used to identify lignite size and density. The separation efficiency was adopted to evaluate the segregation performance,and the segregation mechanisms were explored. The results show that ε(size,max) of heterogeneous multisize-component lignite with K_(size) = 65% reaches 80% at f= 20 Hz, A = 5 mm, and N =(1,3). ε_(density,max) Of heterogeneous multi-density-component lignite with K_(density)= 25% reaches 50% at f = 15 Hz, A = 5 mm,and N =(1,1.5). The density segregations of 1-3 and 3-6 mm multi-component mixtures are remarkable,ε_(density,max)= 42% and 31% at f= 14 and 16 Hz, and A = 3 and 5 mm, respectively. The size segregation of 1-6 mm multi-component mixture is prominent and ε_(size,max)= 55% at f= 15 Hz, A = 5 mm. The mediumsized mixture with a narrow size distribution at low frequency is favorable for density segregation,and a mixture with a wider size distribution at high frequency is most favorable for size segregation.Precise control of gas flow and vibration as well as optimal design of the fluidized bed can improve the performance of segregation in the vibrated gas-fluidized bed.
基金supported by the National Natural Science Foundation of China(No.52436008)the Inner Mongolia Science and Technology Projects,China(Nos.JMRHZX20210003 and 2023YFCY0009)+3 种基金the Huaneng Group Co Ltd.,China(No.HNKJ23-H50)the National Natural Science Foundation of China(No.22408044)the China Postdoctoral Science Foundation(No.2024M761877)the National Key R&D Program of China(No.SQ2024YFD2200039)。
文摘The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbide nanowires using lignite and waste silicon powder as raw materials through carbothermal reduction.The staggered structure of nanowires promotes the creation of interfacial polarization,impedance matching,and multiple loss mechanisms,leading to enhanced electromagnetic absorption performance.The silicon carbide nanowires demonstrate outstanding electromagnetic absorption capabilities with the minimum reflection loss of-48.09 d B at10.08 GHz and an effective absorption bandwidth(the reflection loss less than-10 d B)ranging from 8.54 to 16.68 GHz with a thickness of 2.17 mm.This research presents an innovative approach for utilizing solid waste in an environmentally friendly manner to produce broadband silicon carbide composite absorbers.
基金Supported by the Special Fund for Agro-scientific Research in Public Interest in China(201503119-06-01)。
文摘In order to explore the remediation effects of lignite and biochar on Zn-contaminated soil,this experiment studied the impacts of adding lignite and biochar on soil respiration,soil enzyme activity,and organic carbon in Zn-contaminated soil through soil culture experiments,which provided a theoretical basis for the remediation and improvement as well as for the development and utilization of Zn-contaminated soil.The study was an L8(4×2^(2))orthogonal experimental design with eight treatments,in which there were four levels of Zn contamination concentration(Z0:0;Z1:125 mg•kg^(-1);Z2:250 mg•kg^(-1);Z3:500 mg•kg^(-1)),low-Zn(125-250 mg•kg^(-1))and high-Zn(500 mg•kg^(-1)),two levels of lignite(H0:0;H1:13.33 g•kg^(-1)),two levels of biochar(C0:0;C1:3.33 g•kg^(-1)),with four replicates per treatment.The results showed that lignite or biochar and their interaction had extremely significant effects on both respiration rate and accumulation in Zn-contaminated soil.Among the high Zn-contaminated treatments,the mixed application of lignite and biochar(Z3H1C1 treatment)had the fastest soil respiration rate and the highest soil respiration accumulation.Lignite,biochar and their interaction had significant or extremely significant effects on sucrase,catalase and polyphenol oxidase activities in Zn-contaminated soil.Among the high Zn-contaminated treatments(Z3),the addition of biochar alone had the most significant effects on the increase of soil sucrase and catalase enzyme activities,while the mixed application of lignite and biochar had the most significant effects on the increase of soil polyphenol oxidase activity.Lignite,biochar and their interaction had significant or extremely significant effects on the total organic carbon,active organic carbon and microbial carbon content of Zn-contaminated soils.Soil total organic carbon content in general peaked at day 80.Among the high Zn-contaminated treatments,the addition of biochar alone had the most significant effects on the total organic carbon content of the soil,while the mixed application of lignite and biochar had the most significant effect on the microbiomass carbon content.
基金sponsored by the National Natural Science Foundations of China under Grant Nos.12301315,12235007,11975131the Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ20A010009。
文摘In the realm of nonlinear integrable systems,the presence of decompositions facilitates the establishment of linear superposition solutions and the derivation of novel coupled systems exhibiting nonlinear integrability.By focusing on single-component decompositions within the potential BKP hierarchy,it has been observed that specific linear superpositions of decomposition solutions remain consistent with the underlying equations.Moreover,through the implementation of multi-component decompositions within the potential BKP hierarchy,successful endeavors have been undertaken to formulate linear superposition solutions and novel coupled Kd V-type systems that resist decoupling via alterations in dependent variables.
基金financially supported by the National Natural Science Foundation of China(Nos.52271033 and 52071179)the Key program of National Natural Science Foundation of China(No.51931003)+2 种基金Natural Science Foundation of Jiangsu Province,China(No.BK20221493)Jiangsu Province Leading Edge Technology Basic Research Major Project(No.BK20222014)Foundation of“Qinglan Project”for Colleges and Universities in Jiangsu Province.
文摘Multi-component transition group metal borides(MMB_(2))have become a research hotspot due to their new composition design concepts and superior properties compared with conventional ceramics.Most of the current methods,however,are complicated and time-consuming,the mass production remains a chal-lenge.Herein,we proposed a new high-efficiency strategy for synthesis of MMB_(2)using molten aluminum as the medium for the first time.The prepared Al-containing multi-component borides(TiZrHfNbTa)B_(2)microcrystals had a homogeneous composition with a hexagonal AlB_(2)structure and ultra-high hardness value of∼35.3 GPa,which was much higher than data reported in the literature and the rule of mix-ture estimations.Furthermore,combined with the First-principles calculation results,we found that the Poisson’s ratio(v)values exhibit a clearly ascending trend from 0.17 at VEC=3.5 to 0.18 at VEC=3.4,then to 0.201 at VEC=3.2 with the increasing of Al content.This indicates that the intrinsic toughness of multi-component boride microcrystals is obviously enhanced by the trace-doped Al elements.Besides,the fabricated Al-containing multi-component boride microcrystals have superior oxidation activation en-ergy and structural stability.The enhanced oxidation resistance is mainly attributed to the formation of a protective Al2 O3 oxide layer and the lattice distortion,both of which lead to sluggish diffusion of O_(2).These findings propose a new unexplored avenue for the fabrication of MMB_(2)materials with supe-rior comprehensive performance including ultra-hardness and intrinsically improved thermo-mechanical properties.
文摘Lignite provides energy security and contributes economically.However,it also causes dirty outcomes in terms of climate aspect.In addition to the energy and climate dimensions of the Sustainable Development Goals,there is also a water issue:lignite is usually found submerged below the local groundwater tables.Mining lignite could be exploited to achieve drinkable and agriculturally usable water.In today’s literature,while the impact of lignite production on global warming and emissions are already highly discussed,the water management side of the issue is regularly omitted.However,considering the complex interlink between these three areas(the Water-Energy-Climate(WEC)nexus)is necessary within policy coherence,which is mostly ignored even though it is one of the development targets.Here in this framework,Turkiye,which aims to reduce its heavy dependency on energy imports,is worth studying because almost all of its coal,the country’s largest fossil resource,is lignite.Therefore,this study examines the WEC nexus related to lignite production and combustion and seeks policy coherence between their outputs in the context of Turkiye’s historical steps to climate change mitigation,specifically oriented with the Paris Agreement.This story expands from the absence of specific development policy objectives to the practicalities of politics and economics.
基金Under the auspices of the National Key Research and Development Program of China(No.2022YFD1500501)the Innovation Team Project of Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences(No.2023CXTD02)+2 种基金the National Natural Science Foundation of China(No.41971066)the Key Laboratory Foundation of Mollisols Agroecology(No.2020ZKHT-03)the High Tech Fund Project of S&T Cooperation between Jilin Province and Chinese Academy of Sciences(No.2022SYHZ0018)。
文摘Water scarcity and soil salinization pose significant challenges to agriculture in the West Liaohe Plain,eastern Inner Mongolia,China.Shallow-buried drip irrigation can improve soil water use efficiency to alleviate water shortage in agriculture and the application of lignite humic acid reduces the adverse effects of soil salinization.However,further research is needed to investigate the effects of different application rates of lignite humic acid and humic acid-based combined amendment on soil physicochemical properties,nutrient contents,and crop yield in saline-sodic farmlands under shallow-buried drip irrigation.A two-year field experiment was conducted with control without any amendment(CK),three treatments amended with 3 t/ha(H1),6 t/ha(H2),and 12 t/ha(H3)lignite humic acid,and three application rates with 15 t/ha(T1),22.5 t/ha(T2),and 30 t/ha(T3)lignite humic acid-based combined amendment in 2021 and2022.The results showed that H3 reduced soil bulk density,p H,electrical conductivity,and total alkalinity,while increasing the contents of soil organic matter,total nitrogen,and available potassium in the two-year experiment.Moreover,the maize yield in H3 increased by an average of 35.5%.T2 decreased soil bulk density,p H,total alkalinity,and increased maize yield by 16.2%,compared to the first year.These results suggest that T2 consistently improved both soil quality and crop yield.Correlation analyses showed that lignite humic acid and its complexes promote maize growth and increase yield by increasing soil organic matter and total nitrogen while reducing soil salinity and total alkalinity.Based on the comprehensive analysis of the field data and the results of the comprehensive evaluation of soil quality,it was determined that the appropriate improvement measures for saline-sodic farmlands under shallow-buried drip irrigation are the application of 12 t/ha of lignite humic acid and 22.5 t/ha of lignite humic acid-based combined amendment.This study demonstrates the effectiveness of lignite humic acid and its combined amendment in mitigating the constraints of saline-sodic farmlands and enhancing crop yields,providing a sustainable solution for improving saline-sodic farmlands in the West Liaohe Plain.
基金financially supported by the National Natural Science Foundation of China(Nos.52032002,52372060,51972081,and U22A20128)the National Safety Academic Foundation(No.U2130103)+1 种基金the National Key Laboratory of Precision Hot Processing of Metals(No.61429092300305)Heilongjiang Touyan Team Program are gratefully acknowledged.
文摘The hardening mechanism of multi-component carbide ceramic has been investigated in detail through a combination of experiments,first-principles calculations,and ab initio molecular dynamics(AIMD).Eight dense carbide ceramics were prepared by spark plasma sintering.Compulsorily,all the multi-component carbide samples have similar carbon content,grain size,and uniform compositional distribution by optimizing the sintering process and adjusting the initial raw materials.Hence the interference of other factors on the hardness of multi-component carbide ceramics is minimized.The effects of changes in the elemental species on the lattice distortion,bond strength,bonding properties,and electronic structure of multi-component carbide ceramics were thoroughly analyzed.These results show that the hardening of multi-component carbide ceramic can be attributed to the coupling of solid solution strengthening caused by lattice distortion and covalent bond strengthening.Besides,the“host lattice”of multi-component carbide ceramics is defined based on the concept of supporting lattice.The present work is of great significance for a deeper understanding of the hardening mechanism of multi-component carbide ceramics and the design of superhard multi-component carbides.
基金supported by Science and Technology Project of Hebei Education Department (No. ZD2022128)Tangshan Science and Technology Plan Project (No. 22130226H)。
文摘In this paper,the effect of vibration intensity on the spatial distribution of sulfur content in bed particles was studied.The effects of vibration and airflow on the mechanical characteristics of particles were studied,the collision behavior mode of particles was determined,the spatial saltation law of particles was investigated,the spatial functional axis of beds was determined,and the saltation separation period of particles was determined.The test results show that:When separation bed provides inlet airflow velocity(U_(in)) is 2.55 m/s,the airflow distribution interval of I,II and III areas were U_(I)=2.55-2.57 m/s,U_(II)=1.33-1.35 m/s,U_(III)=0.35-0.38 m/s,respectively;when separation bed vibration amplitude (A)A=2.4-2.5 mm,separation bed vibration frequency (f) f=23-24 Hz,the desulfurization effect is the best.When vibration intensity (Γ)Γ=1.22,U_(in)=1.05 m/s,the particles have disordered contact and collision behavior.WhenΓ=14.89,U_(in)=3.18 m/s,the particles have a transition cataclastic collision.WhenΓ=5.80,U_(in)=2.55 m/s,the particles have directional collision behavior.It is determined that the OX axis is the transverse stable diffusion axis of the material,the OY axis is the longitudinal gradient transport axis of the material,and the OZ axis is the vertical density cascade distribution axis of the material.When separation time (T) T=0-10 s was the period of disorderly diffusion and mixing of particles,T=10-20 s was the period of directional migration and stratification of particles,and T=20-30 s was the period of cascade distribution and separation of particles.Finally,separation experiments conducted under optimal operating parameters demonstrated that the clean coal yield was 72.02%with a sulfur content of 0.98%.
基金supported by Sichuan Science and Technology Program(No.2023NSFSC0101)the 2024 Provincial platform project of Chengdu Normal University(No.GNFZ202404)+1 种基金Natural Science Foundation of Shandong Province(No.ZR2021MB065)National Natural Science Foundation of China(No.22101237)。
文摘A convenient photocatalytic multi-component reaction of alkenes,quinoxalin-2(1H)-ones,and diazo compounds has been developed in the presence of water.A number of ester-containing quinoxalin-2(1H)-ones could be efficiently obtained in moderate to good yields at room temperature.This metal-free visiblelight-driven tandem reaction was conducted through proton-coupled electron transfer(PCET)process using water as the hydrogen donor and 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene(4CzIPN)as the photocatalyst.
文摘A multi-component system has the long fixed maintenance time, so the opportunistic maintenance policy is adopted to put preventive replacement and corrective replacement together, so that the long fixed maintenance time can be shared by more than one component, and the system availability can be improved. Then, the generation characteristics of the random failure time are researched based on the replacement maintenance and the minima[ maintenance. Furthermore, by choosing the opportunistic replacement ages of each component as opti- mized variables, a simulation algorithm based on an opportunistic maintenance policy is designed to maximize the total availability. Finally, the simulation result shows the validity of the algorithm by an example.
基金supported by the National Natural Science Foundation of China (No. 21006059)the Project of Shandong Province Higher Educational Science and Technology Program (No. J11LB61)
文摘The adsorption characteristics of virgin and potassium permanganate modified lignite semi-coke (SC) for gaseous Hg were investigated in an attempt to produce more effective and lower price adsorbents for the control of elemental mercury emission. Brunauer-Emmett- Teller (BET) measurements, X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to analyze the surface physical and chemical properties of SC, Mn-SC and Mn-H-SC before and after mercury adsorption. The results indicated that potassium permanganate modification had significant influence on the properties of semi-coke, such as the specific surface area, pore structure and surface chemical functional groups. The mercury adsorption efficiency of modified semi-coke was lower than that of SC at low temperature, but much higher at high temperature. Amorphous Mn7+, Mn6+ and Mn4+ on the surface of Mn-SC and Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg~, which oxidized the elemental mercury into Hg2+ and captured it. Thermal treatment reduced the average oxidation degree of Mn2+ on the surface of Mn-SC from 3.80 to 3.46. However, due to the formation of amorphous MnOx, the surface oxidation active sites for gaseous Hg0 increased, which gave Mn-H-SC higher mercury adsorption efficiency than that of Mn-SC at high temperature.
文摘A process of recovering Ge by chlorinating masting was put forward. GeCl4 was separated and recovered from lignite ash because of its low boiling point. Kinetic analysis indicates that the chlorinating roasting process fits with the unreacted-core shrinking model and the reaction rate equation corresponds to 1 - 2a/3 - (1 - a)2/3 = kt. The apparent activation energy Ea is calculated to be 22.36 kJ·mol^-1. The diffusion of product layer serves as the rate-controlling step in this process. When the roasting temperature is 250℃, the roasting time is 60 min, the con- centration of hydrochloric acid is 10 mol/L, and the ratio of liquid to solid is 10 (mHCl/ash = 10), and 90% Ge in lignite ash can be recovered.
基金Supported by the Key Project of Joint Fund from National Natural Science Foundation of China and the Government of Xinjiang Uygur Autonomous Region(U1503293)the National Key Research and Development Program of China(2018YFB0604602)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Soluble portions(SPs) 1-4(SP1-SP4) were afforded from sequentially dissolution and alkanolyses of Baiyinhua lignite(BL) in cyclohexane,CH3OH,CH3CH2OH,and(CH3)2CHOH at 300℃.They were analyzed with a gas chromatograph/mass spectrometer and quadrupole exactive orbitrap mass spectrometer(QEOTMS) with an atmosphere pressure chemical ionization source in positive-ion mode,while BL was characterized with an X-ray photoelectron spectrometer(XRPES).The results show that the yields of SP2 and SP3 are much higher than those of SP1 and SP4,and the total SP yield is ca.39.0%.According to the analysis with XRPES,pyrrolic nitrogen atoms are the most abundant nitrogen existing forms in BL.Thousands of nitrogen-containing aromatics(NCAs) were resolved with QEOTMS and their molecular masses are mainly in the range of 200-450 u.The main NCAs are N1O1 and N1O2 class species with double bond equivalent values of 4-18 and carbon numbers of 7-30.The nitrogen atoms appear in pyridine s,quinolines,benzoquinolines or acridine,and dibenzoquinolines or naphthoquinolines,while the oxygen atoms exist in methoxy and furan rings.
基金supported by the National Basic Research Program of China(2012CB723105)the National Natural Science Foundation of China(20976117)Shanxi Graduates Excellent Innovation Project of China(tyut-rc201018a)
文摘With lignite after vacuum drying as the raw material,a series of Zn-based sorbents were prepared by static impregnation,ultrasonic-assisted impregnation,bubbling-assisted impregnation and high-pressure impregnation.The physical properties and the desulfurization performances of Zn-based sorbents were studied systematically by XRD,BET,AAS characterization techniques and the fixed-bed desulfurization evaluation apparatus.The sorbents obtained by high-pressure impregnation method have a larger specific surface area,pore volume and pore diameter comparing with other methods,which is conducive to the sulfidation reaction of hydrogen sulfide gas in the sorbent.The effects of pressure during the high-pressure impregnation and concentration of Zn(NO3)2 precursor solution on the sorbents properties and desulfurization behavior were investigated.The higher the impregnation pressure and the concentration of impregnation solution are,the greater the amount of the active components are uploaded.However,overhigh impregnation pressure can cause collapse and blocking of the carrier pore.The optimal operating condition of high-pressure impregnation method for preparing the sorbents was the impregnation pressure of 20 atm and the solution concentration of 41%.Under that condition,the sorbent had the best desulfurization ability with a sulfur capacity of 13.94 gS/100 gsorbent and a breakthrough time of 54 h.Its desulfurization precision and efficiency of removing H2S before sorbent breakthrough from the middle temperature gases of 400℃ can reach【5 ppm and】99%,respectively.Sorbents could be regenerated under the condition of 1 vol%O2,20 vol% H2O,0.5 vol% NH3,and N2balance gas.The regenerated sorbent could be used for repeated absorption of H2S with a slight decrease in desulfurization effect.
基金Project supported by the National Natural Science Foundation of China(21571142)the Developing Science Fund of Tongji University,the Natural Science Foundation of Zhejiang Province(LQ14B010001)the Natural Science Foundation of Ningbo,China(2016A610105)
文摘This review focuses on the recent research progress in the multi-component assembly of luminescent rare earth hybrid materials, which is based on the luminescent rare earth compounds and two or more other building units, including the other photoactive species. It covers the multi-component luminescent rare earth hybrids which was assembled with different(a) organic-inorganic polymeric units,(b)nanoporous units,(c) nanoparticle composites or(d) other developing special units. Finally, future challenges and opportunities in this field are discussed. Herein it mainly focuses on the work of Yan's group in recent years.
基金Projects 50874107 and 50374068 supported by the National Natural Science Foundation of ChinaCPEUKF06-12 by the Foundation of Key Laboratoryof Coal Processing & Efficient Utilization, Ministry of Education of China
文摘Lignite bio-solubilization is a promising technology for converting solid lignite into oil.This study concerns the adsorption of lignite-solubilizing enzymes onto the lignite surface.Adsorption capacity, infrared spectral analysis and driving forces analysis are studied as a way to help understand the bio-solubilization mechanism.The results show that the amount of lignite bio-solubilization is proportional to the amount of adsorbed lignite-solubilizing enzymes.An increase in lignite-solubilizing enzyme adsorption of 10% leads to a 7% increase in lignite bio-solubilization.However, limited amounts of enzymes can be adsorbed by the lignite, thus resulting in low percentages of bio-solubilization.Infrared spectral analysis shows that side chains, such as hy-droxyl and carbonyl, of the lignite structure are the main, and necessary, structures where lignite-solubilizing enzymes attachto the lignite.Furthermore, driving force analysis indicates that the electrostatic force between lignite and enzymes is the main adsorption mechanism.The forces are influenced by solution pH levels, the zeta potential of the lignite and the isoelectric points of the en-zymes.
基金the National Basic Research Program of China (Grant No. 2010CB227001)
文摘Petroleum coke and lignite are two important fossil fuels that have not been widely used in China. Petroleum coke-lignite slurry (PCLS), a mixture of petro- leum coke, lignite, water, and additives, efficiently utilizes the two materials. In this study, we investigate the effects of the proportion (7) of petroleum coke on slurryability, rheo- logical behavior, stability, and increasing temperature characteristics of PCLSs. The results show that the fixed- viscosity solid concentration (COo) increases with increasing 7. The ~Oo of lignite-water slurry (LWS, ~ = 0) is 46.7 %, compared to 71.3 % for the petroleum coke-water slurry (PCWS, c~ --- i00 %), while that of PCLS is in between the two values. The rheological behavior of PCLS perfectly fits the power-law model. The PCWS acts as a dilatant fluid. As decreases, the slurry behaves first as an approximate Newtonian fluid, and then turns into a pseudo-plastic fluid that exhibits shear-thinning behavior. With increasing ct, the rigid sedimentation and water separation ratio (WSR) increase, indicating a decrease in the stability of PCLS. When α is 60-70 %, the result is a high-quality slurry fuel for industrial applications, which has high slurryability (ω0 = 57-60 %), good stability (WSR 〈 2 %), and superior pseudo-plastic behavior (n = 0.9).
基金provided by the Key Project of Joint Fund from National Natural Science Foundation of Chinathe Government of Xinjiang Uygur Autonomous Region (Grant U1503293)+1 种基金Natural Scientific Foundation of China (Grant 21576280)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The extraction residue from Shengli lignite was sequentially dissolved in cyclohexane, benzene, methanol, ethanol, and isopropanol in an autoclave at 320℃ to afford soluble portions(SPs) 1–5(SP_1-SP_5) and the final residue(FR). The total yield of SP_1-SP_5 is ca. 55.1%. The FR was subjected to ruthenium ioncatalyzed oxidation and the resulting products were isolated from the reaction mixture and esterified.Both the esterified products and SP_1-SP_5 were analyzed with a gas chromatograph/mass spectrometer.In total, 342 compounds were identified in SP_1-SP_5. They can be classified into normal alkanes, branched alkanes, alkenes, alkanedienes, arenes, alkanols, methylcycloalkanes, alkenols, alkylbenzenemethanols,arenols, anisol and substituted anisols, polymethyldihydrobenzofurans, arenofurans, dibenzofurans,ethoxymethylbenzenes, aldehydes, ketones, esters, nitrogen-containing organic compounds, sulfurcontaining organic compounds, and other compounds. Among the compounds, arenols are predominant in SP_1 and SP_2 and the main compounds in SP_3, while the main compounds in SP_4 and SP_5 are esters and arenes, respectively. According to the esterified products identified, the products from the FR oxidation can be grouped into non-benzene ring carboxylic acids(NBCAs) and benzenepolycarboxylic acids(BPCAs). The total yield of BPCAs is much higher than that of NBCAs, suggesting that the FR is rich in condensed aromatic moieties.
文摘A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.