Hepatitis B virus remains a major cause of cirrhosis and hepatocellular carcinoma,with genetic polymorphisms and mutations influencing immune responses and disease progression.Nguyen et al present novel findings on sp...Hepatitis B virus remains a major cause of cirrhosis and hepatocellular carcinoma,with genetic polymorphisms and mutations influencing immune responses and disease progression.Nguyen et al present novel findings on specific human leukocyte antigen(HLA)alleles,including rs2856718 of HLA-DQ and rs3077 and rs9277535 of HLA-DP,which may predispose individuals to cirrhosis and liver cancer,based on multi-clustering analysis.Here,we discuss the feasibility of this approach and identify key areas for further investigation,aiming to offer insights for advancing clinical practice and research in liver disease and related cancers.展开更多
BACKGROUND Human leukocyte antigen(HLA)class II molecules are cell surface receptor proteins found on antigen-presenting cells.Polymorphisms and mutations in the HLA gene can affect the immune system and the progressi...BACKGROUND Human leukocyte antigen(HLA)class II molecules are cell surface receptor proteins found on antigen-presenting cells.Polymorphisms and mutations in the HLA gene can affect the immune system and the progression of hepatitis B.AIM To study the relation between rs2856718 of HLA-DQ,rs3077,and rs9277535 of HLA-DP,hepatitis B virus(HBV)-related cirrhosis,and hepatocellular carcinoma(HCC).METHODS In this case-control study,the genotypes of these single nucleotide polymorphisms(SNPs)were screened in 315 healthy controls,471 chronic hepatitis B patients,250 patients with HBV-related liver cirrhosis,and 251 patients with HCC using TaqMan real-time PCR.We conducted Hardy-Weinberg equilibrium and linkage disequilibrium tests on the genotype distributions of rs2856718,rs3077,and rs9277535 before hierarchical clustering analysis to build the complex interaction between the markers in each patient group.RESULTS The physical distance separating these SNPs was 29816 kB with the disequilibrium(D’)values ranging from 0.07 to 0.34.The close linkage between rs3077 and rs9277535 was attributed to a distance of 21 kB.The D’value decreased from moderate in the healthy control group(D’=0.50,P<0.05)to weak in the hepatic disease group(D’<0.3,P<0.05).In a combination of the three variants rs2856718,rs3077,and rs9277535,the A allele decreased hepatic disease risk[A-A-A haplotype,risk ratio(RR)=0.44(0.14;1.37),P<0.05].The G allele had the opposite effect[G-A/G-G haplotype,RR=1.12(1.02;1.23),P<0.05].In liver cancer cases,the A-A-A/G haplotype increased the risk of HCC by 1.58(P<0.05).CONCLUSION Rs9277535 affects liver fibrosis progression due to HBV infection,while rs3077 is associated with a risk of HBVrelated HCC.The link between rs2856718,rs3077,and rs9277535 and disease risk was determined using a multiclustering analysis.展开更多
Shale oil reservoir is generally characterized by well-developed bedding planes,and multi-cluster fracturing is the most effective technique to achieve stable shale oil production.In this paper,a multi-cluster fractur...Shale oil reservoir is generally characterized by well-developed bedding planes,and multi-cluster fracturing is the most effective technique to achieve stable shale oil production.In this paper,a multi-cluster fracturing model for a horizontal well in shale with high-density bedding planes is established.The fracture morphology,fracture geometry,fracturing area and multiple fracture propagation mechanism are analyzed under simultaneous fracturing,sequential fracturing,and alternative fracturing.Results show that in the case of small cluster spacing and three clusters,the growth of the middle fracture is inhibited and develops along the bedding planes under both simultaneous fracturing and alternative fracturing.For sequential fracturing,the increase in the interval time between each fracturing advances the post fracturing fracture deflecting to the pre-existing fractures through the bedding planes.The reactivation of the bedding planes can promote the extension of the fracturing area.Increasing the injection rate and the number of clusters promotes the activation of bedding planes.However,it is preferable to reduce the number of clusters to obtain more main fractures.Compared with modified alternating fracturing and cyclic alternating fracturing,alternating shut-in fracturing creates more main fractures towards the direction of the maximum in-situ stress.The fracturing efficiency for high-density layered shale is ranked as simultaneous fracturing>alternative fracturing>sequential fracturing.展开更多
The Carter model is used to characterize the dynamic behaviors of fracture growth and fracturing fluid leakoff.A thermo-fluid coupling temperature response forward model is built considering the fluid flow and heat tr...The Carter model is used to characterize the dynamic behaviors of fracture growth and fracturing fluid leakoff.A thermo-fluid coupling temperature response forward model is built considering the fluid flow and heat transfer in wellbore,fracture and reservoir.The influences of fracturing parameters and fracture parameters on the responses of distributed temperature sensing(DTS)are analyzed,and a diagnosis method of fracture parameters is presented based on the simulated annealing algorithm.A field case study is introduced to verify the model’s reliability.Typical V-shaped characteristics can be observed from the DTS responses in the multi-cluster fracturing process,with locations corresponding to the hydraulic fractures.The V-shape depth is shallower for a higher injection rate and longer fracturing and shut-in time.Also,the V-shape is wider for a higher fracture-surface leakoff coefficient,longer fracturing time and smaller fracture width.Additionally,the cooling effect near the wellbore continues to spread into the reservoir during the shut-in period,causing the DTS temperature to decrease instead of rise.Real-time monitoring and interpretation of DTS temperature data can help understand the fracture propagation during fracturing operation,so that immediate measures can be taken to improve the fracturing performance.展开更多
The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the...The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the production efficiency of reservoirs by multi-cluster fracturing,it is necessary to consider the unbalanced propagation of hydraulic fractures and the penetration effect of fractures.This paper constructed a numerical model of multi-fracture propagation and penetration based on the finite element coupling cohesive zone method;considering the construction cluster spacing,pump rate,lamina strength and other parameters studied the influencing factors of multi-cluster fracture interaction propagation;combined with AE energy data and fracture mode reconstruction method,quantitatively characterized the comprehensive impact of the strength of thin interlayer rock interfaces on the initiation and propagation of fractures that penetrate layers,and accurately predicted the propagation pattern of hydraulic fractures through laminated shale oil reservoirs.Simulation results revealed that in the process of multi-cluster fracturing,the proportion of shear damage is low,and mainly occurs in bedding fractures activated by outer fractures.Reducing the cluster spacing enhances the fracture system's penetration ability,though it lowers the activation efficiency of lamina.The high plasticity of the limestone interlayer may impact the vertical propagation distance of the main fracture.Improving the interface strength is beneficial to the reconstruction of the fracture height,but the interface communication effect is limited.Reasonable selection of layers with moderate lamina strength for fracturing stimulation,increasing the pump rate during fracturing and setting the cluster spacing reasonably are beneficial to improve the effect of reservoir stimulation.展开更多
This study conducted temporary plugging and diversion fracturing(TPDF)experiments using a true triaxial fracturing simulation system within a laboratory setting that replicated a lab-based horizontal well completion w...This study conducted temporary plugging and diversion fracturing(TPDF)experiments using a true triaxial fracturing simulation system within a laboratory setting that replicated a lab-based horizontal well completion with multi-cluster sand jetting perforation.The effects of temporary plugging agent(TPA)particle size,TPA concentration,single-cluster perforation number and cluster number on plugging pressure,multi-fracture diversion pattern and distribution of TPAs were investigated.A combination of TPAs with small particle sizes within the fracture and large particle sizes within the segment is conducive to increasing the plugging pressure and promoting the diversion of multi-fractures.The addition of fibers can quickly achieve ultra-high pressure,but it may lead to longitudinal fractures extending along the wellbore.The temporary plugging peak pressure increases with an increase in the concentration of the TPA,reaching a peak at a certain concentration,and further increases do not significantly improve the temporary plugging peak pressure.The breaking pressure and temporary plugging peak pressure show a decreasing trend with an increase in single-cluster perforation number.A lower number of single-cluster perforations is beneficial for increasing the breaking pressure and temporary plugging peak pressure,and it has a more significant control on the propagation of multi-cluster fractures.A lower number of clusters is not conducive to increasing the total number and complexity of artificial fractures,while a higher number of clusters makes it difficult to achieve effective plugging.The TPAs within the fracture is mainly concentrated in the complex fracture areas,especially at the intersections of fractures.Meanwhile,the TPAs within the segment are primarily distributed near the perforation cluster apertures which initiated complex fractures.展开更多
Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown a...Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown are influenced by hydraulic fractures,which can reflect the geometric features of hydraulic fracture.The shutdown pressure can be used to interpret the hydraulic fracture parameters in a real-time and cost-effective manner.In this paper,a mathematical model for shutdown pressure evolution is developed considering the effects of wellbore friction,perforation friction and fluid loss in fractures.An efficient numerical simulation method is established by using the method of characteristics.Based on this method,the impacts of fracture half-length,fracture height,opened cluster and perforation number,and filtration coefficient on the evolution of shutdown pressure are analyzed.The results indicate that a larger fracture half-length may hasten the decay of shutdown pressure,while a larger fracture height can slow down the decay of shutdown pressure.A smaller number of opened clusters and perforations can significantly increase the perforation friction and decrease the overall level of shutdown pressure.A larger filtration coefficient may accelerate the fluid filtration in the fracture and hasten the drop of the shutdown pressure.The simulation method of shutdown pressure,as well as the analysis results,has important implications for the interpretation of hydraulic fracture parameters.展开更多
Hepatitis B virus infection remains a significant global health challenge,particularly in endemic regions like Vietnam.This article examines the groundbreaking study by Nguyen et al,which investigates the relationship...Hepatitis B virus infection remains a significant global health challenge,particularly in endemic regions like Vietnam.This article examines the groundbreaking study by Nguyen et al,which investigates the relationship between human leukocyte antigen-DP/DQ polymorphisms and hepatitis B virus-related liver disease progression.Through advanced multi-clustering analysis,the study reveals that the A-A-A haplotype(rs2856718-rs3077-rs9277535)provides protection against disease progression,while the G-G-G haplotype correlates with increased hepatocellular carcinoma susceptibility.The integration of machine learning approaches with genetic data offers promising avenues for refined disease prediction and personalized therapeutic strategies.This article discusses the implications for expanding study populations,implementing longitudinal cohort studies,and leveraging artificial intelligence for improved patient outcomes.展开更多
A flexible sidetracking stimulation technology of horizontal wells is formed to develop the lateral deep remaining oil and gas resources of the low-permeability mature oilfields.This technology first uses the flexible...A flexible sidetracking stimulation technology of horizontal wells is formed to develop the lateral deep remaining oil and gas resources of the low-permeability mature oilfields.This technology first uses the flexible sidetracking tool to achieve low-cost sidetracking in the old wellbore,and then uses the hydraulic jet technology to induce multiple fractures to fracture.Finally,the bullhead fracturing of multi-cluster temporary plugging for the sidetracking hole is carried out by running the tubing string,to realize the efficient development of the remaining reserves among the wells.The flexible sidetracking stimulation technology involves flexible sidetracking horizontal wells drilling and sidetracking horizontal well fracturing.The flexible sidetracking horizontal well drilling includes three aspects:flexible drill pipe structure and material optimization,drilling technology,and sealed coring tool.The sidetracking horizontal well fracturing includes two aspects:fracturing scheme optimization,fracturing tools and implementation process optimization.The technology has been conducted several rounds of field tests in the Ansai Oilfield of Changqing,China.The results show that by changing well type and reducing row spacing of oil and water wells,the pressure displacement system can be well established to achieve effective pressure transmission and to achieve the purpose of increasing liquid production in low-yield and low-efficiency wells.It is verified that the flexible sidetracking stimulation technology can provide favorable support for accurately developing remaining reserves in low-permeability reservoirs.展开更多
Hydraulic fracturing,an effective method for enhancing coal seam productivity,largely determines coalbed methane(CBM)production,which is significantly influenced by geological and engineering factors.This study focuse...Hydraulic fracturing,an effective method for enhancing coal seam productivity,largely determines coalbed methane(CBM)production,which is significantly influenced by geological and engineering factors.This study focuses on the L block to investigate the mechanisms influencing efficient fracture propagation and enhanced stimulated reservoir volume(SRV)in fracturing.To explore the mechanisms influencing effective fracture propagation and enhanced SRV,the L block was selected as the research object,with a comprehensive consideration of geological background,reservoir properties,and dynamic production data.By combining the discrete lattice method with numer-ical analysis and true triaxial experimental simulation,the fracture morphology of a single cluster and the propagation patterns of multiple clusters of complex fractures were obtained.Additionally,the optimization of temporary plugging timing and the fracture map under multiple factors were innovatively proposed.Results indicate that greater flow rate and viscosity can effectively overcome the stress shadow effect of the outermost fractures(1st and 6th clusters),increasing the fracture pressure of the single cluster and the equilibrium degree of multiple fracture propagation,thus forming a more complex fracture network.Moreover,when viscosity exceeds 45 pressure concentrates at fracture mPa⋅s,tips,promoting discontinuous propagation and reducing flow resistance.Conversely,increased gangue thickness and spacing between horizontal wells increase the vertical propagation pressure,suppressing fracture growth and reducing central flow velocity.This study provides a multi-cluster fracture propagation map for optimizing volumetric fracturing in coal seams and suggests that the optimal temporary plugging time significantly enhances the SRV.展开更多
A treelike hybrid multi-cluster tool is composed of both single-arm and dual-arm cluster tools with a treelike topology. Scheduling such a tool is challenging. For a hybrid treelike multi-cluster tool whose bottleneck...A treelike hybrid multi-cluster tool is composed of both single-arm and dual-arm cluster tools with a treelike topology. Scheduling such a tool is challenging. For a hybrid treelike multi-cluster tool whose bottleneck individual tool is process-bound, this work aims at finding its optimal one-wafer cyclic schedule. It is modeled with Petri nets such that a onewafer cyclic schedule is parameterized as its robots' waiting time.Based on the model, this work proves the existence of its onewafer cyclic schedule that features with the ease of industrial implementation. Then, computationally efficient algorithms are proposed to find the minimal cycle time and optimal onewafer cyclic schedule. Multi-cluster tool examples are given to illustrate the proposed approach. The use of the found schedules enables industrial multi-cluster tools to operate with their highest productivity.展开更多
Multi-cluster tools are widely used in majority of wafer fabrication processes in semiconductor industry. Smaller lot production, thinner circuit width in wafers, larger wafer size, and maintenance have resulted in a ...Multi-cluster tools are widely used in majority of wafer fabrication processes in semiconductor industry. Smaller lot production, thinner circuit width in wafers, larger wafer size, and maintenance have resulted in a large quantity of their start-up and close-down transient periods. Yet, most of existing efforts have been concentrated on scheduling their steady states.Different from such efforts, this work schedules their transient and steady-state periods subject to wafer residency constraints. It gives the schedulability conditions for the steady-state scheduling of dual-blade robotic multi-cluster tools and a corresponding algorithm for finding an optimal schedule. Based on the robot synchronization conditions, a linear program is proposed to figure out an optimal schedule for a start-up period, which ensures a tool to enter the desired optimal steady state. Another linear program is proposed to find an optimal schedule for a closedown period that evolves from the steady state period. Finally,industrial cases are presented to illustrate how the provided method outperforms the existing approach in terms of system throughput improvement.展开更多
As wafer circuit widths shrink less than 10 nm,stringent quality control is imposed on the wafer fabrication processes. Therefore, wafer residency time constraints and chamber cleaning operations are widely required i...As wafer circuit widths shrink less than 10 nm,stringent quality control is imposed on the wafer fabrication processes. Therefore, wafer residency time constraints and chamber cleaning operations are widely required in chemical vapor deposition, coating processes, etc. They increase scheduling complexity in cluster tools. In this paper, we focus on scheduling single-arm multi-cluster tools with chamber cleaning operations subject to wafer residency time constraints. When a chamber is being cleaned, it can be viewed as processing a virtual wafer. In this way, chamber cleaning operations can be performed while wafer residency time constraints for real wafers are not violated. Based on such a method, we present the necessary and sufficient conditions to analytically check whether a single-arm multi-cluster tool can be scheduled with a chamber cleaning operation and wafer residency time constraints. An algorithm is proposed to adjust the cycle time for a cleaning operation that lasts a long cleaning time.Meanwhile, algorithms for a feasible schedule are also derived.And an algorithm is presented for operating a multi-cluster tool back to a steady state after the cleaning. Illustrative examples are given to show the application and effectiveness of the proposed method.展开更多
Geological exploration cores obtained from shale gas wells several kilometers deep often show different height-diameter ratios(H/D)because of complex geological conditions(core disking or developed fractures),which ma...Geological exploration cores obtained from shale gas wells several kilometers deep often show different height-diameter ratios(H/D)because of complex geological conditions(core disking or developed fractures),which makes further standard specimen preparation for mechanical evaluation of reservoirs difficult.In multi-cluster hydraulic fracturing,shale reservoirs between planes of hydraulic fractures with different lengths could be simplified to have different H/D ratios.Discovering the effect of H/D on the mechanical characteristics of shale specimens with different bedding orientations will support mechanical evaluation tests of reservoirs based on disked geological cores and help to optimize multicluster fracturing programs.In this study,we performed uniaxial compression tests and acoustic emission(AE)monitoring on cylindrical Longmaxi shale specimens under five bedding orientations and four H/D ratios.The experimental results showed that both the H/D-dependent mechanical properties and AE parameters demonstrated significant anisotropy.Increasing H/D did not change the uniaxial compressive strength(UCS)evolution versus bedding orientation,demonstrating a V-shaped relationship,but enhanced the curve shape.The stress level of crack damage for the specimens significantly increased with increasing H/D,excluding the specimens with a bedding orientation of 0°.With increasing H/D,the cumulative AE counts of the specimens with each bedding orientation tended to exhibit a stepped jump against the loading time.The proportion of low-average-frequency AE signals(below 100 kHz)in specimens with bedding orientations of 45°and 60°increased to over 70%by increasing H/D,but it only increased to 40%in specimens with bedding orientations of 0°,30°,and 90°.Finally,an empirical model that can reveal the effect of H/D on anisotropic UCS of shale reservoir was proposed,the anisotropic proportion of tensile and shear failure cracks in specimens under four H/D ratios was classified based on the AE data,and the effect of H/D on the anisotropic crack growth of specimens was discussed.展开更多
Intra-stage multi-cluster temporary plugging and diverting fracturing(ITPF)is one of the fastest-growing techniques to obtain uniform reservoir stimulation in shale gas reservoirs.However,propagation geometries of mul...Intra-stage multi-cluster temporary plugging and diverting fracturing(ITPF)is one of the fastest-growing techniques to obtain uniform reservoir stimulation in shale gas reservoirs.However,propagation geometries of multiple fractures during ITPF are not clear due that the existing numerical models cannot capture the effects of perforation plugging.In this paper,a new three-dimensional FEM based on CZM was developed to investigate multiple planar fracture propagation considering perforation plugging during ITPF.Meanwhile,the fluid pipe element and its subroutine were first developed to realize the flux partitioning before or after perforation plugging.The results showed that the perforation plugging changed the original distribution of the number of perforations in each fracture,thus changing the flux partitioning after perforation plugging,which could eliminate the effect of stress interference between multiple fractures and promote a uniform fluid distribution.The standard deviation of fluid distribution in the perforation plugging case was only 8.48%of that in the non-diversion case.Furthermore,critical plugging parameters have been investigated quantitatively.Specifically,injecting more diverters will create a higher fluid pressure rise in the wellbore,which will increase the risk of wellbore integrity.Comprehensively considering pressure rise and fluid distribution,the number of diverters should be 50%of the total number of perforations(N_(pt)),whose standard deviation of fluid distribution of multiple fractures was lower than those in the cases of injecting 10%N_(pt),30%N_(pt)and 70%N_(pt).The diverters should be injected at an appropriate timing,i.e.40%or 50%of the total fracturing time(tft),whose standard deviation of the fluid distribution was only about 20%of standard deviations in the cases of injecting at20%tftor 70%tft.A single injection with all diverters can maintain high bottom-hole pressure for a longer period and promote a more uniform fluid distribution.The standard deviation of the fluid distribution in the case of a single injection was 43.62%-55.41%of the other cases with multiple injection times.This study provides a meaningful perspective and some optimal plugging parameters on the field design during IPTF.展开更多
Refracturing is an importa nt technique to tap the potential of reservoirs and boost production in depleted oil and gas fields.However,fracture propagation during refracturing,including both conventional refracturing ...Refracturing is an importa nt technique to tap the potential of reservoirs and boost production in depleted oil and gas fields.However,fracture propagation during refracturing,including both conventional refracturing and temporary-plugging refracturing remains poorly understood,especially for cases with non-uniform distribution of formation pressure due to long-term oil production and water injection.Therefore,taking pilot tests of refracturing with sidetracking horizontal wells in tight reservoirs in the Changqing Oilfield,China as an example,we establish a three-dimensional numerical model of conventional refracturing and a numerical model of temporary-plugging refracturing based on the discrete lattice method.Non-uniform distributions of formation pressure are imported in these models.We discuss the effects of key operating parameters such as injection rate,cluster spacing,and number of clusters on the propagation of multi-cluster fractures for conventional refracturing.For temporaryplugging refracturing,we examine the impacts of controlling factors such as the timing and number of temporary plugging on fracture propagation.In addition,we analyze a field case of temporaryplugging refracturing using well P3 in the Changqing Oilfield.The results show that fractures during re fracturing tend to propagate preferentially and dominantly in the depleted areas.Improved stimulation effect can be obtained with an optimal injection rate and a critical cluster spacing.The proposed model of temporary-plugging refracturing can well describe the temporary plugging of dominant existingfractures and the creation of new-fractures after fracturing fluid is forced to divert into other clusters from previous dominant clusters.Multiple temporary plugging can improve the balanced propagation of multi-cluster fractures and obtain the maximum fracture area.The established numerical model and research results provide theoretical guidance for the design and optimization of key operating parameters for refracturing,especially for temporary-plugging refracturing.展开更多
To deal with the stress interference caused by simultaneous propagation of multiple fractures and the wettability reversal and physical property changes of the reservoir caused by fracturing fluid getting in during la...To deal with the stress interference caused by simultaneous propagation of multiple fractures and the wettability reversal and physical property changes of the reservoir caused by fracturing fluid getting in during large-volume fracturing of tight oil reservoirs through a horizontal well, a non-planar 3D fracture growth model was built, wettability reversal characterizing parameters and change of relative permeability curve were introduced to correct the production prediction model of fractured horizontal well, a fracturing design optimization software(Fr Smart) by integrating geological and engineering data was developed, and a fracturing design optimization approach for tight oil reservoirs based on fracture control was worked out. The adaptability of the method was analyzed and the fracture parameters of horizontal wells in tight oil reservoirs were optimized. The simulation results show that fracturing technology based on fracture control is suitable for tight oil reservoirs, and by optimizing fracture parameters, this technology makes it possible to produce the maximum amount of reserves in the well-controlled unit of unconventional reservoirs. The key points of fracturing design optimization based on fracture control include increasing lateral length of and reducing the row spacing between horizontal wells, increasing perforation clusters in one stage to decrease the spacing of neighboring fractures, and also avoiding interference of old and new fracturing wells. Field tests show that this technology can increase single well production and ultimate recovery. Using this technology in developing unconventional resources such as tight oil reservoirs in China will enhance the economics significantly.展开更多
When deep and ultra-deep shale gas well fracturing is carried out,multi-cluster fracturing can hardly realize synchronous initiation and propagation of hydraulic fractures due to the combined effects of heterogeneity ...When deep and ultra-deep shale gas well fracturing is carried out,multi-cluster fracturing can hardly realize synchronous initiation and propagation of hydraulic fractures due to the combined effects of heterogeneity of deep in-situ stress and"dense cluster"fracture arrangement,and the strong interference between fractures aggravates the unbalanced fracture propagation degree.Field practice proves that the fracture-opening temporary plugging fracturing technology can effectively control the unbalanced propagation of multiple fractures.In addition,the application effect of temporary plugging process can be improved by developing a method for simulating fracture control during fracture-opening temporary plugging fracturing of deep/ultra-deep shale-gas horizontal wells.Based on rock mechanics,elasticity mechanics,fluid mechanics and fracture propagation theory,combined with the flow distribution equation of horizontal-well multi-cluster fracturing and the plugging equation of temporary plugging balls,this paper establishes a fracture propagation model and a fracture control simulation method for the fracture-opening temporary plugging fracturing of deep/ultra-deep shale gas horizontal wells.Then,the influences of the number of temporary plugging balls and the times and timing of temporary plugging on temporary plugging control are simulated,and the influences of temporary plugging balls on fracture propagation morphology and SRV(stimulated reservoir volume)distribution are analyzed by taking Sinopec's one deep shale gas well in Dingshan-Dongxi structure of southeast Sichuan Basin as an example.And the following research results are obtained.First,fracture-opening temporary plugging can significantly promote the balanced propagation of multiple fractures,and the simulation confirms that the number of temporary plugging balls and the times and timing of temporary plugging play an important role in fracture control.Second,as the number of temporary plugging balls increase,the SRV increases firstly and then decreases,so there is an optimal number of temporary plugging balls.Third,increasing the times of temporary plugging can improve the fault tolerance rate of temporary plugging and diverting process,but it is necessary to increase the number of temporary plugging balls appropriately.Fourth,when the timing of temporary plugging is appropriate,the balanced propagation of multiple fractures is achieved and the maximum SRV is reached.In conclusion,this method is of great significance to optimizing the design of temporary plugging fracturing,improve the implementation level of field process and develop deep and ultra-deep shale gas efficiently.展开更多
In order to solve the difficulties in the volume fracturing stimulation of Middle Jurassic Shaximiao Formation tight sandstone reservoirs in the Qiulin Block of Central Sichuan Basin and explore the adaptability of hi...In order to solve the difficulties in the volume fracturing stimulation of Middle Jurassic Shaximiao Formation tight sandstone reservoirs in the Qiulin Block of Central Sichuan Basin and explore the adaptability of high-intensity volumefracturing technology,we selected the outcrop samples of Shaximiao Formation tight sandstone in the Qiulin Block to carry out the physical simulation experiment of true triaxial hydraulic fracturing.On this basis,horizontal well cluster perforation was optimally designed by using the production predictionmodel of staged multi-cluster fracturing horizontal wells.Then,based on the liquid control and proppant increase mode,three rounds of pilot tests were carried out on the tight sandstone reservoirs in this area.Andthe following research resultswere obtained.First,natural fractures in the ShaximiaoFormation tight sandstone reservoir of theQiulin Block are undeveloped,and hydraulic fractures are morphologically dominated by symmetric double-wing fractures,so complex fracture networks can be hardly formed.In addition,the reservoir is of medium to strong water sensitivity,so conventional volume fracturing is not adaptive to the reservoir stimulation in this block.Second,the connotation of high-intensity volume fracturing technology is to carry out multi-cluster perforation in each section to form multiple independent double-wing fractures and to implement the proppant injection mode of liquid control and proppant increase to reduce the inflowfluid while ensuring the high-intensity proppant injection,so as to reduce the damage of inflowfluid to the formation.Third,there are 10 fracturing sections inWell Qiulin 207-5-H2,with 7-12 clusters in each section,and the displacement is in the range of 16-18m^(3)/min.According to the fluid control and proppant increase mode,12146 m^(3) slick water and 4170 t proppant are injected in total.The tested production rate and absolute open flow of natural gas after the fracturing are up to 83.88×10^(4)m^(3)/d and 214.05×10^(4)m^(3)/d,respectively.Fourth,with the decrease of cluster spacing,the cumulative gas production increases gradually,but when the cluster spacing is less than 15 m,the increase amplitude of cumulative gas production decreases.Fifth,when the proppant injection intensity is lower than 6 t/m,the tested gas production per kilometer of stimulated section ina horizontal well overall presents an increasing trend with the increase of proppant injection intensity.When the proppant injection intensity is higher than 6 t/m,however,the tested gas production per kilometer of stimulated section does not increase significantly with the increase of proppant injection intensity.Sixth,as the included angle between the borehole trajectory and the direction ofmaximumhorizontal principal stress increases,the tested gas production per kilometer of stimulated section overall presents an increasing trend.When the hydraulic fracture is nearly perpendicular to the borehole,the effective drainage area is the largest and the tested gas production per kilometer of stimulated section is also the highest.In conclusion,the fracturing mode of high production well has a borehole trajectory of large included angle,perforation cluster spacing of 10 m or so,proppant injection intensity of 5 t/m and large-displacement slick water+continuous injection of combined particle size proppant.展开更多
With the deep development of tight sand gas reservoirs,problems such as short stable production period and quick production decline of gas wells after fracturing have become increasingly prominent.Consequently,there i...With the deep development of tight sand gas reservoirs,problems such as short stable production period and quick production decline of gas wells after fracturing have become increasingly prominent.Consequently,there is an increasing demand for the effective penetration and conductivity of artificial fractures.Impulse sand fracturing technology introduces a concept of discrete multilayer sanding inside fractures;joint application of pulse blender which can be switched at high frequency,intensive multi-cluster perforation and special fibrous material made it possible to ensure the flow stability of proppant slug,and placement of nonuniformly-laid sand pinnacles and grooves,which markedly upgraded the capacity of the fracture conductivity to several orders of magnitude more than the conventional method.Laboratory engineering simulation evaluation and field test show that pre-fracturing reservoir evaluation,pulse time design and the optimization of degradable fiber and support equipment are the keys to the success of impulse sand fracturing.Compared with the conventional fracturing,this technique can effectively increase well production,decrease the volume of fracturing proppant,and lower sand plugging risks.An independent sand fracturing pilot test has been conducted in 6 layers of 3 wells for the first time in Block Tao 7 of the Sulige Gasfield,Ordos Basin,as a result,the average volume of fracturing proppant dropped by 28.3%,the average sand intensity dropped by 21.88%,and the post-fracturing average daily gas output increased by 26.8%.This technology provides an efficient and environmentally friendly reservoir stimulation option for tight sand gas reservoirs in China.展开更多
基金Supported by National Natural Science Foundation of China,No.32270768,No.82273970,No.32070726,and No.82370715National Key R&D Program of China,No.2023YFC2507904the Innovation Group Project of Hubei Province,No.2023AFA026.
文摘Hepatitis B virus remains a major cause of cirrhosis and hepatocellular carcinoma,with genetic polymorphisms and mutations influencing immune responses and disease progression.Nguyen et al present novel findings on specific human leukocyte antigen(HLA)alleles,including rs2856718 of HLA-DQ and rs3077 and rs9277535 of HLA-DP,which may predispose individuals to cirrhosis and liver cancer,based on multi-clustering analysis.Here,we discuss the feasibility of this approach and identify key areas for further investigation,aiming to offer insights for advancing clinical practice and research in liver disease and related cancers.
基金Supported by National Foundation for Science and Technology Development(NAFOSTED)-Ministry of Science and Technology,Viet Nam,No.108.02-2019.307.
文摘BACKGROUND Human leukocyte antigen(HLA)class II molecules are cell surface receptor proteins found on antigen-presenting cells.Polymorphisms and mutations in the HLA gene can affect the immune system and the progression of hepatitis B.AIM To study the relation between rs2856718 of HLA-DQ,rs3077,and rs9277535 of HLA-DP,hepatitis B virus(HBV)-related cirrhosis,and hepatocellular carcinoma(HCC).METHODS In this case-control study,the genotypes of these single nucleotide polymorphisms(SNPs)were screened in 315 healthy controls,471 chronic hepatitis B patients,250 patients with HBV-related liver cirrhosis,and 251 patients with HCC using TaqMan real-time PCR.We conducted Hardy-Weinberg equilibrium and linkage disequilibrium tests on the genotype distributions of rs2856718,rs3077,and rs9277535 before hierarchical clustering analysis to build the complex interaction between the markers in each patient group.RESULTS The physical distance separating these SNPs was 29816 kB with the disequilibrium(D’)values ranging from 0.07 to 0.34.The close linkage between rs3077 and rs9277535 was attributed to a distance of 21 kB.The D’value decreased from moderate in the healthy control group(D’=0.50,P<0.05)to weak in the hepatic disease group(D’<0.3,P<0.05).In a combination of the three variants rs2856718,rs3077,and rs9277535,the A allele decreased hepatic disease risk[A-A-A haplotype,risk ratio(RR)=0.44(0.14;1.37),P<0.05].The G allele had the opposite effect[G-A/G-G haplotype,RR=1.12(1.02;1.23),P<0.05].In liver cancer cases,the A-A-A/G haplotype increased the risk of HCC by 1.58(P<0.05).CONCLUSION Rs9277535 affects liver fibrosis progression due to HBV infection,while rs3077 is associated with a risk of HBVrelated HCC.The link between rs2856718,rs3077,and rs9277535 and disease risk was determined using a multiclustering analysis.
基金the financial support from Intergovernmental International Science and Technology Innovation Cooperation Key Project(2022YFE0128400)National Natural Science Foundation of China(42307209)+2 种基金Shanghai Pujiang Program(2022PJD076)State Energy Center for Shale Oil Research and Development(33550000-22-ZC0613-0365)Natural Science Foundation of Qinghai Province(No.2024-ZJ-717).
文摘Shale oil reservoir is generally characterized by well-developed bedding planes,and multi-cluster fracturing is the most effective technique to achieve stable shale oil production.In this paper,a multi-cluster fracturing model for a horizontal well in shale with high-density bedding planes is established.The fracture morphology,fracture geometry,fracturing area and multiple fracture propagation mechanism are analyzed under simultaneous fracturing,sequential fracturing,and alternative fracturing.Results show that in the case of small cluster spacing and three clusters,the growth of the middle fracture is inhibited and develops along the bedding planes under both simultaneous fracturing and alternative fracturing.For sequential fracturing,the increase in the interval time between each fracturing advances the post fracturing fracture deflecting to the pre-existing fractures through the bedding planes.The reactivation of the bedding planes can promote the extension of the fracturing area.Increasing the injection rate and the number of clusters promotes the activation of bedding planes.However,it is preferable to reduce the number of clusters to obtain more main fractures.Compared with modified alternating fracturing and cyclic alternating fracturing,alternating shut-in fracturing creates more main fractures towards the direction of the maximum in-situ stress.The fracturing efficiency for high-density layered shale is ranked as simultaneous fracturing>alternative fracturing>sequential fracturing.
基金Supported by the National High-Tech Research Project(GJSCB-HFGDY-2024-004)National Natural Science Foundation of China(12402305)+2 种基金Postdoctoral Fellowship Program of CPSF(GZC20232200)China Postdoctoral Science Foundation(2024M762703)Sichuan Science and Technology Program(2025ZNSFSC1352)。
文摘The Carter model is used to characterize the dynamic behaviors of fracture growth and fracturing fluid leakoff.A thermo-fluid coupling temperature response forward model is built considering the fluid flow and heat transfer in wellbore,fracture and reservoir.The influences of fracturing parameters and fracture parameters on the responses of distributed temperature sensing(DTS)are analyzed,and a diagnosis method of fracture parameters is presented based on the simulated annealing algorithm.A field case study is introduced to verify the model’s reliability.Typical V-shaped characteristics can be observed from the DTS responses in the multi-cluster fracturing process,with locations corresponding to the hydraulic fractures.The V-shape depth is shallower for a higher injection rate and longer fracturing and shut-in time.Also,the V-shape is wider for a higher fracture-surface leakoff coefficient,longer fracturing time and smaller fracture width.Additionally,the cooling effect near the wellbore continues to spread into the reservoir during the shut-in period,causing the DTS temperature to decrease instead of rise.Real-time monitoring and interpretation of DTS temperature data can help understand the fracture propagation during fracturing operation,so that immediate measures can be taken to improve the fracturing performance.
基金financial support by the National Key Research and Development Program of China (No.2022YFE0129800)the National Natural Science Foundation of China (No.52074311)。
文摘The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the production efficiency of reservoirs by multi-cluster fracturing,it is necessary to consider the unbalanced propagation of hydraulic fractures and the penetration effect of fractures.This paper constructed a numerical model of multi-fracture propagation and penetration based on the finite element coupling cohesive zone method;considering the construction cluster spacing,pump rate,lamina strength and other parameters studied the influencing factors of multi-cluster fracture interaction propagation;combined with AE energy data and fracture mode reconstruction method,quantitatively characterized the comprehensive impact of the strength of thin interlayer rock interfaces on the initiation and propagation of fractures that penetrate layers,and accurately predicted the propagation pattern of hydraulic fractures through laminated shale oil reservoirs.Simulation results revealed that in the process of multi-cluster fracturing,the proportion of shear damage is low,and mainly occurs in bedding fractures activated by outer fractures.Reducing the cluster spacing enhances the fracture system's penetration ability,though it lowers the activation efficiency of lamina.The high plasticity of the limestone interlayer may impact the vertical propagation distance of the main fracture.Improving the interface strength is beneficial to the reconstruction of the fracture height,but the interface communication effect is limited.Reasonable selection of layers with moderate lamina strength for fracturing stimulation,increasing the pump rate during fracturing and setting the cluster spacing reasonably are beneficial to improve the effect of reservoir stimulation.
基金Supported by the National Natural Science Foundation of China(51974332).
文摘This study conducted temporary plugging and diversion fracturing(TPDF)experiments using a true triaxial fracturing simulation system within a laboratory setting that replicated a lab-based horizontal well completion with multi-cluster sand jetting perforation.The effects of temporary plugging agent(TPA)particle size,TPA concentration,single-cluster perforation number and cluster number on plugging pressure,multi-fracture diversion pattern and distribution of TPAs were investigated.A combination of TPAs with small particle sizes within the fracture and large particle sizes within the segment is conducive to increasing the plugging pressure and promoting the diversion of multi-fractures.The addition of fibers can quickly achieve ultra-high pressure,but it may lead to longitudinal fractures extending along the wellbore.The temporary plugging peak pressure increases with an increase in the concentration of the TPA,reaching a peak at a certain concentration,and further increases do not significantly improve the temporary plugging peak pressure.The breaking pressure and temporary plugging peak pressure show a decreasing trend with an increase in single-cluster perforation number.A lower number of single-cluster perforations is beneficial for increasing the breaking pressure and temporary plugging peak pressure,and it has a more significant control on the propagation of multi-cluster fractures.A lower number of clusters is not conducive to increasing the total number and complexity of artificial fractures,while a higher number of clusters makes it difficult to achieve effective plugging.The TPAs within the fracture is mainly concentrated in the complex fracture areas,especially at the intersections of fractures.Meanwhile,the TPAs within the segment are primarily distributed near the perforation cluster apertures which initiated complex fractures.
基金The work is supported by the Sub-Project of“Research on Key Technologies and Equipment of Reservoir Stimulation”of China National Petroleum Corporation Post–14th Five-Year Plan Forward-Looking Major Science and Technology Project“Research on New Technology of Monitoring and Diagnosis of Horizontal Well Hydraulic Fracture Network Distribution Pattern”(2021DJ4502).
文摘Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown are influenced by hydraulic fractures,which can reflect the geometric features of hydraulic fracture.The shutdown pressure can be used to interpret the hydraulic fracture parameters in a real-time and cost-effective manner.In this paper,a mathematical model for shutdown pressure evolution is developed considering the effects of wellbore friction,perforation friction and fluid loss in fractures.An efficient numerical simulation method is established by using the method of characteristics.Based on this method,the impacts of fracture half-length,fracture height,opened cluster and perforation number,and filtration coefficient on the evolution of shutdown pressure are analyzed.The results indicate that a larger fracture half-length may hasten the decay of shutdown pressure,while a larger fracture height can slow down the decay of shutdown pressure.A smaller number of opened clusters and perforations can significantly increase the perforation friction and decrease the overall level of shutdown pressure.A larger filtration coefficient may accelerate the fluid filtration in the fracture and hasten the drop of the shutdown pressure.The simulation method of shutdown pressure,as well as the analysis results,has important implications for the interpretation of hydraulic fracture parameters.
基金Supported by National Natural Science Foundation of China,No.82170406 and No.81970238.
文摘Hepatitis B virus infection remains a significant global health challenge,particularly in endemic regions like Vietnam.This article examines the groundbreaking study by Nguyen et al,which investigates the relationship between human leukocyte antigen-DP/DQ polymorphisms and hepatitis B virus-related liver disease progression.Through advanced multi-clustering analysis,the study reveals that the A-A-A haplotype(rs2856718-rs3077-rs9277535)provides protection against disease progression,while the G-G-G haplotype correlates with increased hepatocellular carcinoma susceptibility.The integration of machine learning approaches with genetic data offers promising avenues for refined disease prediction and personalized therapeutic strategies.This article discusses the implications for expanding study populations,implementing longitudinal cohort studies,and leveraging artificial intelligence for improved patient outcomes.
基金Supported by the National Key Research and Development Program of China(2023YFF0615403)CNPC Science and Technology Project(2023ZZ0803).
文摘A flexible sidetracking stimulation technology of horizontal wells is formed to develop the lateral deep remaining oil and gas resources of the low-permeability mature oilfields.This technology first uses the flexible sidetracking tool to achieve low-cost sidetracking in the old wellbore,and then uses the hydraulic jet technology to induce multiple fractures to fracture.Finally,the bullhead fracturing of multi-cluster temporary plugging for the sidetracking hole is carried out by running the tubing string,to realize the efficient development of the remaining reserves among the wells.The flexible sidetracking stimulation technology involves flexible sidetracking horizontal wells drilling and sidetracking horizontal well fracturing.The flexible sidetracking horizontal well drilling includes three aspects:flexible drill pipe structure and material optimization,drilling technology,and sealed coring tool.The sidetracking horizontal well fracturing includes two aspects:fracturing scheme optimization,fracturing tools and implementation process optimization.The technology has been conducted several rounds of field tests in the Ansai Oilfield of Changqing,China.The results show that by changing well type and reducing row spacing of oil and water wells,the pressure displacement system can be well established to achieve effective pressure transmission and to achieve the purpose of increasing liquid production in low-yield and low-efficiency wells.It is verified that the flexible sidetracking stimulation technology can provide favorable support for accurately developing remaining reserves in low-permeability reservoirs.
基金the project of the State Key Laboratory of Petroleum Resources and Engineering(No.PRE/open-2307)the CNOOC Research Institute(No.2020PFS-03).
文摘Hydraulic fracturing,an effective method for enhancing coal seam productivity,largely determines coalbed methane(CBM)production,which is significantly influenced by geological and engineering factors.This study focuses on the L block to investigate the mechanisms influencing efficient fracture propagation and enhanced stimulated reservoir volume(SRV)in fracturing.To explore the mechanisms influencing effective fracture propagation and enhanced SRV,the L block was selected as the research object,with a comprehensive consideration of geological background,reservoir properties,and dynamic production data.By combining the discrete lattice method with numer-ical analysis and true triaxial experimental simulation,the fracture morphology of a single cluster and the propagation patterns of multiple clusters of complex fractures were obtained.Additionally,the optimization of temporary plugging timing and the fracture map under multiple factors were innovatively proposed.Results indicate that greater flow rate and viscosity can effectively overcome the stress shadow effect of the outermost fractures(1st and 6th clusters),increasing the fracture pressure of the single cluster and the equilibrium degree of multiple fracture propagation,thus forming a more complex fracture network.Moreover,when viscosity exceeds 45 pressure concentrates at fracture mPa⋅s,tips,promoting discontinuous propagation and reducing flow resistance.Conversely,increased gangue thickness and spacing between horizontal wells increase the vertical propagation pressure,suppressing fracture growth and reducing central flow velocity.This study provides a multi-cluster fracture propagation map for optimizing volumetric fracturing in coal seams and suggests that the optimal temporary plugging time significantly enhances the SRV.
基金supported in part by Science and Technology Development Fund(FDCT)of Macao(106/2016/A3)the National Natural Science Foundation of China(U1401240)the Delta Electronics Inc and the National Research Foundation(NRF)Singapore under the Corp Lab@University Scheme
文摘A treelike hybrid multi-cluster tool is composed of both single-arm and dual-arm cluster tools with a treelike topology. Scheduling such a tool is challenging. For a hybrid treelike multi-cluster tool whose bottleneck individual tool is process-bound, this work aims at finding its optimal one-wafer cyclic schedule. It is modeled with Petri nets such that a onewafer cyclic schedule is parameterized as its robots' waiting time.Based on the model, this work proves the existence of its onewafer cyclic schedule that features with the ease of industrial implementation. Then, computationally efficient algorithms are proposed to find the minimal cycle time and optimal onewafer cyclic schedule. Multi-cluster tool examples are given to illustrate the proposed approach. The use of the found schedules enables industrial multi-cluster tools to operate with their highest productivity.
基金the National Natural Science Foundation of China(61673123,61803397)the Science and Technology Development Fund(FDCT)of Macao(106/2016/A3,005/2018/A1,011/2017/A,0017/2019/A1)
文摘Multi-cluster tools are widely used in majority of wafer fabrication processes in semiconductor industry. Smaller lot production, thinner circuit width in wafers, larger wafer size, and maintenance have resulted in a large quantity of their start-up and close-down transient periods. Yet, most of existing efforts have been concentrated on scheduling their steady states.Different from such efforts, this work schedules their transient and steady-state periods subject to wafer residency constraints. It gives the schedulability conditions for the steady-state scheduling of dual-blade robotic multi-cluster tools and a corresponding algorithm for finding an optimal schedule. Based on the robot synchronization conditions, a linear program is proposed to figure out an optimal schedule for a start-up period, which ensures a tool to enter the desired optimal steady state. Another linear program is proposed to find an optimal schedule for a closedown period that evolves from the steady state period. Finally,industrial cases are presented to illustrate how the provided method outperforms the existing approach in terms of system throughput improvement.
基金supported in part by the Natural Science Foundation of Guangdong Province,China (2022A1515011310)。
文摘As wafer circuit widths shrink less than 10 nm,stringent quality control is imposed on the wafer fabrication processes. Therefore, wafer residency time constraints and chamber cleaning operations are widely required in chemical vapor deposition, coating processes, etc. They increase scheduling complexity in cluster tools. In this paper, we focus on scheduling single-arm multi-cluster tools with chamber cleaning operations subject to wafer residency time constraints. When a chamber is being cleaned, it can be viewed as processing a virtual wafer. In this way, chamber cleaning operations can be performed while wafer residency time constraints for real wafers are not violated. Based on such a method, we present the necessary and sufficient conditions to analytically check whether a single-arm multi-cluster tool can be scheduled with a chamber cleaning operation and wafer residency time constraints. An algorithm is proposed to adjust the cycle time for a cleaning operation that lasts a long cleaning time.Meanwhile, algorithms for a feasible schedule are also derived.And an algorithm is presented for operating a multi-cluster tool back to a steady state after the cleaning. Illustrative examples are given to show the application and effectiveness of the proposed method.
基金funded by the National Natural Science Foundation of China(Grant Nos.51927808,52174098 and 52374151).
文摘Geological exploration cores obtained from shale gas wells several kilometers deep often show different height-diameter ratios(H/D)because of complex geological conditions(core disking or developed fractures),which makes further standard specimen preparation for mechanical evaluation of reservoirs difficult.In multi-cluster hydraulic fracturing,shale reservoirs between planes of hydraulic fractures with different lengths could be simplified to have different H/D ratios.Discovering the effect of H/D on the mechanical characteristics of shale specimens with different bedding orientations will support mechanical evaluation tests of reservoirs based on disked geological cores and help to optimize multicluster fracturing programs.In this study,we performed uniaxial compression tests and acoustic emission(AE)monitoring on cylindrical Longmaxi shale specimens under five bedding orientations and four H/D ratios.The experimental results showed that both the H/D-dependent mechanical properties and AE parameters demonstrated significant anisotropy.Increasing H/D did not change the uniaxial compressive strength(UCS)evolution versus bedding orientation,demonstrating a V-shaped relationship,but enhanced the curve shape.The stress level of crack damage for the specimens significantly increased with increasing H/D,excluding the specimens with a bedding orientation of 0°.With increasing H/D,the cumulative AE counts of the specimens with each bedding orientation tended to exhibit a stepped jump against the loading time.The proportion of low-average-frequency AE signals(below 100 kHz)in specimens with bedding orientations of 45°and 60°increased to over 70%by increasing H/D,but it only increased to 40%in specimens with bedding orientations of 0°,30°,and 90°.Finally,an empirical model that can reveal the effect of H/D on anisotropic UCS of shale reservoir was proposed,the anisotropic proportion of tensile and shear failure cracks in specimens under four H/D ratios was classified based on the AE data,and the effect of H/D on the anisotropic crack growth of specimens was discussed.
基金financially supported by the National Natural Science Foundation of China(No.52174045,No.52104011)Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01B77)。
文摘Intra-stage multi-cluster temporary plugging and diverting fracturing(ITPF)is one of the fastest-growing techniques to obtain uniform reservoir stimulation in shale gas reservoirs.However,propagation geometries of multiple fractures during ITPF are not clear due that the existing numerical models cannot capture the effects of perforation plugging.In this paper,a new three-dimensional FEM based on CZM was developed to investigate multiple planar fracture propagation considering perforation plugging during ITPF.Meanwhile,the fluid pipe element and its subroutine were first developed to realize the flux partitioning before or after perforation plugging.The results showed that the perforation plugging changed the original distribution of the number of perforations in each fracture,thus changing the flux partitioning after perforation plugging,which could eliminate the effect of stress interference between multiple fractures and promote a uniform fluid distribution.The standard deviation of fluid distribution in the perforation plugging case was only 8.48%of that in the non-diversion case.Furthermore,critical plugging parameters have been investigated quantitatively.Specifically,injecting more diverters will create a higher fluid pressure rise in the wellbore,which will increase the risk of wellbore integrity.Comprehensively considering pressure rise and fluid distribution,the number of diverters should be 50%of the total number of perforations(N_(pt)),whose standard deviation of fluid distribution of multiple fractures was lower than those in the cases of injecting 10%N_(pt),30%N_(pt)and 70%N_(pt).The diverters should be injected at an appropriate timing,i.e.40%or 50%of the total fracturing time(tft),whose standard deviation of the fluid distribution was only about 20%of standard deviations in the cases of injecting at20%tftor 70%tft.A single injection with all diverters can maintain high bottom-hole pressure for a longer period and promote a more uniform fluid distribution.The standard deviation of the fluid distribution in the case of a single injection was 43.62%-55.41%of the other cases with multiple injection times.This study provides a meaningful perspective and some optimal plugging parameters on the field design during IPTF.
基金funded by the National Natural Science Foundation of China(41772286,42077247)the Fundamental Research Funds for the Central UniversitiesOpen Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Z020009)。
文摘Refracturing is an importa nt technique to tap the potential of reservoirs and boost production in depleted oil and gas fields.However,fracture propagation during refracturing,including both conventional refracturing and temporary-plugging refracturing remains poorly understood,especially for cases with non-uniform distribution of formation pressure due to long-term oil production and water injection.Therefore,taking pilot tests of refracturing with sidetracking horizontal wells in tight reservoirs in the Changqing Oilfield,China as an example,we establish a three-dimensional numerical model of conventional refracturing and a numerical model of temporary-plugging refracturing based on the discrete lattice method.Non-uniform distributions of formation pressure are imported in these models.We discuss the effects of key operating parameters such as injection rate,cluster spacing,and number of clusters on the propagation of multi-cluster fractures for conventional refracturing.For temporaryplugging refracturing,we examine the impacts of controlling factors such as the timing and number of temporary plugging on fracture propagation.In addition,we analyze a field case of temporaryplugging refracturing using well P3 in the Changqing Oilfield.The results show that fractures during re fracturing tend to propagate preferentially and dominantly in the depleted areas.Improved stimulation effect can be obtained with an optimal injection rate and a critical cluster spacing.The proposed model of temporary-plugging refracturing can well describe the temporary plugging of dominant existingfractures and the creation of new-fractures after fracturing fluid is forced to divert into other clusters from previous dominant clusters.Multiple temporary plugging can improve the balanced propagation of multi-cluster fractures and obtain the maximum fracture area.The established numerical model and research results provide theoretical guidance for the design and optimization of key operating parameters for refracturing,especially for temporary-plugging refracturing.
基金Supported by China National Science and Technology Major Project(2016ZX05023,2017ZX05013-005)
文摘To deal with the stress interference caused by simultaneous propagation of multiple fractures and the wettability reversal and physical property changes of the reservoir caused by fracturing fluid getting in during large-volume fracturing of tight oil reservoirs through a horizontal well, a non-planar 3D fracture growth model was built, wettability reversal characterizing parameters and change of relative permeability curve were introduced to correct the production prediction model of fractured horizontal well, a fracturing design optimization software(Fr Smart) by integrating geological and engineering data was developed, and a fracturing design optimization approach for tight oil reservoirs based on fracture control was worked out. The adaptability of the method was analyzed and the fracture parameters of horizontal wells in tight oil reservoirs were optimized. The simulation results show that fracturing technology based on fracture control is suitable for tight oil reservoirs, and by optimizing fracture parameters, this technology makes it possible to produce the maximum amount of reserves in the well-controlled unit of unconventional reservoirs. The key points of fracturing design optimization based on fracture control include increasing lateral length of and reducing the row spacing between horizontal wells, increasing perforation clusters in one stage to decrease the spacing of neighboring fractures, and also avoiding interference of old and new fracturing wells. Field tests show that this technology can increase single well production and ultimate recovery. Using this technology in developing unconventional resources such as tight oil reservoirs in China will enhance the economics significantly.
基金Major Project of National Natural Science Foundation of China Basic Theory of Efficient Development of Shale Oil and Gas(No.51490653)Theory and Method of Efficient Con struction of Fracture Network in Deep and Ultra-Deep Shale Gas Horizontal Wells(No.U19A2043)National Natural Science Foundation of China Theory and Method of Long term Propping for Deep Shale Gas Hydraulic Fractures based on DEM-LBM Hydro-Mechanical Coupling(No.52104039).
文摘When deep and ultra-deep shale gas well fracturing is carried out,multi-cluster fracturing can hardly realize synchronous initiation and propagation of hydraulic fractures due to the combined effects of heterogeneity of deep in-situ stress and"dense cluster"fracture arrangement,and the strong interference between fractures aggravates the unbalanced fracture propagation degree.Field practice proves that the fracture-opening temporary plugging fracturing technology can effectively control the unbalanced propagation of multiple fractures.In addition,the application effect of temporary plugging process can be improved by developing a method for simulating fracture control during fracture-opening temporary plugging fracturing of deep/ultra-deep shale-gas horizontal wells.Based on rock mechanics,elasticity mechanics,fluid mechanics and fracture propagation theory,combined with the flow distribution equation of horizontal-well multi-cluster fracturing and the plugging equation of temporary plugging balls,this paper establishes a fracture propagation model and a fracture control simulation method for the fracture-opening temporary plugging fracturing of deep/ultra-deep shale gas horizontal wells.Then,the influences of the number of temporary plugging balls and the times and timing of temporary plugging on temporary plugging control are simulated,and the influences of temporary plugging balls on fracture propagation morphology and SRV(stimulated reservoir volume)distribution are analyzed by taking Sinopec's one deep shale gas well in Dingshan-Dongxi structure of southeast Sichuan Basin as an example.And the following research results are obtained.First,fracture-opening temporary plugging can significantly promote the balanced propagation of multiple fractures,and the simulation confirms that the number of temporary plugging balls and the times and timing of temporary plugging play an important role in fracture control.Second,as the number of temporary plugging balls increase,the SRV increases firstly and then decreases,so there is an optimal number of temporary plugging balls.Third,increasing the times of temporary plugging can improve the fault tolerance rate of temporary plugging and diverting process,but it is necessary to increase the number of temporary plugging balls appropriately.Fourth,when the timing of temporary plugging is appropriate,the balanced propagation of multiple fractures is achieved and the maximum SRV is reached.In conclusion,this method is of great significance to optimizing the design of temporary plugging fracturing,improve the implementation level of field process and develop deep and ultra-deep shale gas efficiently.
基金Project supported by the Scientific Research and Technical Development Project of Postdoctoral Workstation of PetroChina Southwest Oil and Gas Field Company“Research on fracture morphology control and reconstruction technology of tight sandstone gas reservoir in Jinhua-Zhongtaishan ShaximiaoFormation”(No:20190302-15).
文摘In order to solve the difficulties in the volume fracturing stimulation of Middle Jurassic Shaximiao Formation tight sandstone reservoirs in the Qiulin Block of Central Sichuan Basin and explore the adaptability of high-intensity volumefracturing technology,we selected the outcrop samples of Shaximiao Formation tight sandstone in the Qiulin Block to carry out the physical simulation experiment of true triaxial hydraulic fracturing.On this basis,horizontal well cluster perforation was optimally designed by using the production predictionmodel of staged multi-cluster fracturing horizontal wells.Then,based on the liquid control and proppant increase mode,three rounds of pilot tests were carried out on the tight sandstone reservoirs in this area.Andthe following research resultswere obtained.First,natural fractures in the ShaximiaoFormation tight sandstone reservoir of theQiulin Block are undeveloped,and hydraulic fractures are morphologically dominated by symmetric double-wing fractures,so complex fracture networks can be hardly formed.In addition,the reservoir is of medium to strong water sensitivity,so conventional volume fracturing is not adaptive to the reservoir stimulation in this block.Second,the connotation of high-intensity volume fracturing technology is to carry out multi-cluster perforation in each section to form multiple independent double-wing fractures and to implement the proppant injection mode of liquid control and proppant increase to reduce the inflowfluid while ensuring the high-intensity proppant injection,so as to reduce the damage of inflowfluid to the formation.Third,there are 10 fracturing sections inWell Qiulin 207-5-H2,with 7-12 clusters in each section,and the displacement is in the range of 16-18m^(3)/min.According to the fluid control and proppant increase mode,12146 m^(3) slick water and 4170 t proppant are injected in total.The tested production rate and absolute open flow of natural gas after the fracturing are up to 83.88×10^(4)m^(3)/d and 214.05×10^(4)m^(3)/d,respectively.Fourth,with the decrease of cluster spacing,the cumulative gas production increases gradually,but when the cluster spacing is less than 15 m,the increase amplitude of cumulative gas production decreases.Fifth,when the proppant injection intensity is lower than 6 t/m,the tested gas production per kilometer of stimulated section ina horizontal well overall presents an increasing trend with the increase of proppant injection intensity.When the proppant injection intensity is higher than 6 t/m,however,the tested gas production per kilometer of stimulated section does not increase significantly with the increase of proppant injection intensity.Sixth,as the included angle between the borehole trajectory and the direction ofmaximumhorizontal principal stress increases,the tested gas production per kilometer of stimulated section overall presents an increasing trend.When the hydraulic fracture is nearly perpendicular to the borehole,the effective drainage area is the largest and the tested gas production per kilometer of stimulated section is also the highest.In conclusion,the fracturing mode of high production well has a borehole trajectory of large included angle,perforation cluster spacing of 10 m or so,proppant injection intensity of 5 t/m and large-displacement slick water+continuous injection of combined particle size proppant.
基金Scientific Research and Technical Development Project of China National Petroleum Corporation(CNPC)(Grant No.2014B-1713).
文摘With the deep development of tight sand gas reservoirs,problems such as short stable production period and quick production decline of gas wells after fracturing have become increasingly prominent.Consequently,there is an increasing demand for the effective penetration and conductivity of artificial fractures.Impulse sand fracturing technology introduces a concept of discrete multilayer sanding inside fractures;joint application of pulse blender which can be switched at high frequency,intensive multi-cluster perforation and special fibrous material made it possible to ensure the flow stability of proppant slug,and placement of nonuniformly-laid sand pinnacles and grooves,which markedly upgraded the capacity of the fracture conductivity to several orders of magnitude more than the conventional method.Laboratory engineering simulation evaluation and field test show that pre-fracturing reservoir evaluation,pulse time design and the optimization of degradable fiber and support equipment are the keys to the success of impulse sand fracturing.Compared with the conventional fracturing,this technique can effectively increase well production,decrease the volume of fracturing proppant,and lower sand plugging risks.An independent sand fracturing pilot test has been conducted in 6 layers of 3 wells for the first time in Block Tao 7 of the Sulige Gasfield,Ordos Basin,as a result,the average volume of fracturing proppant dropped by 28.3%,the average sand intensity dropped by 21.88%,and the post-fracturing average daily gas output increased by 26.8%.This technology provides an efficient and environmentally friendly reservoir stimulation option for tight sand gas reservoirs in China.