We study a novel replication mechanism to ensure service continuity against multiple simultaneous server failures.In this mechanism,each item represents a computing task and is replicated intoξ+1 servers for some int...We study a novel replication mechanism to ensure service continuity against multiple simultaneous server failures.In this mechanism,each item represents a computing task and is replicated intoξ+1 servers for some integerξ≥1,with workloads specified by the amount of required resources.If one or more servers fail,the affected workloads can be redirected to other servers that host replicas associated with the same item,such that the service is not interrupted by the failure of up toξservers.This requires that any feasible assignment algorithm must reserve some capacity in each server to accommodate the workload redirected from potential failed servers without overloading,and determining the optimal method for reserving capacity becomes a key issue.Unlike existing algorithms that assume that no two servers share replicas of more than one item,we first formulate capacity reservation for a general arbitrary scenario.Due to the combinatorial nature of this problem,finding the optimal solution is difficult.To this end,we propose a Generalized and Simple Calculating Reserved Capacity(GSCRC)algorithm,with a time complexity only related to the number of items packed in the server.In conjunction with GSCRC,we propose a robust replica packing algorithm with capacity optimization(RobustPack),which aims to minimize the number of servers hosting replicas and tolerate multiple server failures.Through theoretical analysis and experimental evaluations,we show that the RobustPack algorithm can achieve better performance.展开更多
Mobile edge computing(MEC)provides services to devices and reduces latency in cellular internet of things(IoT)networks.However,the challenging problem is how to deploy MEC servers economically and efficiently.This pap...Mobile edge computing(MEC)provides services to devices and reduces latency in cellular internet of things(IoT)networks.However,the challenging problem is how to deploy MEC servers economically and efficiently.This paper investigates the deployment problem of MEC servers of the real-world road network by employing an improved genetic algorithm(GA)scheme.We first use the threshold-based K-means algorithm to form vehicle clusters according to their locations.We then select base stations(BSs)based on clustering center coordinates as the deployment locations set for potential MEC servers.We further select BSs using a combined simulated annealing(SA)algorithm and GA to minimize the deployment cost.The simulation results show that the improved GA deploys MEC servers effectively.In addition,the proposed algorithm outperforms GA and SA algorithms in terms of convergence speed and solution quality.展开更多
To determine CDN cache servers'placement reasonably,an idea that using graph partitioning to solve the problem was put forward through theoretical analysis and the specific algorithm of partitioning was researched...To determine CDN cache servers'placement reasonably,an idea that using graph partitioning to solve the problem was put forward through theoretical analysis and the specific algorithm of partitioning was researched. The concept of graph partitioning for CDN was defined. The conditions of graph partitioning for CDN were demonstrated: the sum of the weights of the nodes in each subarea is as close as possible; edge cut between the subareas is as large as possible; internal nodes in each subarea are connected as far as possible. By reference to light vertex matching algorithm of graph partitioning for network simulation,a multilevel k-way algorithm of graph partitioning for CDN was proposed. The maximized edge cut k-way KL refinement algorithm was discussed. Graph partitioning is a feasible way to solve the problem of CDN servers'placement. Multilevel k-way algorithm is a feasible algorithm for CDN graph partitioning.展开更多
In distributed machine learning(DML)based on the parameter server(PS)architecture,unbalanced communication load distribution of PSs will lead to a significant slowdown of model synchronization in heterogeneous network...In distributed machine learning(DML)based on the parameter server(PS)architecture,unbalanced communication load distribution of PSs will lead to a significant slowdown of model synchronization in heterogeneous networks due to low utilization of bandwidth.To address this problem,a network-aware adaptive PS load distribution scheme is proposed,which accelerates model synchronization by proactively adjusting the communication load on PSs according to network states.We evaluate the proposed scheme on MXNet,known as a realworld distributed training platform,and results show that our scheme achieves up to 2.68 times speed-up of model training in the dynamic and heterogeneous network environment.展开更多
The Web cluster has been a popular solution of network server system because of its scalability and cost effective ness. The cache configured in servers can result in increasing significantly performance, In this pape...The Web cluster has been a popular solution of network server system because of its scalability and cost effective ness. The cache configured in servers can result in increasing significantly performance, In this paper, we discuss the suitable configuration strategies for caching dynamic content by our experimental results. Considering the system itself can provide support for caching static Web page, such as computer memory cache and disk's own cache, we adopt a special pattern that only caches dynamic Web page in some experiments to enlarge cache space. The paper is introduced three different replacement algorithms in our cache proxy module to test the practical effects of caching dynamic pages under different conditions. The paper is chiefly analyzed the influences of generated time and accessed frequency on caching dynamic Web pages. The paper is also provided the detailed experiment results and main conclusions in the paper.展开更多
There are different types of Cyber Security Attacks that are based on ICMP protocols. Many ICMP protocols are very similar, which may lead security managers to think they may have same impact on victim computer system...There are different types of Cyber Security Attacks that are based on ICMP protocols. Many ICMP protocols are very similar, which may lead security managers to think they may have same impact on victim computer systems or servers. In this paper, we investigate impact of different ICMP based security attacks on two popular server systems namely Microsoft’s Windows Server and Apple’s Mac Server OS running on same hardware platform, and compare their performance under different types of ICMP based security attacks.展开更多
The work deals with the development of analytical model of multichannel technical queuing system with unreliable servers and input memory where server failure flows and incoming request flows comply with Poissonian la...The work deals with the development of analytical model of multichannel technical queuing system with unreliable servers and input memory where server failure flows and incoming request flows comply with Poissonian laws, while the flows of failed facilities repairs and flows of incoming requests comply with exponential laws of probability distribution. Random process of system change-over is a Markovian process with continuous time and discrete states. Relations binding basic parameters and output characteristics of the system indicated are obtained as probabilities of system staying in the given moment in one of the possible states. The proposed model is the most generalized compared to some models known in literature which could be considered as special cases of the considered model.展开更多
The Internet of Vehicles(IoV)has evolved as an advancement over the conventional Vehicular Ad-hoc Networks(VANETs)in pursuing a more optimal intelligent transportation system that can provide various intelligent solut...The Internet of Vehicles(IoV)has evolved as an advancement over the conventional Vehicular Ad-hoc Networks(VANETs)in pursuing a more optimal intelligent transportation system that can provide various intelligent solutions and enable a variety of applications for vehicular traffic.Massive volumes of data are produced and communicated wirelessly among the different relayed entities in these vehicular networks,which might entice adversaries and endanger the system with a wide range of security attacks.To ensure the security of such a sensitive network,we proposed a distributed authentication mechanism for IoV based on blockchain technology as a distributed ledger with an ouroboros algorithm.Using timestamp and challenge-responsemechanisms,the proposed authentication model can withstand several security attacks such asMan-in-Middle(MiM)attacks,Distributed Denial of Service(DDoS)attacks,server spoofing attacks and more.The proposed method also provides a solution for single-point failure,forward secrecy,revocability,etc.We exhibit the security of our proposed model by using formal(mathematical)analysis and informal analysis.We used Random Oracle Model to perform themathematical analysis.In addition,we compared the communication cost,computation cost,and security of the proposed model with the related existing studies.We have verified the security of the model by using AVISPA tool simulation.The security analysis and computation analysis show that the proposed protocol is viable.展开更多
In cloud data centers,the consolidation of workload is one of the phases during which the available hosts are allocated tasks.This phenomenon ensures that the least possible number of hosts is used without compromise ...In cloud data centers,the consolidation of workload is one of the phases during which the available hosts are allocated tasks.This phenomenon ensures that the least possible number of hosts is used without compromise in meeting the Service Level Agreement(SLA).To consolidate the workloads,the hosts are segregated into three categories:normal hosts,under-loaded hosts,and over-loaded hosts based on their utilization.It is to be noted that the identification of an extensively used host or underloaded host is challenging to accomplish.Thresh-old values were proposed in the literature to detect this scenario.The current study aims to improve the existing methods that choose the underloaded hosts,get rid of Virtual Machines(VMs)from them,andfinally place them in some other hosts.The researcher proposes a Host Resource Utilization Aware(HRUAA)Algorithm to detect those underloaded and place its virtual machines on different hosts in a vibrant Cloud environment.The mechanism presented in this study is contrasted with existing mechanisms empirically.The results attained from the study estab-lish that numerous hosts can be shut down,while at the same time,the user's workload requirement can also be met.The proposed method is energy-efficient in workload consolidation,saves cost and time,and leverages active hosts.展开更多
With results on the infinite servers queue systems with Poisson arrivals - M|G|∞ queues - busy period, it is displayed an application of those queue systems in the unemployment periods time length parameters and di...With results on the infinite servers queue systems with Poisson arrivals - M|G|∞ queues - busy period, it is displayed an application of those queue systems in the unemployment periods time length parameters and distribution function study. These queue systems are adequate to the study of many population processes, and this quality is brought in here. The results presented are mainly on unemployment periods length and their number in a certain time interval. Also, some questions regarding the practical applications of the outlined formulas are briefly discussed.展开更多
Due to the need for massive device connectivity,low communication latency,and various customizations in 6G architecture,a distributed cloud deployment approach will be more relevant to the space-air-ground-sea integra...Due to the need for massive device connectivity,low communication latency,and various customizations in 6G architecture,a distributed cloud deployment approach will be more relevant to the space-air-ground-sea integrated network scenario.However,the openness and heterogeneity of the 6G network cause the problems of network security.To improve the trustworthiness of 6G networks,we propose a trusted computing-based approach for establishing trust relationships inmulti-cloud scenarios.The proposed method shows the relationship of trust based on dual-level verification.It separates the trustworthy states of multiple complex cloud units in 6G architecture into the state within and between cloud units.Firstly,SM3 algorithm establishes the chain of trust for the system’s trusted boot phase.Then,the remote attestation server(RAS)of distributed cloud units verifies the physical servers.Meanwhile,the physical servers use a ring approach to verify the cloud servers.Eventually,the centralized RAS takes one-time authentication to the critical evidence information of distributed cloud unit servers.Simultaneously,the centralized RAS also verifies the evidence of distributed RAS.We establish our proposed approach in a natural OpenStack-based cloud environment.The simulation results show that the proposed method achieves higher security with less than a 1%system performance loss.展开更多
基金supported in part by the National Key R&D Program of China under No.2023YFB2703800the National Science Foundation of China under Grants U22B2027,62172297,62102262,61902276 and 62272311+3 种基金Tianjin Intelligent Manufacturing Special Fund Project under Grants 20211097the China Guangxi Science and Technology Plan Project(Guangxi Science and Technology Base and Talent Special Project)under Grant AD23026096(Application Number 2022AC20001)Henan Provincial Natural Science Foundation of China under Grant 622RC616CCF-Nsfocus Kunpeng Fund Project under Grants CCF-NSFOCUS202207。
文摘We study a novel replication mechanism to ensure service continuity against multiple simultaneous server failures.In this mechanism,each item represents a computing task and is replicated intoξ+1 servers for some integerξ≥1,with workloads specified by the amount of required resources.If one or more servers fail,the affected workloads can be redirected to other servers that host replicas associated with the same item,such that the service is not interrupted by the failure of up toξservers.This requires that any feasible assignment algorithm must reserve some capacity in each server to accommodate the workload redirected from potential failed servers without overloading,and determining the optimal method for reserving capacity becomes a key issue.Unlike existing algorithms that assume that no two servers share replicas of more than one item,we first formulate capacity reservation for a general arbitrary scenario.Due to the combinatorial nature of this problem,finding the optimal solution is difficult.To this end,we propose a Generalized and Simple Calculating Reserved Capacity(GSCRC)algorithm,with a time complexity only related to the number of items packed in the server.In conjunction with GSCRC,we propose a robust replica packing algorithm with capacity optimization(RobustPack),which aims to minimize the number of servers hosting replicas and tolerate multiple server failures.Through theoretical analysis and experimental evaluations,we show that the RobustPack algorithm can achieve better performance.
基金supported in part by National Key Research and Development Project (2020YFB1807204)in part by the National Natural Science Foundation of China (U2001213 and 61971191)+1 种基金in part by the Beijing Natural Science Foundation under Grant L201011in part by Jiangxi Key Laboratory of Artificial Intelligence Transportation Information Transmission and Processing (20202BCD42010)
文摘Mobile edge computing(MEC)provides services to devices and reduces latency in cellular internet of things(IoT)networks.However,the challenging problem is how to deploy MEC servers economically and efficiently.This paper investigates the deployment problem of MEC servers of the real-world road network by employing an improved genetic algorithm(GA)scheme.We first use the threshold-based K-means algorithm to form vehicle clusters according to their locations.We then select base stations(BSs)based on clustering center coordinates as the deployment locations set for potential MEC servers.We further select BSs using a combined simulated annealing(SA)algorithm and GA to minimize the deployment cost.The simulation results show that the improved GA deploys MEC servers effectively.In addition,the proposed algorithm outperforms GA and SA algorithms in terms of convergence speed and solution quality.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60973027)Science Projects of China National Ministry of Information Industry(Grant No.01XK230009)
文摘To determine CDN cache servers'placement reasonably,an idea that using graph partitioning to solve the problem was put forward through theoretical analysis and the specific algorithm of partitioning was researched. The concept of graph partitioning for CDN was defined. The conditions of graph partitioning for CDN were demonstrated: the sum of the weights of the nodes in each subarea is as close as possible; edge cut between the subareas is as large as possible; internal nodes in each subarea are connected as far as possible. By reference to light vertex matching algorithm of graph partitioning for network simulation,a multilevel k-way algorithm of graph partitioning for CDN was proposed. The maximized edge cut k-way KL refinement algorithm was discussed. Graph partitioning is a feasible way to solve the problem of CDN servers'placement. Multilevel k-way algorithm is a feasible algorithm for CDN graph partitioning.
基金partially supported by the computing power networks and new communication primitives project under Grant No. HC-CN-2020120001the National Natural Science Foundation of China under Grant No. 62102066Open Research Projects of Zhejiang Lab under Grant No. 2022QA0AB02
文摘In distributed machine learning(DML)based on the parameter server(PS)architecture,unbalanced communication load distribution of PSs will lead to a significant slowdown of model synchronization in heterogeneous networks due to low utilization of bandwidth.To address this problem,a network-aware adaptive PS load distribution scheme is proposed,which accelerates model synchronization by proactively adjusting the communication load on PSs according to network states.We evaluate the proposed scheme on MXNet,known as a realworld distributed training platform,and results show that our scheme achieves up to 2.68 times speed-up of model training in the dynamic and heterogeneous network environment.
基金Supported by the National Natural Science Foun-dation of China (90204008)
文摘The Web cluster has been a popular solution of network server system because of its scalability and cost effective ness. The cache configured in servers can result in increasing significantly performance, In this paper, we discuss the suitable configuration strategies for caching dynamic content by our experimental results. Considering the system itself can provide support for caching static Web page, such as computer memory cache and disk's own cache, we adopt a special pattern that only caches dynamic Web page in some experiments to enlarge cache space. The paper is introduced three different replacement algorithms in our cache proxy module to test the practical effects of caching dynamic pages under different conditions. The paper is chiefly analyzed the influences of generated time and accessed frequency on caching dynamic Web pages. The paper is also provided the detailed experiment results and main conclusions in the paper.
文摘There are different types of Cyber Security Attacks that are based on ICMP protocols. Many ICMP protocols are very similar, which may lead security managers to think they may have same impact on victim computer systems or servers. In this paper, we investigate impact of different ICMP based security attacks on two popular server systems namely Microsoft’s Windows Server and Apple’s Mac Server OS running on same hardware platform, and compare their performance under different types of ICMP based security attacks.
文摘The work deals with the development of analytical model of multichannel technical queuing system with unreliable servers and input memory where server failure flows and incoming request flows comply with Poissonian laws, while the flows of failed facilities repairs and flows of incoming requests comply with exponential laws of probability distribution. Random process of system change-over is a Markovian process with continuous time and discrete states. Relations binding basic parameters and output characteristics of the system indicated are obtained as probabilities of system staying in the given moment in one of the possible states. The proposed model is the most generalized compared to some models known in literature which could be considered as special cases of the considered model.
基金This work was supported by the Ministry of Science and Technology of Taiwan,R.O.C.,under Grant MOST 110-2622-E-468-002 and 110-2218-E-468-001-MBK.
文摘The Internet of Vehicles(IoV)has evolved as an advancement over the conventional Vehicular Ad-hoc Networks(VANETs)in pursuing a more optimal intelligent transportation system that can provide various intelligent solutions and enable a variety of applications for vehicular traffic.Massive volumes of data are produced and communicated wirelessly among the different relayed entities in these vehicular networks,which might entice adversaries and endanger the system with a wide range of security attacks.To ensure the security of such a sensitive network,we proposed a distributed authentication mechanism for IoV based on blockchain technology as a distributed ledger with an ouroboros algorithm.Using timestamp and challenge-responsemechanisms,the proposed authentication model can withstand several security attacks such asMan-in-Middle(MiM)attacks,Distributed Denial of Service(DDoS)attacks,server spoofing attacks and more.The proposed method also provides a solution for single-point failure,forward secrecy,revocability,etc.We exhibit the security of our proposed model by using formal(mathematical)analysis and informal analysis.We used Random Oracle Model to perform themathematical analysis.In addition,we compared the communication cost,computation cost,and security of the proposed model with the related existing studies.We have verified the security of the model by using AVISPA tool simulation.The security analysis and computation analysis show that the proposed protocol is viable.
文摘In cloud data centers,the consolidation of workload is one of the phases during which the available hosts are allocated tasks.This phenomenon ensures that the least possible number of hosts is used without compromise in meeting the Service Level Agreement(SLA).To consolidate the workloads,the hosts are segregated into three categories:normal hosts,under-loaded hosts,and over-loaded hosts based on their utilization.It is to be noted that the identification of an extensively used host or underloaded host is challenging to accomplish.Thresh-old values were proposed in the literature to detect this scenario.The current study aims to improve the existing methods that choose the underloaded hosts,get rid of Virtual Machines(VMs)from them,andfinally place them in some other hosts.The researcher proposes a Host Resource Utilization Aware(HRUAA)Algorithm to detect those underloaded and place its virtual machines on different hosts in a vibrant Cloud environment.The mechanism presented in this study is contrasted with existing mechanisms empirically.The results attained from the study estab-lish that numerous hosts can be shut down,while at the same time,the user's workload requirement can also be met.The proposed method is energy-efficient in workload consolidation,saves cost and time,and leverages active hosts.
文摘With results on the infinite servers queue systems with Poisson arrivals - M|G|∞ queues - busy period, it is displayed an application of those queue systems in the unemployment periods time length parameters and distribution function study. These queue systems are adequate to the study of many population processes, and this quality is brought in here. The results presented are mainly on unemployment periods length and their number in a certain time interval. Also, some questions regarding the practical applications of the outlined formulas are briefly discussed.
基金This work was supported by the Ministry of Education and China Mobile Research Fund Project(MCM20200102)the 173 Project(No.2019-JCJQ-ZD-342-00)+2 种基金the National Natural Science Foundation of China(No.U19A2081)the Fundamental Research Funds for the Central Universities(No.2023SCU12129)the Science and Engineering Connotation Development Project of Sichuan University(No.2020SCUNG129).
文摘Due to the need for massive device connectivity,low communication latency,and various customizations in 6G architecture,a distributed cloud deployment approach will be more relevant to the space-air-ground-sea integrated network scenario.However,the openness and heterogeneity of the 6G network cause the problems of network security.To improve the trustworthiness of 6G networks,we propose a trusted computing-based approach for establishing trust relationships inmulti-cloud scenarios.The proposed method shows the relationship of trust based on dual-level verification.It separates the trustworthy states of multiple complex cloud units in 6G architecture into the state within and between cloud units.Firstly,SM3 algorithm establishes the chain of trust for the system’s trusted boot phase.Then,the remote attestation server(RAS)of distributed cloud units verifies the physical servers.Meanwhile,the physical servers use a ring approach to verify the cloud servers.Eventually,the centralized RAS takes one-time authentication to the critical evidence information of distributed cloud unit servers.Simultaneously,the centralized RAS also verifies the evidence of distributed RAS.We establish our proposed approach in a natural OpenStack-based cloud environment.The simulation results show that the proposed method achieves higher security with less than a 1%system performance loss.