With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A mag...With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A magnetic phase-coding meta-atom(MPM)is formed by the heterogeneous integration of La:YIG magneto-optical(MO)materials and Si microstructures.The MPM couples the magnetic induction phase of spin states with the propagation phase and can simultaneously satisfy the required output phase for dual frequencies under various external magnetic fields to realize the dynamic beam steering among multiple channels at 0.25 and 0.5 THz.The energy ratio of the target direction can reach 96.5%,and the nonreciprocal one-way transmission with a max isolation of 29.8 dB is realized due to the nonreciprocal phase shift of the MO layer.This nonreciprocal mechanism of magnetic induction reshaping of wavefront significantly holds promise for advancing integrated multi-functional THz devices with the characteristics of low-crosstalk,multi-channel,and multi-frequency,and has great potential to promote the development of THz large-capacity and high-speed communication.展开更多
Given the importance of sentiment analysis in diverse environments,various methods are used for image sentiment analysis,including contextual sentiment analysis that utilizes character and scene relationships.However,...Given the importance of sentiment analysis in diverse environments,various methods are used for image sentiment analysis,including contextual sentiment analysis that utilizes character and scene relationships.However,most existing works employ character faces in conjunction with context,yet lack the capacity to analyze the emotions of characters in unconstrained environments,such as when their faces are obscured or blurred.Accordingly,this article presents the Adaptive Multi-Channel Sentiment Analysis Network(AMSA),a contextual image sentiment analysis framework,which consists of three channels:body,face,and context.AMSA employs Multi-task Cascaded Convolutional Networks(MTCNN)to detect faces within body frames;if detected,facial features are extracted and fused with body and context information for emotion recognition.If not,the model leverages body and context features alone.Meanwhile,to address class imbalance in the EMOTIC dataset,Focal Loss is introduced to improve classification performance,especially for minority emotion categories.Experimental results have shown that certain sentiment categories with lower representation in the dataset demonstrate leading classification accuracy,the AMSA yields a 2.53%increase compared with state-of-the-art methods.展开更多
Rotational feeding combined with shift feeding electrochemical trepanning(RF-SF ECTr)is an effective method for machining aeroengine blisks.However,given the variable relative motion of the electrodes and the complex ...Rotational feeding combined with shift feeding electrochemical trepanning(RF-SF ECTr)is an effective method for machining aeroengine blisks.However,given the variable relative motion of the electrodes and the complex flow channels around the bending and twisting blades,the accessibility and uniformity of the flow field are poor in blisk RF-SF ECTr using the traditional electrolyte supply(TES)mode,resulting in poor machining stability and low machining efficiency.To improve the distribution of the flow field,a new multi-channel electrolyte supply(MCES)mode is proposed for blisk RF-SF ECTr,in which the position and volume of the electrolyte supply are controlled effectively by setting multiple inlet channels in the liquid inlet area.A flow-field simulation comparison between TES and MCES shows that better accessibility and uniformity of the flow-field distribution are achieved under MCES.To clarify further the flow-field distribution characteristics under RF-SF ECTr,a series of flow-field simulations was conducted at different machining depths.Based on the obtained dynamic change law for the flow field,to enhance further its uniformity and accessibility,a global coverage strategy for the electrolyte supply and a flow-field structure optimization method for MCES are proposed,which involve optimizing the number,diameter,and location of the inlet channels.After many simulations,the optimal MCES structure was achieved whereby the electrolyte covers all positions effectively in the processing area.To verify the proposed method as effective and correct,a series of RF-SF ECTr experiments was carried out.Under the optimized MCES mode,the feeding rate was increased from 0.8 mm/min with the TES mode to 2.0 mm/min,and the processing stability and efficiency were improved significantly.The methods presented here offer an effective guide for flow-field optimization when machining other components with complex spatial structures.展开更多
Vortex beams carrying orbital angular momentum(OAM)are of great significance for high-capacity communication and super-resolution imaging.However,there is a huge gap between the free-space vortices(FVs)and plasmonic v...Vortex beams carrying orbital angular momentum(OAM)are of great significance for high-capacity communication and super-resolution imaging.However,there is a huge gap between the free-space vortices(FVs)and plasmonic vortices(PVs)on chips,and active manipulation as well as multiplexing in more channels have become a pressing demand.In this work,we demonstrate a terahertz(THz)cascaded metadevice composed of a helical plasmonic metasurface,a liquid crystal(LC)layer,and a helical dielectric metasurface.By spin-orbital angular momentum coupling and photon state superposition,PVs and FVs are generated with mode purity of over 85%on average.Due to the inversion asymmetric design of the helical metasurfaces,the parity symmetry breaking of OAM is realized(the topological charge numbers no longer occur in positive and negative pairs,but all are positive),generating 6 independent channels associated with the decoupled spin states and the near-/far-field positions.Moreover,by the LC integration,dynamic mode switching and energy distribution can be realized,finally obtaining up to 12 modes with a modulation ratio of above 70%.This active tuning and multi-channel multiplexing metadevice establishes a bridge connection between the PVs and FVs,exhibiting promising applications in THz communication,intelligent perception,and information processing.展开更多
BACKGROUND Radical gastrectomy(RGE)for gastric carcinoma(GC)has exerted definite therapeutic efficacy in treating patients with GC.However,a notable risk of postoperative complications(POCs)persists among middle-aged ...BACKGROUND Radical gastrectomy(RGE)for gastric carcinoma(GC)has exerted definite therapeutic efficacy in treating patients with GC.However,a notable risk of postoperative complications(POCs)persists among middle-aged and elderly patients with compromised physiological functions.Hence,developing and implementing reliable nursing interventions to optimize the comprehensive management of these patients is deemed imperative.AIM To analyze the association of multi-channel continuous nursing intervention with POCs,negative emotions(NEs),and quality of life(QoL)of patients undergoing RGE for GC.METHODS This retrospective study selected 99 patients who underwent RGE for GC in our hospital from May 2020 to May 2023.Participants were categorized into the control(n=49 cases)and research groups(n=50 cases)receiving routine and multi-channel continuous nursing care,respectively.Comparative analysis involved data on postoperative rehabilitation(time to first anal exhaust,oral feeding and ambulation,and hospital stay),complications(nausea and vomiting,delayed gastric emptying,and abdominal distension),NEs[Self-rating Anxiety(SAS)/Depression Scale(SDS)],treatment compliance,self-efficacy,and QoL[World Health Organization QoL Brief Version(WHOQOL-BREF)].RESULTS Compared to the control group,the research group demonstrated earlier first postoperative anal exhaust,oral feeding,and ambulation,shorter hospital stay,lower POC rate,and more reduced SAS and SDS scores postintervention,which was significantly lower than the baseline.The treatment compliance scores were significantly higher in the research group than in the control group in terms of medication adherence,daily exercise,reasonable diet,and regular review.Further,the research group demonstrated increased self-efficacy scores in terms of positive attitude,self-stress relief,and self-decision-making,as well as the overall score postintervention,which were higher than the control group.Moreover,the research group reported notably higher WHOQOL-BREF scores in domains such as physiology,psychology,social relations,and environment.CONCLUSION Multi-channel continuous nursing intervention prevents POCs in patients undergoing RGE for GC as well as significantly alleviates patients’NEs and boosts their QoL.展开更多
This study investigates the impact of welding heat input on weldments of modified 9Cr-1Mo(P91)steel,a high-strength material that requires high-energy welding processes like submerged arc welding.In the as-welded cond...This study investigates the impact of welding heat input on weldments of modified 9Cr-1Mo(P91)steel,a high-strength material that requires high-energy welding processes like submerged arc welding.In the as-welded condition,P91 steel welds primarily consist of untempered martensite,which transforms into tempered martensite during post-weld heat treatment(PWHT).Electron spectro-scopy analysis reveals the presence of M_(23)C_(6) and MX carbonitride precipitates at grain boundaries.Increasing the heat input leads to greater quantities of precipitates in the prior austenite grain boundaries,which can affect material properties.Weldment hardness profiles exhibit modest improvements,while ultimate tensile strength and toughness decrease with higher welding heat input,poten-tially due to the formation of a ferritic phase.Residual stress distributions are noticeably influenced by the welding heat input level.展开更多
In this paper,Desulfovibrio vulgaris corrosion of X80 steel welded joint with different heat inputs was carefully investigated.The results confirmed that in the sterile medium,general corrosion rate and lo-calized cor...In this paper,Desulfovibrio vulgaris corrosion of X80 steel welded joint with different heat inputs was carefully investigated.The results confirmed that in the sterile medium,general corrosion rate and lo-calized corrosion susceptibility of heat affected zone(HAZ)were higher than those of weld zone(WZ)and base metal(BM).In the inoculated medium,the general corrosion rate of HAZ was still higher than that of WZ and BM.However,the number and depth of corrosion pits on WZ and BM surfaces,as well as the localized corrosion susceptibility,were much higher than those in HAZ,which was opposite to that in sterile environment,suggesting that the Desulfovibrio vulgaris corrosion of the welded joint was selective.With heat input increasing from 0.57 kJ/mm to 1.29 kJ/mm,general corrosion rate and localized corrosion susceptibility of HAZ and WZ simultaneously decreased in sterile or inoculated medium.In in-oculated medium,localized corrosion of HAZ decreased more sharply than weld zone.Within the range of heat inputs tested,the study discerned a positive correlation:higher heat inputs correlated with an enhanced corrosion resistance of welded joint,irrespective of environmental conditions being sterile or inoculated.The findings provide a solid basis for the welding parameter determination to steel pipelines in oil and gas transportation.展开更多
To analyze the correlation between the input energy parameters(V_(E))and typical intensity measures(IMs)of offshore ground motions,based on 273 earthquake events recorded by the K-NET in Japan,892 offshore ground moti...To analyze the correlation between the input energy parameters(V_(E))and typical intensity measures(IMs)of offshore ground motions,based on 273 earthquake events recorded by the K-NET in Japan,892 offshore ground motion records with moment magnitudes from 4.0 to 7.0 were used in this study.Residuals obtained through a ground motion model were calculated and analyzed for the correlation between V_(E) and amplitude,duration,frequency content and cumulative IMs.The results indicate that PGV and PGD have strong correlation with the V_(E)(T>0.2 s and T>0.4 s),the duration IMs have weakly negative correlation with the V_(E),Sd_(1) has a strong correlation with the V_(E) in the periods of T>0.4 s,T_(g) has a weak correlation with V_(E) and the cumulative IMs have strong correlation with the V_(E).The parametric predictive equations between typical IMs and V_(E) was proposed,and the differences between the prediction equations from the onshore ground motion records were compared.The differences in parametric predicted equations between offshore and onshore ground motions were confirmed in this study.Proposed correlation equations can be applied to offshore probabilistic seismic hazard analysis and the selection of ground motion records by generalized conditional intensity measures.展开更多
This paper proposes a novel multivalued recurrent neural network model driven by external inputs,along with two innovative learning algorithms.By incorporating a multivalued activation function,the proposed model can ...This paper proposes a novel multivalued recurrent neural network model driven by external inputs,along with two innovative learning algorithms.By incorporating a multivalued activation function,the proposed model can achieve multivalued many-to-one associative memory,and the newly developed algorithms enable effective storage of many-to-one patterns in the coefficient matrix while maintaining the indispensability of inputs in many-to-one associative memory.The proposed learning algorithm addresses a critical limitation of existing models which fail to ensure completely erroneous outputs when facing partial input missing in many-to-one associative memory tasks.The methodology is rigorously derived through theoretical analysis,incorporating comprehensive verification of both the existence and global exponential stability of equilibrium points.Demonstrative examples are provided in the paper to show the effectiveness of the proposed theory.展开更多
Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncerta...Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach.展开更多
This paper addresses the lane-keeping control problem for autonomous ground vehicles subject to input saturation and uncertain system parameters.An enhanced adaptive terminal sliding mode based prescribed performance ...This paper addresses the lane-keeping control problem for autonomous ground vehicles subject to input saturation and uncertain system parameters.An enhanced adaptive terminal sliding mode based prescribed performance control scheme is proposed,which enables the lateral position error of the vehicle to be kept within the prescribed performance boundaries all the time.This is achieved by firstly introducing an improved performance function into the controller design such that the stringent initial condition requirements can be relaxed,which further allows the global prescribed performance control result,and then,developing a multivariable adaptive terminal sliding mode based controller such that both input saturation and parameter uncertainties are handled effectively,which further ensures the robust lane-keeping control.Finally,the proposed control strategy is validated through numerical simulations,demonstrating its effectiveness.展开更多
The effects of Ti/N ratio on the number densities of nano particles,the size of the prior austenite grain(PAG)and the toughness of the heat-affected zone(HAZ)of Mg-deoxidized steels were studied after high heat input ...The effects of Ti/N ratio on the number densities of nano particles,the size of the prior austenite grain(PAG)and the toughness of the heat-affected zone(HAZ)of Mg-deoxidized steels were studied after high heat input welding of 400 kJ/cm.With increasing the Ti/N ratio from 2.7 to 5.7,the cuboid nano-sized particles are formed,and their number density increases.The area fractions of ductile intragranular acicular ferrites(IAFs)have the highest value and the area fractions of brittle microstructures of ferrite side plates and upper bainites have the lowest value in TN30 steel.With the Ti/N ratio of about 3.0,the HAZ of steel plate has the best low-temperature toughness.With increasing the Ti/N ratio from 2.7 to 5.7,the PAG sizes after the high-temperature laser scanning confocal microscopy observation decrease linearly with increasing the number densities of nano-sized particles.The PAG size of TN30 steel is between 100 and 150μm,which is conducive to the nucleation of IAFs.展开更多
This paper investigates the secure impulsive consensus of Lipschitz-type nonlinear multi-agent systems(MASs) with input saturation. According to the coupling of input saturation and denial of service(DoS) attacks, imp...This paper investigates the secure impulsive consensus of Lipschitz-type nonlinear multi-agent systems(MASs) with input saturation. According to the coupling of input saturation and denial of service(DoS) attacks, impulsive control for MASs becomes extremely challenging. Considering general DoS attacks,this paper provides the sufficient conditions for the almost sure consensus of the MASs with input saturation, where the error system can achieve almost sure local exponential stability.Through linear matrix inequalities(LMIs), the relation between the trajectory boundary and DoS attacks is characterized, and the trajectory boundary is estimated. Furthermore, an optimization method of the domain of attraction is proposed to maximize the size. And a non-conservative and practical boundary is proposed to characterize the effect of DoS attacks on MASs. Finally, considering a multi-agent system with typical Chua's circuit dynamic model, an example is provided to illustrate the theorems' correctness.展开更多
An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control...An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller.展开更多
Multi-channel wire electrical discharge machining(MC-WEDM)is an advanced and high-efficiency machining technology,but its material erosion mechanism remains unclear.In this study,dual-channel wire electrical discharge...Multi-channel wire electrical discharge machining(MC-WEDM)is an advanced and high-efficiency machining technology,but its material erosion mechanism remains unclear.In this study,dual-channel wire electrical discharge machining was utilized as a case study to investigate the impact of the plunging current on both the plasma characteristics and material erosion under complex discharge conditions.Force analysis was conducted on the charged particles in the plasma,revealing that the plunging current can influence the trajectory of the plasma by modifying the selfmagnetic field.The particle tracking method was employed to simulate the motion of electrons,revealing that in MC-WEDM,electrons exhibited a larger and more uniform distribution.The evolution of the plasma within a single-pulse discharge was observed using high-speed photography technology,and the discharge signals collected from different channels were analyzed.It was observed that the plasma in MC-WEDM experienced more intense back-and-forth sweeping on the workpiece surface,facilitating the ejection of molten metal from the molten pool.The oscillating plasma exhibits a larger processing area and a more uniform distribution of energy,resulting in the formation of larger and shallower discharge craters.Furthermore,the influence of the amplitude and time point of the plunging current on the volume and area of the discharge craters was summarized.Finally,MC-WEDM significantly reduced the occurrence of holes and micro-cracks and exhibited a thinner recast layer in the continuous discharge experiment.展开更多
This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Co...This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Considering the model complexity and input deadzone,a fractional-order ultra-local model is proposed to formulate the original dynamic system for simple controller design.Firstly,the control gain of ultra-local model is considered as a constant.The fractional-order sliding mode technique is designed to stabilize the closed-loop system,while fractional-order time-delay estimation is combined with neural network to estimate the lumped disturbance.Correspondingly,a fractional-order ultra-local model-based neural network sliding mode controller(FO-NNSMC) is proposed.Secondly,to avoid disadvantageous effect of improper gain selection on the control performance,the control gain of ultra-local model is considered as an unknown parameter.Then,the Nussbaum technique is introduced into the FO-NNSMC to deal with the stability problem with unknown gain.Correspondingly,a fractional-order ultra-local model-based adaptive neural network sliding mode controller(FO-ANNSMC) is proposed.Moreover,the stability analysis of the closed-loop system with the proposed method is presented by using the Lyapunov theory.Finally,with the co-simulations on virtual prototype of 7-DOF iReHave upper-limb exoskeleton and experiments on 2-DOF upper-limb exoskeleton,the obtained compared results illustrate the effectiveness and superiority of the proposed method.展开更多
High speed sintering,a new powder-bed fusion additive manufacturing technology,utilizes infrared lights(IR)to intensely heat and melt polymer powders.The presence of defects such as porosity,which is associated with p...High speed sintering,a new powder-bed fusion additive manufacturing technology,utilizes infrared lights(IR)to intensely heat and melt polymer powders.The presence of defects such as porosity,which is associated with particle coalescence,is highly dependdent on the level of energy input.This study investigate the influcence of energy input on porosity and its subsequent effects on the mechanical properties and microstructures of PEBA parts.The parts were manufactured with a variety of lamp powers,resulting in a range of energy input levels spanning from low to high.Subsequebtly,they underwent testing using Archimedes’method,followed by tensile testing.The porosity,mechanical characteristics,and energy input exhibit a strong correlation;inadequate energy input was the primary cause of pore formation.Using the reduced IR light power resulted in the following outcomes:porosity,ultimate tensile strength,and elongation of 1.37%,7.6 MPa,and 194.2%,respectively.When the energy input was further increased,the porosity was reduced to as low as 0.05%and the ultimate tensile strength and elongation were increased to their peak values of 233.8%and 9.1 MPa,respectively.展开更多
This paper investigates the jammerassisted multi-channel covert wireless communication(CWC)by exploiting the randomness of sub-channel selection to confuse the warden.In particular,we propose two sub-channel selection...This paper investigates the jammerassisted multi-channel covert wireless communication(CWC)by exploiting the randomness of sub-channel selection to confuse the warden.In particular,we propose two sub-channel selection transmission schemes,named random sub-channel selection(RSS)scheme and maximum sub-channel selection(MSS)scheme,to enhance communication covertness.For each proposed scheme,we first derive closed-form expressions of the transmission outage probability(TOP),the average effective rate,and the minimum average detection error probability(DEP).Then,the average effective covert rate(ECR)is maximized by jointly optimizing the transmit power at the transmitter and the number of sub-channels.Numerical results show that there is an optimal value of the number of sub-channels that maximizes the average ECR.We also find that to achieve the maximum average ECR,a larger number of subchannels are needed facing a stricter covertness constraint.展开更多
The rapid development of the Internet has accelerated the spread of rumors,posing challenges to social cohesion and stability.To address this,a multi-channel rumor propagation model incorporating individual game behav...The rapid development of the Internet has accelerated the spread of rumors,posing challenges to social cohesion and stability.To address this,a multi-channel rumor propagation model incorporating individual game behavior and time delay is proposed.It depicts individuals strategically choosing propagation channels in the rumor spread process,capturing real-world intricacies more faithfully.Specifically,the model allowing spreaders to choose between text and video information base channels.Strategy adoption hinges on benefits versus costs,with payoffs dictating strategy and the propagation process determining an individual's state.By theoretical analysis of the model,the propagation threshold and equilibrium points are obtained.Then the stability of the model is further demonstrated based on Routh-Hurwitz judgment and Descartes'Rule of Signs.Numerical simulations are conducted to verify the correctness of the theoretical results and the sensitivity of the model to key parameters.The outcomes reveal that increasing the propagation cost of spreaders can significantly curb the spread of rumors.In contrast to the classical ISR model,rumors spread faster and more widely in the improved multi-channel rumor propagation model in this paper,which is a feature more aligned with real-world scenarios.Finally,the validity and predictive ability of the model are verified by using real rumor propagation data sets,indicating that the improved multi-channel rumor propagation model has good practical application and predictive value.展开更多
At present,the active control of gear vibration mostly relies on existing algorithms.In order to achieve effective vibration reduction of the gear system,particularly during the vibration process,this paper proposes a...At present,the active control of gear vibration mostly relies on existing algorithms.In order to achieve effective vibration reduction of the gear system,particularly during the vibration process,this paper proposes a multi-channel VSMFxLMS algorithm based on the FxLMS algorithm.This novel approach takes into account the time-varying nature of the vibration signal during gear vibration.Adaptive filter power coefficients are updated in a skip-tongue variable-step manner using momentum factors.Firstly,the paper establishes the dynamics model of the gear system and analyzes the nonlinear dynamic characteristics of the system.It then examines the vibration damping effect of the FxLMS algorithm and analyzes its performance under different gear system motion states,considering different step lengths and momentum factors.Lastly,the proposed VSMFxLMS algorithm is compared with the FxLMS algorithm,highlighting the superiority of the former.Overall,this research highlights the potential of a multi-channel VSMFxLMS algorithm in reducing vibrations in gear systems.The study optimizes the performance of gear systems while using advanced control strategies.展开更多
基金supported by the National Natural Science Foun-dation of China(Grant Nos.62371258,62335012,62205160,and 62435010)the Tianjin Youth Science and Technology Talent Project(Grant No.QN20230227)+1 种基金the Natural Science Foundation of Tianjin(Grant No.24JCYBJC01860)the Fundamental Research Funds for the Central Universities,Nan-kai University(Grant No.075-63253215).
文摘With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A magnetic phase-coding meta-atom(MPM)is formed by the heterogeneous integration of La:YIG magneto-optical(MO)materials and Si microstructures.The MPM couples the magnetic induction phase of spin states with the propagation phase and can simultaneously satisfy the required output phase for dual frequencies under various external magnetic fields to realize the dynamic beam steering among multiple channels at 0.25 and 0.5 THz.The energy ratio of the target direction can reach 96.5%,and the nonreciprocal one-way transmission with a max isolation of 29.8 dB is realized due to the nonreciprocal phase shift of the MO layer.This nonreciprocal mechanism of magnetic induction reshaping of wavefront significantly holds promise for advancing integrated multi-functional THz devices with the characteristics of low-crosstalk,multi-channel,and multi-frequency,and has great potential to promote the development of THz large-capacity and high-speed communication.
文摘Given the importance of sentiment analysis in diverse environments,various methods are used for image sentiment analysis,including contextual sentiment analysis that utilizes character and scene relationships.However,most existing works employ character faces in conjunction with context,yet lack the capacity to analyze the emotions of characters in unconstrained environments,such as when their faces are obscured or blurred.Accordingly,this article presents the Adaptive Multi-Channel Sentiment Analysis Network(AMSA),a contextual image sentiment analysis framework,which consists of three channels:body,face,and context.AMSA employs Multi-task Cascaded Convolutional Networks(MTCNN)to detect faces within body frames;if detected,facial features are extracted and fused with body and context information for emotion recognition.If not,the model leverages body and context features alone.Meanwhile,to address class imbalance in the EMOTIC dataset,Focal Loss is introduced to improve classification performance,especially for minority emotion categories.Experimental results have shown that certain sentiment categories with lower representation in the dataset demonstrate leading classification accuracy,the AMSA yields a 2.53%increase compared with state-of-the-art methods.
基金Supported by National Natural Science Foundation of China(Grant Nos.52275435,52075465,52375519)Open Fund Project of Jiangsu Key Laboratory of Precision and Micro-manufacturing Technology(Grant No.JSKL2324K03)Key Research and Development Program of Hunan Province of China(Grant No.2023GK2026)。
文摘Rotational feeding combined with shift feeding electrochemical trepanning(RF-SF ECTr)is an effective method for machining aeroengine blisks.However,given the variable relative motion of the electrodes and the complex flow channels around the bending and twisting blades,the accessibility and uniformity of the flow field are poor in blisk RF-SF ECTr using the traditional electrolyte supply(TES)mode,resulting in poor machining stability and low machining efficiency.To improve the distribution of the flow field,a new multi-channel electrolyte supply(MCES)mode is proposed for blisk RF-SF ECTr,in which the position and volume of the electrolyte supply are controlled effectively by setting multiple inlet channels in the liquid inlet area.A flow-field simulation comparison between TES and MCES shows that better accessibility and uniformity of the flow-field distribution are achieved under MCES.To clarify further the flow-field distribution characteristics under RF-SF ECTr,a series of flow-field simulations was conducted at different machining depths.Based on the obtained dynamic change law for the flow field,to enhance further its uniformity and accessibility,a global coverage strategy for the electrolyte supply and a flow-field structure optimization method for MCES are proposed,which involve optimizing the number,diameter,and location of the inlet channels.After many simulations,the optimal MCES structure was achieved whereby the electrolyte covers all positions effectively in the processing area.To verify the proposed method as effective and correct,a series of RF-SF ECTr experiments was carried out.Under the optimized MCES mode,the feeding rate was increased from 0.8 mm/min with the TES mode to 2.0 mm/min,and the processing stability and efficiency were improved significantly.The methods presented here offer an effective guide for flow-field optimization when machining other components with complex spatial structures.
基金supported by the National Natural Science Foundation of China(62335012,62371258,624B2075,62205160,62435010)Young Scientific and Technological Talents in Tianjin(QN20230227)Fundamental Research Funds for the Central Universities,Nankai University(63231159).
文摘Vortex beams carrying orbital angular momentum(OAM)are of great significance for high-capacity communication and super-resolution imaging.However,there is a huge gap between the free-space vortices(FVs)and plasmonic vortices(PVs)on chips,and active manipulation as well as multiplexing in more channels have become a pressing demand.In this work,we demonstrate a terahertz(THz)cascaded metadevice composed of a helical plasmonic metasurface,a liquid crystal(LC)layer,and a helical dielectric metasurface.By spin-orbital angular momentum coupling and photon state superposition,PVs and FVs are generated with mode purity of over 85%on average.Due to the inversion asymmetric design of the helical metasurfaces,the parity symmetry breaking of OAM is realized(the topological charge numbers no longer occur in positive and negative pairs,but all are positive),generating 6 independent channels associated with the decoupled spin states and the near-/far-field positions.Moreover,by the LC integration,dynamic mode switching and energy distribution can be realized,finally obtaining up to 12 modes with a modulation ratio of above 70%.This active tuning and multi-channel multiplexing metadevice establishes a bridge connection between the PVs and FVs,exhibiting promising applications in THz communication,intelligent perception,and information processing.
文摘BACKGROUND Radical gastrectomy(RGE)for gastric carcinoma(GC)has exerted definite therapeutic efficacy in treating patients with GC.However,a notable risk of postoperative complications(POCs)persists among middle-aged and elderly patients with compromised physiological functions.Hence,developing and implementing reliable nursing interventions to optimize the comprehensive management of these patients is deemed imperative.AIM To analyze the association of multi-channel continuous nursing intervention with POCs,negative emotions(NEs),and quality of life(QoL)of patients undergoing RGE for GC.METHODS This retrospective study selected 99 patients who underwent RGE for GC in our hospital from May 2020 to May 2023.Participants were categorized into the control(n=49 cases)and research groups(n=50 cases)receiving routine and multi-channel continuous nursing care,respectively.Comparative analysis involved data on postoperative rehabilitation(time to first anal exhaust,oral feeding and ambulation,and hospital stay),complications(nausea and vomiting,delayed gastric emptying,and abdominal distension),NEs[Self-rating Anxiety(SAS)/Depression Scale(SDS)],treatment compliance,self-efficacy,and QoL[World Health Organization QoL Brief Version(WHOQOL-BREF)].RESULTS Compared to the control group,the research group demonstrated earlier first postoperative anal exhaust,oral feeding,and ambulation,shorter hospital stay,lower POC rate,and more reduced SAS and SDS scores postintervention,which was significantly lower than the baseline.The treatment compliance scores were significantly higher in the research group than in the control group in terms of medication adherence,daily exercise,reasonable diet,and regular review.Further,the research group demonstrated increased self-efficacy scores in terms of positive attitude,self-stress relief,and self-decision-making,as well as the overall score postintervention,which were higher than the control group.Moreover,the research group reported notably higher WHOQOL-BREF scores in domains such as physiology,psychology,social relations,and environment.CONCLUSION Multi-channel continuous nursing intervention prevents POCs in patients undergoing RGE for GC as well as significantly alleviates patients’NEs and boosts their QoL.
文摘This study investigates the impact of welding heat input on weldments of modified 9Cr-1Mo(P91)steel,a high-strength material that requires high-energy welding processes like submerged arc welding.In the as-welded condition,P91 steel welds primarily consist of untempered martensite,which transforms into tempered martensite during post-weld heat treatment(PWHT).Electron spectro-scopy analysis reveals the presence of M_(23)C_(6) and MX carbonitride precipitates at grain boundaries.Increasing the heat input leads to greater quantities of precipitates in the prior austenite grain boundaries,which can affect material properties.Weldment hardness profiles exhibit modest improvements,while ultimate tensile strength and toughness decrease with higher welding heat input,poten-tially due to the formation of a ferritic phase.Residual stress distributions are noticeably influenced by the welding heat input level.
基金supported by the National Natural Science Foundation of China(Nos.52471096 and 51971191).
文摘In this paper,Desulfovibrio vulgaris corrosion of X80 steel welded joint with different heat inputs was carefully investigated.The results confirmed that in the sterile medium,general corrosion rate and lo-calized corrosion susceptibility of heat affected zone(HAZ)were higher than those of weld zone(WZ)and base metal(BM).In the inoculated medium,the general corrosion rate of HAZ was still higher than that of WZ and BM.However,the number and depth of corrosion pits on WZ and BM surfaces,as well as the localized corrosion susceptibility,were much higher than those in HAZ,which was opposite to that in sterile environment,suggesting that the Desulfovibrio vulgaris corrosion of the welded joint was selective.With heat input increasing from 0.57 kJ/mm to 1.29 kJ/mm,general corrosion rate and localized corrosion susceptibility of HAZ and WZ simultaneously decreased in sterile or inoculated medium.In in-oculated medium,localized corrosion of HAZ decreased more sharply than weld zone.Within the range of heat inputs tested,the study discerned a positive correlation:higher heat inputs correlated with an enhanced corrosion resistance of welded joint,irrespective of environmental conditions being sterile or inoculated.The findings provide a solid basis for the welding parameter determination to steel pipelines in oil and gas transportation.
基金National Natural Science Foundation of China under Grant No.52478568National Key R&D Program of China under Grant Nos.2021YFC3100701 and 2022YFC3003503the Nature Science Foundation of Hubei Province under Grant No.2023AFA030。
文摘To analyze the correlation between the input energy parameters(V_(E))and typical intensity measures(IMs)of offshore ground motions,based on 273 earthquake events recorded by the K-NET in Japan,892 offshore ground motion records with moment magnitudes from 4.0 to 7.0 were used in this study.Residuals obtained through a ground motion model were calculated and analyzed for the correlation between V_(E) and amplitude,duration,frequency content and cumulative IMs.The results indicate that PGV and PGD have strong correlation with the V_(E)(T>0.2 s and T>0.4 s),the duration IMs have weakly negative correlation with the V_(E),Sd_(1) has a strong correlation with the V_(E) in the periods of T>0.4 s,T_(g) has a weak correlation with V_(E) and the cumulative IMs have strong correlation with the V_(E).The parametric predictive equations between typical IMs and V_(E) was proposed,and the differences between the prediction equations from the onshore ground motion records were compared.The differences in parametric predicted equations between offshore and onshore ground motions were confirmed in this study.Proposed correlation equations can be applied to offshore probabilistic seismic hazard analysis and the selection of ground motion records by generalized conditional intensity measures.
基金supported by the National Natural Science Foundation of China(Grant Nos.62376105,12101208,and 61906072)the Fundamental Research Funds for the Central Universities(Grant No.2662022XXQD001).
文摘This paper proposes a novel multivalued recurrent neural network model driven by external inputs,along with two innovative learning algorithms.By incorporating a multivalued activation function,the proposed model can achieve multivalued many-to-one associative memory,and the newly developed algorithms enable effective storage of many-to-one patterns in the coefficient matrix while maintaining the indispensability of inputs in many-to-one associative memory.The proposed learning algorithm addresses a critical limitation of existing models which fail to ensure completely erroneous outputs when facing partial input missing in many-to-one associative memory tasks.The methodology is rigorously derived through theoretical analysis,incorporating comprehensive verification of both the existence and global exponential stability of equilibrium points.Demonstrative examples are provided in the paper to show the effectiveness of the proposed theory.
基金National Natural Science Foundation of China(62373102)Jiangsu Natural Science Foundation(BK20221455)Anhui Provincial Key Research and Development Project(2022i01020013)。
文摘Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach.
基金supported in part by the National Key Research and Development Program of China under Grant 2023YFA1011803in part by Natural Science Foundation of Chongqing,China under Grant CSTB2023NSCQ-MSX0588+2 种基金in part by the Fundamental Research Funds for the Central Universities,China under Grant 2023CDJKYJH047in part by the National Natural Science Foundation of China under Grant 62273064,Grant 61991400,Grant 61991403,Grant 61933012,Grant 62250710167,Grant 62203078in part by Innovation Support Program for International Students Returning to China under Grant cx2022016.
文摘This paper addresses the lane-keeping control problem for autonomous ground vehicles subject to input saturation and uncertain system parameters.An enhanced adaptive terminal sliding mode based prescribed performance control scheme is proposed,which enables the lateral position error of the vehicle to be kept within the prescribed performance boundaries all the time.This is achieved by firstly introducing an improved performance function into the controller design such that the stringent initial condition requirements can be relaxed,which further allows the global prescribed performance control result,and then,developing a multivariable adaptive terminal sliding mode based controller such that both input saturation and parameter uncertainties are handled effectively,which further ensures the robust lane-keeping control.Finally,the proposed control strategy is validated through numerical simulations,demonstrating its effectiveness.
基金financially supported by the National Natural Science Foundation of China(52474361).
文摘The effects of Ti/N ratio on the number densities of nano particles,the size of the prior austenite grain(PAG)and the toughness of the heat-affected zone(HAZ)of Mg-deoxidized steels were studied after high heat input welding of 400 kJ/cm.With increasing the Ti/N ratio from 2.7 to 5.7,the cuboid nano-sized particles are formed,and their number density increases.The area fractions of ductile intragranular acicular ferrites(IAFs)have the highest value and the area fractions of brittle microstructures of ferrite side plates and upper bainites have the lowest value in TN30 steel.With the Ti/N ratio of about 3.0,the HAZ of steel plate has the best low-temperature toughness.With increasing the Ti/N ratio from 2.7 to 5.7,the PAG sizes after the high-temperature laser scanning confocal microscopy observation decrease linearly with increasing the number densities of nano-sized particles.The PAG size of TN30 steel is between 100 and 150μm,which is conducive to the nucleation of IAFs.
基金supported by the National Natural Science Foundation of China(62373302,62333009)
文摘This paper investigates the secure impulsive consensus of Lipschitz-type nonlinear multi-agent systems(MASs) with input saturation. According to the coupling of input saturation and denial of service(DoS) attacks, impulsive control for MASs becomes extremely challenging. Considering general DoS attacks,this paper provides the sufficient conditions for the almost sure consensus of the MASs with input saturation, where the error system can achieve almost sure local exponential stability.Through linear matrix inequalities(LMIs), the relation between the trajectory boundary and DoS attacks is characterized, and the trajectory boundary is estimated. Furthermore, an optimization method of the domain of attraction is proposed to maximize the size. And a non-conservative and practical boundary is proposed to characterize the effect of DoS attacks on MASs. Finally, considering a multi-agent system with typical Chua's circuit dynamic model, an example is provided to illustrate the theorems' correctness.
基金financially supported by the Sichuan Science and Technology Program(Grant No.2023NSFSC1980)。
文摘An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller.
基金Supported by the National Natural Science Foundation of China(No.51275098)National Natural Science Foundation of China(No.52375416)Natural Science Foundation of Guangdong Province(No.2023A1515012028).
文摘Multi-channel wire electrical discharge machining(MC-WEDM)is an advanced and high-efficiency machining technology,but its material erosion mechanism remains unclear.In this study,dual-channel wire electrical discharge machining was utilized as a case study to investigate the impact of the plunging current on both the plasma characteristics and material erosion under complex discharge conditions.Force analysis was conducted on the charged particles in the plasma,revealing that the plunging current can influence the trajectory of the plasma by modifying the selfmagnetic field.The particle tracking method was employed to simulate the motion of electrons,revealing that in MC-WEDM,electrons exhibited a larger and more uniform distribution.The evolution of the plasma within a single-pulse discharge was observed using high-speed photography technology,and the discharge signals collected from different channels were analyzed.It was observed that the plasma in MC-WEDM experienced more intense back-and-forth sweeping on the workpiece surface,facilitating the ejection of molten metal from the molten pool.The oscillating plasma exhibits a larger processing area and a more uniform distribution of energy,resulting in the formation of larger and shallower discharge craters.Furthermore,the influence of the amplitude and time point of the plunging current on the volume and area of the discharge craters was summarized.Finally,MC-WEDM significantly reduced the occurrence of holes and micro-cracks and exhibited a thinner recast layer in the continuous discharge experiment.
基金supported in part by the National Natural Science Foundation of China (62173182,61773212)the Intergovernmental International Science and Technology Innovation Cooperation Key Project of Chinese National Key R&D Program (2021YFE0102700)。
文摘This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Considering the model complexity and input deadzone,a fractional-order ultra-local model is proposed to formulate the original dynamic system for simple controller design.Firstly,the control gain of ultra-local model is considered as a constant.The fractional-order sliding mode technique is designed to stabilize the closed-loop system,while fractional-order time-delay estimation is combined with neural network to estimate the lumped disturbance.Correspondingly,a fractional-order ultra-local model-based neural network sliding mode controller(FO-NNSMC) is proposed.Secondly,to avoid disadvantageous effect of improper gain selection on the control performance,the control gain of ultra-local model is considered as an unknown parameter.Then,the Nussbaum technique is introduced into the FO-NNSMC to deal with the stability problem with unknown gain.Correspondingly,a fractional-order ultra-local model-based adaptive neural network sliding mode controller(FO-ANNSMC) is proposed.Moreover,the stability analysis of the closed-loop system with the proposed method is presented by using the Lyapunov theory.Finally,with the co-simulations on virtual prototype of 7-DOF iReHave upper-limb exoskeleton and experiments on 2-DOF upper-limb exoskeleton,the obtained compared results illustrate the effectiveness and superiority of the proposed method.
基金This work was financially supported by the National Natural Science Foundation of China(No.52275333).
文摘High speed sintering,a new powder-bed fusion additive manufacturing technology,utilizes infrared lights(IR)to intensely heat and melt polymer powders.The presence of defects such as porosity,which is associated with particle coalescence,is highly dependdent on the level of energy input.This study investigate the influcence of energy input on porosity and its subsequent effects on the mechanical properties and microstructures of PEBA parts.The parts were manufactured with a variety of lamp powers,resulting in a range of energy input levels spanning from low to high.Subsequebtly,they underwent testing using Archimedes’method,followed by tensile testing.The porosity,mechanical characteristics,and energy input exhibit a strong correlation;inadequate energy input was the primary cause of pore formation.Using the reduced IR light power resulted in the following outcomes:porosity,ultimate tensile strength,and elongation of 1.37%,7.6 MPa,and 194.2%,respectively.When the energy input was further increased,the porosity was reduced to as low as 0.05%and the ultimate tensile strength and elongation were increased to their peak values of 233.8%and 9.1 MPa,respectively.
文摘This paper investigates the jammerassisted multi-channel covert wireless communication(CWC)by exploiting the randomness of sub-channel selection to confuse the warden.In particular,we propose two sub-channel selection transmission schemes,named random sub-channel selection(RSS)scheme and maximum sub-channel selection(MSS)scheme,to enhance communication covertness.For each proposed scheme,we first derive closed-form expressions of the transmission outage probability(TOP),the average effective rate,and the minimum average detection error probability(DEP).Then,the average effective covert rate(ECR)is maximized by jointly optimizing the transmit power at the transmitter and the number of sub-channels.Numerical results show that there is an optimal value of the number of sub-channels that maximizes the average ECR.We also find that to achieve the maximum average ECR,a larger number of subchannels are needed facing a stricter covertness constraint.
基金partially supported by the Project for the National Natural Science Foundation of China (72174121, 71774111)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learningthe Project for the Natural Science Foundation of Shanghai (21ZR1444100)
文摘The rapid development of the Internet has accelerated the spread of rumors,posing challenges to social cohesion and stability.To address this,a multi-channel rumor propagation model incorporating individual game behavior and time delay is proposed.It depicts individuals strategically choosing propagation channels in the rumor spread process,capturing real-world intricacies more faithfully.Specifically,the model allowing spreaders to choose between text and video information base channels.Strategy adoption hinges on benefits versus costs,with payoffs dictating strategy and the propagation process determining an individual's state.By theoretical analysis of the model,the propagation threshold and equilibrium points are obtained.Then the stability of the model is further demonstrated based on Routh-Hurwitz judgment and Descartes'Rule of Signs.Numerical simulations are conducted to verify the correctness of the theoretical results and the sensitivity of the model to key parameters.The outcomes reveal that increasing the propagation cost of spreaders can significantly curb the spread of rumors.In contrast to the classical ISR model,rumors spread faster and more widely in the improved multi-channel rumor propagation model in this paper,which is a feature more aligned with real-world scenarios.Finally,the validity and predictive ability of the model are verified by using real rumor propagation data sets,indicating that the improved multi-channel rumor propagation model has good practical application and predictive value.
基金Supported by Sichuan Provincial Science and Technology Program(Grant No.2024NSFSC0902)National Natural Science Foundation of China(Grant Nos.52405254,52105108,52375039)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(Grant No.2023QNRC001)Hebei Provincial Natural Science Foundation(Grant No.E2023105039).
文摘At present,the active control of gear vibration mostly relies on existing algorithms.In order to achieve effective vibration reduction of the gear system,particularly during the vibration process,this paper proposes a multi-channel VSMFxLMS algorithm based on the FxLMS algorithm.This novel approach takes into account the time-varying nature of the vibration signal during gear vibration.Adaptive filter power coefficients are updated in a skip-tongue variable-step manner using momentum factors.Firstly,the paper establishes the dynamics model of the gear system and analyzes the nonlinear dynamic characteristics of the system.It then examines the vibration damping effect of the FxLMS algorithm and analyzes its performance under different gear system motion states,considering different step lengths and momentum factors.Lastly,the proposed VSMFxLMS algorithm is compared with the FxLMS algorithm,highlighting the superiority of the former.Overall,this research highlights the potential of a multi-channel VSMFxLMS algorithm in reducing vibrations in gear systems.The study optimizes the performance of gear systems while using advanced control strategies.