Photoacoustic imaging(PAI)employs short laser pulses to excite absorbing materials,producing ultrasonic waves spanning a broad spectrum of frequencies.These ultrasonic waves are captured surrounding the sample and uti...Photoacoustic imaging(PAI)employs short laser pulses to excite absorbing materials,producing ultrasonic waves spanning a broad spectrum of frequencies.These ultrasonic waves are captured surrounding the sample and utilized to reconstruct the initial pressure distribution tomographically.Despite the wide spectral range of the laser-generated photoacoustic signal,an individual transducer can only capture a limited segment of the signal due to its constrained bandwidth.Herein,we have developed a multi-bandwidth ring array photoacoustic computed tomography(PACT)system,incorporating a probe with two semi-ring arrays:one for high frequency and the other for low frequency.Utilizing the two semi-ring array PAIs,we have devised a specialized deep learning model,comprising two serially connected U-net architectures,to autonomously generate multi-bandwidth full-view PAIs.Preliminary results from simulations and in vivo experiments illustrate the system's robust multi-bandwidth imaging capabilities,achieving an excellent PSNR of 34.78 dB and a structural similarity index measure(SSIM)of 0.94 in the high-frequency reconstruction of complex mouse abdominal structures.This innovative PACT system is notable for its capability to seamlessly acquire multi-bandwidth full-view PAIs,thereby advancing the application of PAI technology in the biomedical domain.展开更多
针对主瓣干扰(main-lobe jamming,MLJ)在空域与有用信号(signal of interest,SOI)高度相关而难以被有效抑制的问题,基于跳变编码波形的抗MLJ系统通过对波形进行编码调制,接收端据此重构接收信号,利用码-空映射等效改变SOI空域信道,实现...针对主瓣干扰(main-lobe jamming,MLJ)在空域与有用信号(signal of interest,SOI)高度相关而难以被有效抑制的问题,基于跳变编码波形的抗MLJ系统通过对波形进行编码调制,接收端据此重构接收信号,利用码-空映射等效改变SOI空域信道,实现SOI与干扰信号在空域的分辨。但理论分析发现,信号带宽的增大将掩盖编码特征并使该方法失效。为此,利用多抽头系统的时-频映射特质,通过多抽头结构设计降低带宽掩盖,重新凸显编码特征。仿真结果显示,所提方法可在10 MHz的全带宽内,使干扰对消比大于20 dB,SOI对消比小于3 dB,具有较好的抗主瓣非零带宽干扰性能。展开更多
基金supported by the National Key R&D Program of China[Grant No.2023YFF0713600]the National Natural Science Foundation of China[Grant No.62275062]+2 种基金the Project of Shandong Innovation and Startup Community of High-end Medical Apparatus and Instruments[Grant No.2021-SGTTXM-005]the Shandong Province Technology Innovation Guidance Plan(Central Leading Local Science and Technology Development Fund)[Grant No.YDZX2023115]the Taishan Scholar Special Funding Project of Shandong Province,and the Shandong Laboratory of Advanced Biomaterials and Medical Devices in Weihai[Grant No.ZL202402].
文摘Photoacoustic imaging(PAI)employs short laser pulses to excite absorbing materials,producing ultrasonic waves spanning a broad spectrum of frequencies.These ultrasonic waves are captured surrounding the sample and utilized to reconstruct the initial pressure distribution tomographically.Despite the wide spectral range of the laser-generated photoacoustic signal,an individual transducer can only capture a limited segment of the signal due to its constrained bandwidth.Herein,we have developed a multi-bandwidth ring array photoacoustic computed tomography(PACT)system,incorporating a probe with two semi-ring arrays:one for high frequency and the other for low frequency.Utilizing the two semi-ring array PAIs,we have devised a specialized deep learning model,comprising two serially connected U-net architectures,to autonomously generate multi-bandwidth full-view PAIs.Preliminary results from simulations and in vivo experiments illustrate the system's robust multi-bandwidth imaging capabilities,achieving an excellent PSNR of 34.78 dB and a structural similarity index measure(SSIM)of 0.94 in the high-frequency reconstruction of complex mouse abdominal structures.This innovative PACT system is notable for its capability to seamlessly acquire multi-bandwidth full-view PAIs,thereby advancing the application of PAI technology in the biomedical domain.