期刊文献+
共找到1,110篇文章
< 1 2 56 >
每页显示 20 50 100
Gait Planning,and Motion Control Methods for Quadruped Robots:Achieving High Environmental Adaptability:A Review
1
作者 Sheng Dong Feihu Fan +2 位作者 Yinuo Chen Shangpeng Guo Jiayu Liu 《Computer Modeling in Engineering & Sciences》 2025年第4期1-50,共50页
Legged robots have always been a focal point of research for scholars domestically and internationally.Compared to other types of robots,quadruped robots exhibit superior balance and stability,enabling them to adapt e... Legged robots have always been a focal point of research for scholars domestically and internationally.Compared to other types of robots,quadruped robots exhibit superior balance and stability,enabling them to adapt effectively to diverse environments and traverse rugged terrains.This makes them well-suited for applications such as search and rescue,exploration,and transportation,with strong environmental adaptability,high flexibility,and broad application prospects.This paper discusses the current state of research on quadruped robots in terms of development status,gait trajectory planning methods,motion control strategies,reinforcement learning applications,and control algorithm integration.It highlights advancements in modeling,optimization,control,and data-driven approaches.The study identifies the adoption of efficient gait planning algorithms,the integration of reinforcement learning-based control technologies,and data-driven methods as key directions for the development of quadruped robots.The aim is to provide theoretical references for researchers in the field of quadruped robotics. 展开更多
关键词 Quadruped robots model-based planning motion control autonomous learning algorithmintegration
在线阅读 下载PDF
Whole-Body Hybrid Torque-Position Control for Balancing with a New Wheeled Bipedal Robot
2
作者 Yi Xiong Haojie Liu +3 位作者 Bingxing Chen Yanjie Chen Ligang Yao Zongxing Lu 《Journal of Bionic Engineering》 2025年第2期626-641,共16页
The wheeled bipedal robots have great application potential in environments with a mixture of structured and unstructured terrain. However, wheeled bipedal robots have problems such as poor balance ability and low mov... The wheeled bipedal robots have great application potential in environments with a mixture of structured and unstructured terrain. However, wheeled bipedal robots have problems such as poor balance ability and low movement level on rough roads. In this paper, a novel and low-cost wheeled bipedal robot with an asymmetrical five-link mechanism is proposed, and the kinematics of the legs and the dynamics of the Wheeled Inverted Pendulum (WIP) are modeled. The primary balance controller of the wheeled bipedal robot is built based on the Linear Quadratic Regulator (LQR) and the compensation method of the virtual pitch angle adjusting the Center of Mass (CoM) position, then the whole-body hybrid torque-position control is established by combining attitude and leg controllers. The stability of the robot’s attitude control and motion is verified with simulations and prototype experiments, which confirm the robot’s ability to pass through complex terrain and resist external interference. The feasibility and reliability of the proposed control model are verified. 展开更多
关键词 Wheeled robots Legged robots motion control Mechanism Design
在线阅读 下载PDF
Three-Dimensional Trajectory Planning for Robotic Manipulators Using Model Predictive Control and Point Cloud Optimization
3
作者 Zeinel Momynkulov Azhar Tursynova +3 位作者 Olzhas Olzhayev Akhanseri Ikramov Sayat Ibrayev Batyrkhan Omarov 《Computer Modeling in Engineering & Sciences》 2025年第10期891-918,共28页
Robotic manipulators increasingly operate in complex three-dimensional workspaces where accuracy and strict limits on position,velocity,and acceleration must be satisfied.Conventional geometric planners emphasize path... Robotic manipulators increasingly operate in complex three-dimensional workspaces where accuracy and strict limits on position,velocity,and acceleration must be satisfied.Conventional geometric planners emphasize path smoothness but often ignore dynamic feasibility,motivating control-aware trajectory generation.This study presents a novel model predictive control(MPC)framework for three-dimensional trajectory planning of robotic manipulators that integrates second-order dynamic modeling and multi-objective parameter optimization.Unlike conventional interpolation techniques such as cubic splines,B-splines,and linear interpolation,which neglect physical constraints and system dynamics,the proposed method generates dynamically feasible trajectories by directly optimizing over acceleration inputs while minimizing both tracking error and control effort.A key innovation lies in the use of Pareto front analysis for tuning prediction horizon and sampling time,enabling a systematic balance between accuracy and motion smoothness.Comparative evaluation using simulated experiments demonstrates that the proposed MPC approach achieves a minimum mean absolute error(MAE)of 0.170 and reduces maximum acceleration to 0.0217,compared to 0.0385 in classical linear methods.The maximum deviation error was also reduced by approximately 27.4%relative to MPC configurations without tuned parameters.All experiments were conducted in a simulation environment,with computational times per control cycle consistently remaining below 20 milliseconds,indicating practical feasibility for real-time applications.Thiswork advances the state-of-the-art inMPC-based trajectory planning by offering a scalable and interpretable control architecture that meets physical constraints while optimizing motion efficiency,thus making it suitable for deployment in safety-critical robotic applications. 展开更多
关键词 Trajectory planning robotic manipulator dynamic constraints motion planning SPLINE real-time control
在线阅读 下载PDF
Bionic Jumping of Humanoid Robot via Online Centroid Trajectory Optimization and High Dynamic Motion Controller
4
作者 Xiangji Wang Wei Guo +3 位作者 Zhicheng He Rongchao Li Fusheng Zha Lining Sun 《Journal of Bionic Engineering》 CSCD 2024年第6期2759-2778,共20页
The dynamic motion capability of humanoid robots is a key indicator for evaluating their performance.Jumping,as a typical dynamic motion,is of great significance for enhancing the robot’s flexibility and terrain adap... The dynamic motion capability of humanoid robots is a key indicator for evaluating their performance.Jumping,as a typical dynamic motion,is of great significance for enhancing the robot’s flexibility and terrain adaptability in unstructured environments.However,achieving high-dynamic jumping control of humanoid robots has become a challenge due to the high degree of freedom and strongly coupled dynamic characteristics.The idea for this paper originated from the human response process to jumping commands,aiming to achieve online trajectory optimization and jumping motion control of humanoid robots.Firstly,we employ nonlinear optimization in combination with the Single Rigid Body Model(SRBM)to generate a robot’s Center of Mass(CoM)trajectory that complies with physical constraints and minimizes the angular momentum of the CoM.Then,a Model Predictive Controller(MPC)is designed to track and control the CoM trajectory,obtaining the required contact forces at the robot’s feet.Finally,a Whole-Body Controller(WBC)is used to generate full-body joint motion trajectories and driving torques,based on the prioritized sequence of tasks designed for the jumping process.The control framework proposed in this paper considers the dynamic characteristics of the robot’s jumping process,with a focus on improving the real-time performance of trajectory optimization and the robustness of controller.Simulation and experimental results demonstrate that our robot successfully executed high jump motions,long jump motions and continuous jump motions under complex working conditions. 展开更多
关键词 Humanoid robots Jumping motion control Centroid trajectory optimization Optimization and optimal control
在线阅读 下载PDF
Human Observation-Inspired Universal Image Acquisition Paradigm Integrating Multi-Objective Motion Planning and Control for Robotics
5
作者 Haotian Liu Yuchuang Tong Zhengtao Zhang 《IEEE/CAA Journal of Automatica Sinica》 CSCD 2024年第12期2463-2475,共13页
Image acquisition stands as a prerequisite for scrutinizing surfaces inspection in industrial high-end manufacturing.Current imaging systems often exhibit inflexibility,being confined to specific objects and encounter... Image acquisition stands as a prerequisite for scrutinizing surfaces inspection in industrial high-end manufacturing.Current imaging systems often exhibit inflexibility,being confined to specific objects and encountering difficulties with diverse industrial structures lacking standardized computer-aided design(CAD)models or in instances of deformation.Inspired by the multidimensional observation of humans,our study introduces a universal image acquisition paradigm tailored for robotics,seamlessly integrating multi-objective optimization trajectory planning and control scheme to harness measured point clouds for versatile,efficient,and highly accurate image acquisition across diverse structures and scenarios.Specifically,we introduce an energybased adaptive trajectory optimization(EBATO)method that combines deformation and deviation with dual-threshold optimization and adaptive weight adjustment to improve the smoothness and accuracy of imaging trajectory and posture.Additionally,a multi-optimization control scheme based on a meta-heuristic beetle antennal olfactory recurrent neural network(BAORNN)is proposed to track the imaging trajectory while addressing posture,obstacle avoidance,and physical constraints in industrial scenarios.Simulations,real-world experiments,and comparisons demonstrate the effectiveness and practicality of the proposed paradigm. 展开更多
关键词 Industrial robotics human observation-inspired meta-heuristic recurrent neural network motion planning and control universal image acquisition
在线阅读 下载PDF
Research on Contour Error Based on CNC Multi-axis Motion Control System
6
作者 SUN Jian-ren HU Chi-bing WANG Bao-min 《International Journal of Plant Engineering and Management》 2010年第2期125-128,共4页
The contour error was analyzed based on CNC multi-axis motion control, the contour error model was obtained focused on beeline and different radius of curvature and common contour of curve, for a CNC biaxial motion co... The contour error was analyzed based on CNC multi-axis motion control, the contour error model was obtained focused on beeline and different radius of curvature and common contour of curve, for a CNC biaxial motion control system and the mechanism of producing contour error and the relationship between tracking error and contour error were presented. The theoretical and practical significance of modeling error and controlling error in motion control systems was carried out. 展开更多
关键词 CNC multi-axis motion control contour error tracking error
在线阅读 下载PDF
A learning-based control pipeline for generic motor skills for quadruped robots 被引量:2
7
作者 Yecheng SHAO Yongbin JIN +2 位作者 Zhilong HUANG Hongtao WANG Wei YANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第6期443-454,共12页
Performing diverse motor skills with a universal controller has been a longstanding challenge for legged robots.While motion imitation-based reinforcement learning(RL)has shown remarkable performance in reproducing de... Performing diverse motor skills with a universal controller has been a longstanding challenge for legged robots.While motion imitation-based reinforcement learning(RL)has shown remarkable performance in reproducing designed motor skills,the trained controller is only suitable for one specific type of motion.Motion synthesis has been well developed to generate a variety of different motions for character animation,but those motions only contain kinematic information and cannot be used for control.In this study,we introduce a control pipeline combining motion synthesis and motion imitation-based RL for generic motor skills.We design an animation state machine to synthesize motion from various sources and feed the generated kinematic reference trajectory to the RL controller as part of the input.With the proposed method,we show that a single policy is able to learn various motor skills simultaneously.Further,we notice the ability of the policy to uncover the correlations lurking behind the reference motions to improve control performance.We analyze this ability based on the predictability of the reference trajectory and use the quantified measurements to optimize the design of the controller.To demonstrate the effectiveness of our method,we deploy the trained policy on hardware and,with a single control policy,the quadruped robot can perform various learned skills,including automatic gait transitions,high kick,and forward jump. 展开更多
关键词 Quadruped robot Reinforcement learning(RL) motion synthesis control
原文传递
Dynamics model of underwater robot motion control in 6 degrees of freedom 被引量:18
8
作者 李晔 刘建成 沈明学 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第4期456-459,共4页
In order to analyze underwater robot control system dynamics features, a system 6-DOF dynamics model was founded. Underwater robot linear and nonlinear hydrodynamics were analyzed by Taylor series, based on general mo... In order to analyze underwater robot control system dynamics features, a system 6-DOF dynamics model was founded. Underwater robot linear and nonlinear hydrodynamics were analyzed by Taylor series, based on general motion equation. Special control system motion equation was deduced by cluster of inertial items and non-inertial items. For program convenience, motion equation matrix format was presented. Experimental principles of screw propellers, rudders and wings were discussed. Experimental data least-square curve fitting, interpolation and their corresponding traditional equation helped us to obtain the whole system dynamic response procedure. A series of simulation experiments show that the dynamics model is correct and reliable. The model can provide theory proof for analyzing underwater robot motion control system physics characters and provide a mathematic model for traditional control method. 展开更多
关键词 underwater robot dynamics model motion control
在线阅读 下载PDF
A Real Time Self-Tuning Motion Controller for Mobile Robot Systems 被引量:6
9
作者 Mohamed Boukens Abdelkrim Boukabou Mohammed Chadli 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期84-96,共13页
This paper proposes an intelligent controller for motion control of robotic systems to obtain high precision tracking without the need for a real-time trial and error method.In addition, a new self-tuning algorithm ha... This paper proposes an intelligent controller for motion control of robotic systems to obtain high precision tracking without the need for a real-time trial and error method.In addition, a new self-tuning algorithm has been developed based on both the ant colony algorithm and a fuzzy system for real-time tuning of controller parameters. Simulations and experiments using a real robot have been addressed to demonstrate the success of the proposed controller and validate the theoretical analysis. Obtained results confirm that the proposed controller ensures robust performance in the presence of disturbances and parametric uncertainties without the need for adjustment of control law parameters by a trial and error method. 展开更多
关键词 Learning and adaptive SYSTEMS motion control METAHEURISTIC robust control real-time tuning SELF-TUNING WHEELED mobile robot
在线阅读 下载PDF
Hybrid task priority-based motion control of a redundant free-floating space robot 被引量:2
10
作者 Cheng ZHOU Minghe JIN +2 位作者 Yechao LIU Zongwu XIE Hong LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第6期2024-2033,共10页
This paper presents a novel hybrid task priority-based motion planning algorithm of a space robot. The satellite attitude control task is defined as the primary task, while the leastsquares-based non-strict task prior... This paper presents a novel hybrid task priority-based motion planning algorithm of a space robot. The satellite attitude control task is defined as the primary task, while the leastsquares-based non-strict task priority solution of the end-effector plus the multi-constraint task is viewed as the secondary task. Furthermore, a null-space task compensation strategy in the joint space is proposed to derive the combination of non-strict and strict task-priority motion planning,and this novel combination is termed hybrid task priority control. Thus, the secondary task is implemented in the primary task's null-space. Besides, the transition of the state of multiple constraints between activeness and inactiveness will only influence the end-effector task without any effect on the primary task. A set of numerical experiments made in a real-time simulation system under Linux/RTAI shows the validity and feasibility of the proposed methodology. 展开更多
关键词 Base attitude control Hybrid task-priority motion planning Multiple constraints Redundant space robot
原文传递
Modeling and Adaptive Neural Network Control for a Soft Robotic Arm With Prescribed Motion Constraints 被引量:2
11
作者 Yan Yang Jiangtao Han +2 位作者 Zhijie Liu Zhijia Zhao Keum-Shik Hong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第2期501-511,共11页
This paper presents a dynamic model and performance constraint control of a line-driven soft robotic arm.The dynamics model of the soft robotic arm is established by combining the screw theory and the Cosserat theory.... This paper presents a dynamic model and performance constraint control of a line-driven soft robotic arm.The dynamics model of the soft robotic arm is established by combining the screw theory and the Cosserat theory.The unmodeled dynamics of the system are considered,and an adaptive neural network controller is designed using the backstepping method and radial basis function neural network.The stability of the closed-loop system and the boundedness of the tracking error are verified using Lyapunov theory.The simulation results show that our approach is a good solution to the motion constraint problem of the line-driven soft robotic arm. 展开更多
关键词 Adaptive control cosserat theory prescribed motion constraints soft robotic arm
在线阅读 下载PDF
Compliant landing of a trotting quadruped robot based on hybrid motion/force robust control 被引量:2
12
作者 郎琳 王剑 +1 位作者 韦庆 马宏绪 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1970-1980,共11页
A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landi... A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landing phase is added between the swing phase and the stance phase, where the desired contact force is set as a small positive constant. Secondly, the joint torque optimization of the stance legs is formulated as a quadratic programming(QP) problem subject to equality and inequality/bound constraints. And a primal-dual dynamical system solver based on linear variational inequalities(LVI) is applied to solve this QP problem. Furthermore, based on the optimization results, a hybrid motion/force robust controller is designed to realize the tracking of the contact force, while the constraints of the stance feet landing angles are fulfilled simultaneously. Finally, the experiments are performed to validate the proposed methods. 展开更多
关键词 trotting quadruped robots compliant landing joint torque optimization quadratic programming(QP) hybrid motion/force robust control
在线阅读 下载PDF
Adaptive neural network control for coordinated motion of a dual-arm space robot system with uncertain parameters 被引量:1
13
作者 郭益深 陈力 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第9期1131-1140,共10页
Control of coordinated motion between the base attitude and the arm joints of a free-floating dual-arm space robot with uncertain parameters is discussed. By combining the relation of system linear momentum conversati... Control of coordinated motion between the base attitude and the arm joints of a free-floating dual-arm space robot with uncertain parameters is discussed. By combining the relation of system linear momentum conversation with the Lagrangian approach, the dynamic equation of a robot is established. Based on the above results, the free-floating dual-arm space robot system is modeled with RBF neural networks, the GL matrix and its product operator. With all uncertain inertial system parameters, an adaptive RBF neural network control scheme is developed for coordinated motion between the base attitude and the arm joints. The proposed scheme does not need linear parameterization of the dynamic equation of the system and any accurate prior-knowledge of the actual inertial parameters. Also it does not need to train the neural network offline so that it would present real-time and online applications. A planar free-floating dual-arm space robot is simulated to show feasibility of the proposed scheme. 展开更多
关键词 flee-floating dual-arm space robot RBF neural network GL matrix andits product operator coordinated motion adaptive control
在线阅读 下载PDF
Modelling and Backstepping Motion Control of the Aircraft Skin Inspection Robot 被引量:1
14
作者 Junjun Jiang Congqing Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第7期105-121,共17页
Aircraft skin health concerns whether the aircraft can fly safely.In this paper,an improved mechanical structure of the aircraft skin inspection robot was introduced.Considering that the aircraft skin surface is a cur... Aircraft skin health concerns whether the aircraft can fly safely.In this paper,an improved mechanical structure of the aircraft skin inspection robot was introduced.Considering that the aircraft skin surface is a curved environment,we assume that the curved environment is equivalent to an inclined plane with a change in inclination.Based on this assumption,the Cartesian dynamics model of the robot is established using the Lagrange method.In order to control the robot’s movement position accurately,a position backstepping control scheme for the aircraft skin inspection robot was presented.According to the dynamic model and taking into account the problems faced by the robot during its movement,a position constrained controller of the aircraft skin inspection robot is designed using the barrier Lyapunov function.Aiming at the disturbances in the robot,we adopt a fuzzy system to approximate the unknown dynamics related with system states.Finally,the simulation results of the designed position constrained controller were compared with the sliding mode controller,and prove the validity of the position constrained controller. 展开更多
关键词 Aircraft SKIN inspection robot dynamics MODELLING BACKSTEPPING control fuzzy system barrier LYAPUNOV function motion control
在线阅读 下载PDF
Takagi–Sugeno Fuzzy Modeling and Control for Effective Robotic Manipulator Motion 被引量:1
15
作者 Izzat Al-Darraji Ayad AKakei +5 位作者 Ayad Ghany Ismaeel Georgios Tsaramirsis Fazal Qudus Khan Princy Randhawa Muath Alrammal Sadeeq Jan 《Computers, Materials & Continua》 SCIE EI 2022年第4期1011-1024,共14页
Robotic manipulators are widely used in applications that require fast and precise motion.Such devices,however,are prompt to nonlinear control issues due to the flexibility in joints and the friction in the motors wit... Robotic manipulators are widely used in applications that require fast and precise motion.Such devices,however,are prompt to nonlinear control issues due to the flexibility in joints and the friction in the motors within the dynamics of their rigid part.To address these issues,the Linear Matrix Inequalities(LMIs)and Parallel Distributed Compensation(PDC)approaches are implemented in the Takagy–Sugeno Fuzzy Model(T-SFM).We propose the following methodology;initially,the state space equations of the nonlinear manipulator model are derived.Next,a Takagy–Sugeno Fuzzy Model(T-SFM)technique is used for linearizing the state space equations of the nonlinear manipulator.The T-SFM controller is developed using the Parallel Distributed Compensation(PDC)method.The prime concept of the designed controller is to compensate for all the fuzzy rules.Furthermore,the Linear Matrix Inequalities(LMIs)are applied to generate adequate cases to ensure stability and control.Convex programming methods are applied to solve the developed LMIs problems.Simulations developed for the proposed model show that the proposed controller stabilized the system with zero tracking error in less than 1.5 s. 展开更多
关键词 Nonlinear robot manipulator precise fast robot motion flexible joints motor friction Takagy-Sugeno fuzzy control modeling nonlinear flexible robot system
在线阅读 下载PDF
Motion Control Algorithms for a Free-swimming Biomimetic Robot Fish 被引量:2
16
作者 YUJun-Zhi CHENEr-Kui +1 位作者 WANGShuo TANMin 《自动化学报》 EI CSCD 北大核心 2005年第4期537-542,共6页
A practical motion control strategy for a radio-controlled, 4-link and free-swimmingbiomimetic robot fish is presented. Based on control performance of the fish the fish s motion controltask is decomposed into on-line... A practical motion control strategy for a radio-controlled, 4-link and free-swimmingbiomimetic robot fish is presented. Based on control performance of the fish the fish s motion controltask is decomposed into on-line speed control and orientation control. The speed control algorithm isimplemented by using piecewise control, and orientation control is realized by fuzzy logic. Combiningwith step control and fuzzy control, a point-to-point (PTP) control algorithm is proposed and appliedto the closed-loop experimental system that uses a vision-based position sensing subsystem to providefeedback. Experiments confirm the reliability and e?ectiveness of the presented algorithms. 展开更多
关键词 运动控制算法 仿生学 运动控制 点到点控制 机器人
在线阅读 下载PDF
Research of Parallel Robot Program Grade Motion Control
17
作者 孔令富 黄真 +1 位作者 蔡鹤皋 贾红瑜 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1996年第1期64-68,共5页
Taking a six-DOF hydraulic parallel experimental robot designed and manufactured by the authors as the object of study, we researched the track plan, special track producing method, place(position) and velocity contro... Taking a six-DOF hydraulic parallel experimental robot designed and manufactured by the authors as the object of study, we researched the track plan, special track producing method, place(position) and velocity control algorithm of parallel robot,etc. All researches have been verified by experimental prototype. 展开更多
关键词 ss:Parallel robot motion control TRACK PLAN
在线阅读 下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部