Medical institutions frequently utilize cloud servers for storing digital medical imaging data, aiming to lower both storage expenses and computational expenses. Nevertheless, the reliability of cloud servers as third...Medical institutions frequently utilize cloud servers for storing digital medical imaging data, aiming to lower both storage expenses and computational expenses. Nevertheless, the reliability of cloud servers as third-party providers is not always guaranteed. To safeguard against the exposure and misuse of personal privacy information, and achieve secure and efficient retrieval, a secure medical image retrieval based on a multi-attention mechanism and triplet deep hashing is proposed in this paper (abbreviated as MATDH). Specifically, this method first utilizes the contrast-limited adaptive histogram equalization method applicable to color images to enhance chest X-ray images. Next, a designed multi-attention mechanism focuses on important local features during the feature extraction stage. Moreover, a triplet loss function is utilized to learn discriminative hash codes to construct a compact and efficient triplet deep hashing. Finally, upsampling is used to restore the original resolution of the images during retrieval, thereby enabling more accurate matching. To ensure the security of medical image data, a lightweight image encryption method based on frequency domain encryption is designed to encrypt the chest X-ray images. The findings of the experiment indicate that, in comparison to various advanced image retrieval techniques, the suggested approach improves the precision of feature extraction and retrieval using the COVIDx dataset. Additionally, it offers enhanced protection for the confidentiality of medical images stored in cloud settings and demonstrates strong practicality.展开更多
Facial attribute editing has mainly two objectives:1)translating image from a source domain to a target one,and 2)only changing the facial regions related to a target attribute and preserving the attribute-excluding d...Facial attribute editing has mainly two objectives:1)translating image from a source domain to a target one,and 2)only changing the facial regions related to a target attribute and preserving the attribute-excluding details.In this work,we propose a multi-attention U-Net-based generative adversarial network(MU-GAN).First,we replace a classic convolutional encoder-decoder with a symmetric U-Net-like structure in a generator,and then apply an additive attention mechanism to build attention-based U-Net connections for adaptively transferring encoder representations to complement a decoder with attribute-excluding detail and enhance attribute editing ability.Second,a self-attention(SA)mechanism is incorporated into convolutional layers for modeling long-range and multi-level dependencies across image regions.Experimental results indicate that our method is capable of balancing attribute editing ability and details preservation ability,and can decouple the correlation among attributes.It outperforms the state-of-the-art methods in terms of attribute manipulation accuracy and image quality.Our code is available at https://github.com/SuSir1996/MU-GAN.展开更多
Aiming at the relation linking task for question answering over knowledge base,especially the multi relation linking task for complex questions,a relation linking approach based on the multi-attention recurrent neural...Aiming at the relation linking task for question answering over knowledge base,especially the multi relation linking task for complex questions,a relation linking approach based on the multi-attention recurrent neural network(RNN)model is proposed,which works for both simple and complex questions.First,the vector representations of questions are learned by the bidirectional long short-term memory(Bi-LSTM)model at the word and character levels,and named entities in questions are labeled by the conditional random field(CRF)model.Candidate entities are generated based on a dictionary,the disambiguation of candidate entities is realized based on predefined rules,and named entities mentioned in questions are linked to entities in knowledge base.Next,questions are classified into simple or complex questions by the machine learning method.Starting from the identified entities,for simple questions,one-hop relations are collected in the knowledge base as candidate relations;for complex questions,two-hop relations are collected as candidates.Finally,the multi-attention Bi-LSTM model is used to encode questions and candidate relations,compare their similarity,and return the candidate relation with the highest similarity as the result of relation linking.It is worth noting that the Bi-LSTM model with one attentions is adopted for simple questions,and the Bi-LSTM model with two attentions is adopted for complex questions.The experimental results show that,based on the effective entity linking method,the Bi-LSTM model with the attention mechanism improves the relation linking effectiveness of both simple and complex questions,which outperforms the existing relation linking methods based on graph algorithm or linguistics understanding.展开更多
The existing few-shot learning(FSL) approaches based on metric-learning usually lack attention to the distinction of feature contributions,and the importance of each sample is often ignored when obtaining the class re...The existing few-shot learning(FSL) approaches based on metric-learning usually lack attention to the distinction of feature contributions,and the importance of each sample is often ignored when obtaining the class representation,where the performance of the model is limited.Additionally,similarity metric method is also worthy of attention.Therefore,a few-shot learning approach called MWNet based on multi-attention fusion and weighted class representation(WCR) is proposed in this paper.Firstly,a multi-attention fusion module is introduced into the model to highlight the valuable part of the feature and reduce the interference of irrelevant content.Then,when obtaining the class representation,weight is given to each support set sample,and the weighted class representation is used to better express the class.Moreover,a mutual similarity metric method is used to obtain a more accurate similarity relationship through the mutual similarity for each representation.Experiments prove that the approach in this paper performs well in few-shot image classification,and also shows remarkable excellence and competitiveness compared with related advanced techniques.展开更多
Deep convolution neural networks constitute a breakthrough in computer vision.Based on this,the Convolutional Neural Network(CNN)models offer enormous potential for crop disease classification.However,significant trai...Deep convolution neural networks constitute a breakthrough in computer vision.Based on this,the Convolutional Neural Network(CNN)models offer enormous potential for crop disease classification.However,significant training data are required to realize their potential.In the case of crop disease image recognition,especially with complex backgrounds,it is sometimes difficult to acquire adequately labeled large datasets.This research proposed a solution to this problem that integrates multi-attention modules,i.e.,channel and position block(CPB)module.Given an intermediate feature map,the CPB module can infer attention maps in parallel with the channel and position.The attention maps can then be multiplied to form input feature maps for adaptive feature refinement.This provides a simple yet effective intermediate attention structure for CNNs.The module is also lightweight and produces little overhead.Some experiments on cucumber and rice image datasets with complex backgrounds were conducted to validate the effectiveness of the CPB module.The experiments included different module locations and class activation map display characteristics.The classification accuracy reached 96.67%on the cucumber disease image dataset and 95.29%on the rice disease image dataset.The results show that the CPB module can effectively classify crop disease images with complex backgrounds,even on small-scale datasets,which providing a reference for crop disease image recognition method under complex background conditions in the field.展开更多
Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approach...Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments.展开更多
Fine-grained Image Recognition(FGIR)task is dedicated to distinguishing similar sub-categories that belong to the same super-category,such as bird species and car types.In order to highlight visual differences,existin...Fine-grained Image Recognition(FGIR)task is dedicated to distinguishing similar sub-categories that belong to the same super-category,such as bird species and car types.In order to highlight visual differences,existing FGIR works often follow two steps:discriminative sub-region localization and local feature representation.However,these works pay less attention on global context information.They neglect a fact that the subtle visual difference in challenging scenarios can be highlighted through exploiting the spatial relationship among different subregions from a global view point.Therefore,in this paper,we consider both global and local information for FGIR,and propose a collaborative teacher-student strategy to reinforce and unity the two types of information.Our framework is implemented mainly by convolutional neural network,referred to Teacher-Student Based Attention Convolutional Neural Network(T-S-ACNN).For fine-grained local information,we choose the classic Multi-Attention Network(MA-Net)as our baseline,and propose a type of boundary constraint to further reduce background noises in the local attention maps.In this way,the discriminative sub-regions tend to appear in the area occupied by fine-grained objects,leading to more accurate sub-region localization.For fine-grained global information,we design a graph convolution based Global Attention Network(GA-Net),which can combine extracted local attention maps from MA-Net with non-local techniques to explore spatial relationship among subregions.At last,we develop a collaborative teacher-student strategy to adaptively determine the attended roles and optimization modes,so as to enhance the cooperative reinforcement of MA-Net and GA-Net.Extensive experiments on CUB-200-2011,Stanford Cars and FGVC Aircraft datasets illustrate the promising performance of our framework.展开更多
Marine power-generation diesel engines operate in harsh environments.Their vibration signals are highly complex and the feature information exhibits a non-linear distribution.It is difficult to extract effective featu...Marine power-generation diesel engines operate in harsh environments.Their vibration signals are highly complex and the feature information exhibits a non-linear distribution.It is difficult to extract effective feature information from the network model,resulting in low fault-diagnosis accuracy.To address this problem,we propose a fault-diagnosis method that combines the Gramian angular field(GAF)with a convolutional neural network(CNN).Firstly,the vibration signals are transformed into 2D images by taking advantage of the GAF,which preserves the temporal correlation.The raw signals can be mapped to 2D image features such as texture and color.To integrate the feature information,the images of the Gramian angular summation field(GASF)and Gramian angular difference field(GADF)are fused by the weighted average fusion method.Secondly,the channel attention mechanism and temporal attention mechanism are introduced in the CNN model to optimize the CNN learning mechanism.Introducing the concept of residuals in the attention mechanism improves the feasibility of optimization.Finally,the weighted average fused images are fed into the CNN for feature extraction and fault diagnosis.The validity of the proposed method is verified by experiments with abnormal valve clearance.The average diagnostic accuracy is 98.40%.When−20 dB≤signal-to-noise ratio(SNR)≤20 dB,the diagnostic accuracy of the proposed method is higher than 94.00%.The proposed method has superior diagnostic performance.Moreover,it has a certain anti-noise capability and variable-load adaptive capability.展开更多
The traditional deep learning model has problems that the longdistance dependent information cannot be learned, and the correlation between the input and output of the model is not considered. And the information proc...The traditional deep learning model has problems that the longdistance dependent information cannot be learned, and the correlation between the input and output of the model is not considered. And the information processing on the sentence set is still insufficient. Aiming at the above problems, a relation extraction method combining bidirectional GRU network and multiattention mechanism is proposed. The word-level attention mechanism was used to extract the word-level features from the sentence, and the sentence-level attention mechanism was used to focus on the characteristics of sentence sets. The experimental verification in the NYT dataset was conducted. The experimental results show that the proposed method can effectively improve the F1 value of the relationship extraction.展开更多
At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown ...At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments,this paper proposes an Attention-Enhanced Dueling Deep Q-Network(ADDueling DQN),which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework.A multi-objective reward function,centered on energy efficiency,is designed to comprehensively consider path length,terrain slope,motion smoothness,and obstacle avoidance,enabling optimal low-energy trajectory generation in 3D space from the source.The incorporation of a multihead attention mechanism allows the model to dynamically focus on energy-critical state features—such as slope gradients and obstacle density—thereby significantly improving its ability to recognize and avoid energy-intensive paths.Additionally,the prioritized experience replay mechanism accelerates learning from key decision-making experiences,suppressing inefficient exploration and guiding the policy toward low-energy solutions more rapidly.The effectiveness of the proposed path planning algorithm is validated through simulation experiments conducted in multiple off-road scenarios.Results demonstrate that AD-Dueling DQN consistently achieves the lowest average energy consumption across all tested environments.Moreover,the proposed method exhibits faster convergence and greater training stability compared to baseline algorithms,highlighting its global optimization capability under energy-aware objectives in complex terrains.This study offers an efficient and scalable intelligent control strategy for the development of energy-conscious autonomous navigation systems.展开更多
基金supported by the NationalNatural Science Foundation of China(No.61862041).
文摘Medical institutions frequently utilize cloud servers for storing digital medical imaging data, aiming to lower both storage expenses and computational expenses. Nevertheless, the reliability of cloud servers as third-party providers is not always guaranteed. To safeguard against the exposure and misuse of personal privacy information, and achieve secure and efficient retrieval, a secure medical image retrieval based on a multi-attention mechanism and triplet deep hashing is proposed in this paper (abbreviated as MATDH). Specifically, this method first utilizes the contrast-limited adaptive histogram equalization method applicable to color images to enhance chest X-ray images. Next, a designed multi-attention mechanism focuses on important local features during the feature extraction stage. Moreover, a triplet loss function is utilized to learn discriminative hash codes to construct a compact and efficient triplet deep hashing. Finally, upsampling is used to restore the original resolution of the images during retrieval, thereby enabling more accurate matching. To ensure the security of medical image data, a lightweight image encryption method based on frequency domain encryption is designed to encrypt the chest X-ray images. The findings of the experiment indicate that, in comparison to various advanced image retrieval techniques, the suggested approach improves the precision of feature extraction and retrieval using the COVIDx dataset. Additionally, it offers enhanced protection for the confidentiality of medical images stored in cloud settings and demonstrates strong practicality.
基金supported in part by the National Natural Science Foundation of China(NSFC)(62076093,61871182,61302163,61401154)the Beijing Natural Science Foundation(4192055)+3 种基金the Natural Science Foundation of Hebei Province of China(F2015502062,F2016502101,F2017502016)the Fundamental Research Funds for the Central Universities(2020YJ006,2020MS099)the Open Project Program of the National Laboratory of Pattern Recognition(NLPR)(201900051)The authors gratefully acknowledge the support of NVIDIA Corporation with the donation of the GPU used for this research.
文摘Facial attribute editing has mainly two objectives:1)translating image from a source domain to a target one,and 2)only changing the facial regions related to a target attribute and preserving the attribute-excluding details.In this work,we propose a multi-attention U-Net-based generative adversarial network(MU-GAN).First,we replace a classic convolutional encoder-decoder with a symmetric U-Net-like structure in a generator,and then apply an additive attention mechanism to build attention-based U-Net connections for adaptively transferring encoder representations to complement a decoder with attribute-excluding detail and enhance attribute editing ability.Second,a self-attention(SA)mechanism is incorporated into convolutional layers for modeling long-range and multi-level dependencies across image regions.Experimental results indicate that our method is capable of balancing attribute editing ability and details preservation ability,and can decouple the correlation among attributes.It outperforms the state-of-the-art methods in terms of attribute manipulation accuracy and image quality.Our code is available at https://github.com/SuSir1996/MU-GAN.
基金The National Natural Science Foundation of China(No.61502095).
文摘Aiming at the relation linking task for question answering over knowledge base,especially the multi relation linking task for complex questions,a relation linking approach based on the multi-attention recurrent neural network(RNN)model is proposed,which works for both simple and complex questions.First,the vector representations of questions are learned by the bidirectional long short-term memory(Bi-LSTM)model at the word and character levels,and named entities in questions are labeled by the conditional random field(CRF)model.Candidate entities are generated based on a dictionary,the disambiguation of candidate entities is realized based on predefined rules,and named entities mentioned in questions are linked to entities in knowledge base.Next,questions are classified into simple or complex questions by the machine learning method.Starting from the identified entities,for simple questions,one-hop relations are collected in the knowledge base as candidate relations;for complex questions,two-hop relations are collected as candidates.Finally,the multi-attention Bi-LSTM model is used to encode questions and candidate relations,compare their similarity,and return the candidate relation with the highest similarity as the result of relation linking.It is worth noting that the Bi-LSTM model with one attentions is adopted for simple questions,and the Bi-LSTM model with two attentions is adopted for complex questions.The experimental results show that,based on the effective entity linking method,the Bi-LSTM model with the attention mechanism improves the relation linking effectiveness of both simple and complex questions,which outperforms the existing relation linking methods based on graph algorithm or linguistics understanding.
基金Supported by the National Natural Science Foundation of China (No.61171131)Key R&D Program of Shandong Province (No.YD01033)。
文摘The existing few-shot learning(FSL) approaches based on metric-learning usually lack attention to the distinction of feature contributions,and the importance of each sample is often ignored when obtaining the class representation,where the performance of the model is limited.Additionally,similarity metric method is also worthy of attention.Therefore,a few-shot learning approach called MWNet based on multi-attention fusion and weighted class representation(WCR) is proposed in this paper.Firstly,a multi-attention fusion module is introduced into the model to highlight the valuable part of the feature and reduce the interference of irrelevant content.Then,when obtaining the class representation,weight is given to each support set sample,and the weighted class representation is used to better express the class.Moreover,a mutual similarity metric method is used to obtain a more accurate similarity relationship through the mutual similarity for each representation.Experiments prove that the approach in this paper performs well in few-shot image classification,and also shows remarkable excellence and competitiveness compared with related advanced techniques.
基金financially supported by the National Natural Science Foundation of China(Grants No.32271981,No.32071901)the database in the National Basic Science Data Center(No.NBSDC-DB-20).
文摘Deep convolution neural networks constitute a breakthrough in computer vision.Based on this,the Convolutional Neural Network(CNN)models offer enormous potential for crop disease classification.However,significant training data are required to realize their potential.In the case of crop disease image recognition,especially with complex backgrounds,it is sometimes difficult to acquire adequately labeled large datasets.This research proposed a solution to this problem that integrates multi-attention modules,i.e.,channel and position block(CPB)module.Given an intermediate feature map,the CPB module can infer attention maps in parallel with the channel and position.The attention maps can then be multiplied to form input feature maps for adaptive feature refinement.This provides a simple yet effective intermediate attention structure for CNNs.The module is also lightweight and produces little overhead.Some experiments on cucumber and rice image datasets with complex backgrounds were conducted to validate the effectiveness of the CPB module.The experiments included different module locations and class activation map display characteristics.The classification accuracy reached 96.67%on the cucumber disease image dataset and 95.29%on the rice disease image dataset.The results show that the CPB module can effectively classify crop disease images with complex backgrounds,even on small-scale datasets,which providing a reference for crop disease image recognition method under complex background conditions in the field.
基金funded by the National Natural Science Foundation of China,grant numbers 52374156 and 62476005。
文摘Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments.
基金supported by the National Natural Science Foundation of China,China (Grants No.62171232)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China。
文摘Fine-grained Image Recognition(FGIR)task is dedicated to distinguishing similar sub-categories that belong to the same super-category,such as bird species and car types.In order to highlight visual differences,existing FGIR works often follow two steps:discriminative sub-region localization and local feature representation.However,these works pay less attention on global context information.They neglect a fact that the subtle visual difference in challenging scenarios can be highlighted through exploiting the spatial relationship among different subregions from a global view point.Therefore,in this paper,we consider both global and local information for FGIR,and propose a collaborative teacher-student strategy to reinforce and unity the two types of information.Our framework is implemented mainly by convolutional neural network,referred to Teacher-Student Based Attention Convolutional Neural Network(T-S-ACNN).For fine-grained local information,we choose the classic Multi-Attention Network(MA-Net)as our baseline,and propose a type of boundary constraint to further reduce background noises in the local attention maps.In this way,the discriminative sub-regions tend to appear in the area occupied by fine-grained objects,leading to more accurate sub-region localization.For fine-grained global information,we design a graph convolution based Global Attention Network(GA-Net),which can combine extracted local attention maps from MA-Net with non-local techniques to explore spatial relationship among subregions.At last,we develop a collaborative teacher-student strategy to adaptively determine the attended roles and optimization modes,so as to enhance the cooperative reinforcement of MA-Net and GA-Net.Extensive experiments on CUB-200-2011,Stanford Cars and FGVC Aircraft datasets illustrate the promising performance of our framework.
基金supported by the Project of Shanghai Engineering Research Center for Intelligent Operation and Maintenance and Energy Efficiency Monitoring of Ships(No.20DZ2252300),China.
文摘Marine power-generation diesel engines operate in harsh environments.Their vibration signals are highly complex and the feature information exhibits a non-linear distribution.It is difficult to extract effective feature information from the network model,resulting in low fault-diagnosis accuracy.To address this problem,we propose a fault-diagnosis method that combines the Gramian angular field(GAF)with a convolutional neural network(CNN).Firstly,the vibration signals are transformed into 2D images by taking advantage of the GAF,which preserves the temporal correlation.The raw signals can be mapped to 2D image features such as texture and color.To integrate the feature information,the images of the Gramian angular summation field(GASF)and Gramian angular difference field(GADF)are fused by the weighted average fusion method.Secondly,the channel attention mechanism and temporal attention mechanism are introduced in the CNN model to optimize the CNN learning mechanism.Introducing the concept of residuals in the attention mechanism improves the feasibility of optimization.Finally,the weighted average fused images are fed into the CNN for feature extraction and fault diagnosis.The validity of the proposed method is verified by experiments with abnormal valve clearance.The average diagnostic accuracy is 98.40%.When−20 dB≤signal-to-noise ratio(SNR)≤20 dB,the diagnostic accuracy of the proposed method is higher than 94.00%.The proposed method has superior diagnostic performance.Moreover,it has a certain anti-noise capability and variable-load adaptive capability.
文摘The traditional deep learning model has problems that the longdistance dependent information cannot be learned, and the correlation between the input and output of the model is not considered. And the information processing on the sentence set is still insufficient. Aiming at the above problems, a relation extraction method combining bidirectional GRU network and multiattention mechanism is proposed. The word-level attention mechanism was used to extract the word-level features from the sentence, and the sentence-level attention mechanism was used to focus on the characteristics of sentence sets. The experimental verification in the NYT dataset was conducted. The experimental results show that the proposed method can effectively improve the F1 value of the relationship extraction.
文摘At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments,this paper proposes an Attention-Enhanced Dueling Deep Q-Network(ADDueling DQN),which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework.A multi-objective reward function,centered on energy efficiency,is designed to comprehensively consider path length,terrain slope,motion smoothness,and obstacle avoidance,enabling optimal low-energy trajectory generation in 3D space from the source.The incorporation of a multihead attention mechanism allows the model to dynamically focus on energy-critical state features—such as slope gradients and obstacle density—thereby significantly improving its ability to recognize and avoid energy-intensive paths.Additionally,the prioritized experience replay mechanism accelerates learning from key decision-making experiences,suppressing inefficient exploration and guiding the policy toward low-energy solutions more rapidly.The effectiveness of the proposed path planning algorithm is validated through simulation experiments conducted in multiple off-road scenarios.Results demonstrate that AD-Dueling DQN consistently achieves the lowest average energy consumption across all tested environments.Moreover,the proposed method exhibits faster convergence and greater training stability compared to baseline algorithms,highlighting its global optimization capability under energy-aware objectives in complex terrains.This study offers an efficient and scalable intelligent control strategy for the development of energy-conscious autonomous navigation systems.