期刊文献+
共找到127,137篇文章
< 1 2 250 >
每页显示 20 50 100
Design of Multi-agent Supply Chain System to Support Quick Response in Textile-Apparel Industry 被引量:2
1
作者 徐琪 《Journal of Donghua University(English Edition)》 EI CAS 2007年第6期791-795,共5页
Owing to the fast growth of global market,textile and apparel industries which are a typical seasonal business are facing crucial challenges from both competitors and consumers.In order to get survived,forming supply ... Owing to the fast growth of global market,textile and apparel industries which are a typical seasonal business are facing crucial challenges from both competitors and consumers.In order to get survived,forming supply chain and utilizing the emerged technology to establish a quick response system become an important common practice for enterprises in terms of cost reduction and efficiency improvement.This paper presents a multi-agent-based integrated framework for quick response in textile and apparel supply chain.By sharing information and collaborating among chain partner,the multi-agent system provides a promising computing paradigm for quick response business processes.A prototype based on the proposed framework is implemented using ZEUS toolkit.It presents how the proposed architecture is being designed to establish collaborative business environment by providing dynamic quick response processes. 展开更多
关键词 multi-agent supply chain system textile-apparel ZEUS tool-kit quick response
在线阅读 下载PDF
The Profit Model of Long-Term Lease Apartments Under Multi-Agent Supply
2
作者 LI Shuoyang LIU Qunhong 《Journal of Landscape Research》 2018年第6期109-112,共4页
The acceleration of urbanization has led to an increase in the number of urban floating population, which leads to more demands for the housing rental market. With the support of policies, long-term lease apartments h... The acceleration of urbanization has led to an increase in the number of urban floating population, which leads to more demands for the housing rental market. With the support of policies, long-term lease apartments have begun to emerge. However, under the multi-subject supply, longterm lease apartments have encountered problems such as small profits in their development. Starting from the background of the development of long-term lease apartments, this study classified the main types of long-term lease apartments, analyzed the four profit models of comprehensive profit, expansion of rent difference, REITs and value-added services based on their business models, and proposed corresponding suggestions on the profitability of long-term lease apartments according to the current situation of profit difficulty of long-term lease apartments and the lack of profit models. 展开更多
关键词 multi-agent supply LONG-TERM LEASE APARTMENT PROFIT model
在线阅读 下载PDF
“大数据、大模型、大计算”全新范式与舆情精准研判:理论和Multi-Agent实证两个向度的探索 被引量:1
3
作者 丁晓蔚 戚庆燕 刘梓航 《传媒观察》 2025年第2期28-42,共15页
本文探讨了“大数据、大模型、大计算”全新范式在舆情精准研判中的相关理论和应用实证。理论部分论述了该范式的概念和所涉关系,分析了其与Multi-Agent多智能体系统之间的联系。实证部分基于此范式在舆情研判中的应用案例,提出Multi-Ag... 本文探讨了“大数据、大模型、大计算”全新范式在舆情精准研判中的相关理论和应用实证。理论部分论述了该范式的概念和所涉关系,分析了其与Multi-Agent多智能体系统之间的联系。实证部分基于此范式在舆情研判中的应用案例,提出Multi-Agent多智能体协作驱动的舆情分析框架,构建全新的舆情研判流程,能有效应对动态变化的舆情环境。采用Multi-Agent对热点事件是否上热搜进行预测和检验,并与传统大模型和BERT模型进行对比分析。研究表明:Multi-Agent在应对涉及公众情感共鸣和社会性广泛事件时具有显著优势,能通过多角度的综合评估提升预测精度和鲁棒性。通过实证研究验证了Multi-Agent在舆情监测中的重要价值,为未来舆情精准研判提供了新的技术路径。 展开更多
关键词 “大数据、大模型、大计算”全新范式 multi-agent多智能体系统 舆情精准研判
原文传递
A Survey of Cooperative Multi-agent Reinforcement Learning for Multi-task Scenarios 被引量:1
4
作者 Jiajun CHAI Zijie ZHAO +1 位作者 Yuanheng ZHU Dongbin ZHAO 《Artificial Intelligence Science and Engineering》 2025年第2期98-121,共24页
Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-... Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-robot control.Empowering cooperative MARL with multi-task decision-making capabilities is expected to further broaden its application scope.In multi-task scenarios,cooperative MARL algorithms need to address 3 types of multi-task problems:reward-related multi-task,arising from different reward functions;multi-domain multi-task,caused by differences in state and action spaces,state transition functions;and scalability-related multi-task,resulting from the dynamic variation in the number of agents.Most existing studies focus on scalability-related multitask problems.However,with the increasing integration between large language models(LLMs)and multi-agent systems,a growing number of LLM-based multi-agent systems have emerged,enabling more complex multi-task cooperation.This paper provides a comprehensive review of the latest advances in this field.By combining multi-task reinforcement learning with cooperative MARL,we categorize and analyze the 3 major types of multi-task problems under multi-agent settings,offering more fine-grained classifications and summarizing key insights for each.In addition,we summarize commonly used benchmarks and discuss future directions of research in this area,which hold promise for further enhancing the multi-task cooperation capabilities of multi-agent systems and expanding their practical applications in the real world. 展开更多
关键词 MULTI-TASK multi-agent reinforcement learning large language models
在线阅读 下载PDF
Improved Event-Triggered Adaptive Neural Network Control for Multi-agent Systems Under Denial-of-Service Attacks 被引量:1
5
作者 Huiyan ZHANG Yu HUANG +1 位作者 Ning ZHAO Peng SHI 《Artificial Intelligence Science and Engineering》 2025年第2期122-133,共12页
This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method... This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system. 展开更多
关键词 multi-agent systems neural network DoS attacks memory-based adaptive event-triggered mechanism
在线阅读 下载PDF
Graph-based multi-agent reinforcement learning for collaborative search and tracking of multiple UAVs 被引量:2
6
作者 Bocheng ZHAO Mingying HUO +4 位作者 Zheng LI Wenyu FENG Ze YU Naiming QI Shaohai WANG 《Chinese Journal of Aeronautics》 2025年第3期109-123,共15页
This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary obj... This paper investigates the challenges associated with Unmanned Aerial Vehicle (UAV) collaborative search and target tracking in dynamic and unknown environments characterized by limited field of view. The primary objective is to explore the unknown environments to locate and track targets effectively. To address this problem, we propose a novel Multi-Agent Reinforcement Learning (MARL) method based on Graph Neural Network (GNN). Firstly, a method is introduced for encoding continuous-space multi-UAV problem data into spatial graphs which establish essential relationships among agents, obstacles, and targets. Secondly, a Graph AttenTion network (GAT) model is presented, which focuses exclusively on adjacent nodes, learns attention weights adaptively and allows agents to better process information in dynamic environments. Reward functions are specifically designed to tackle exploration challenges in environments with sparse rewards. By introducing a framework that integrates centralized training and distributed execution, the advancement of models is facilitated. Simulation results show that the proposed method outperforms the existing MARL method in search rate and tracking performance with less collisions. The experiments show that the proposed method can be extended to applications with a larger number of agents, which provides a potential solution to the challenging problem of multi-UAV autonomous tracking in dynamic unknown environments. 展开更多
关键词 Unmanned aerial vehicle(UAV) multi-agent reinforcement learning(MARL) Graph attention network(GAT) Tracking Dynamic and unknown environment
原文传递
Nonconvex Constrained Consensus of Discrete-Time Heterogeneous Multi-Agent Systems with Arbitrarily Switching Topologies
7
作者 Honghao Wu 《Journal of Electronic Research and Application》 2025年第1期14-22,共9页
This paper mainly focuses on the velocity-constrained consensus problem of discrete-time heterogeneous multi-agent systems with nonconvex constraints and arbitrarily switching topologies,where each agent has first-ord... This paper mainly focuses on the velocity-constrained consensus problem of discrete-time heterogeneous multi-agent systems with nonconvex constraints and arbitrarily switching topologies,where each agent has first-order or second-order dynamics.To solve this problem,a distributed algorithm is proposed based on a contraction operator.By employing the properties of the stochastic matrix,it is shown that all agents’position states could converge to a common point and second-order agents’velocity states could remain in corresponding nonconvex constraint sets and converge to zero as long as the joint communication topology has one directed spanning tree.Finally,the numerical simulation results are provided to verify the effectiveness of the proposed algorithms. 展开更多
关键词 HETEROGENEOUS multi-agent systems Nonconvex constraint CONSENSUS
在线阅读 下载PDF
Leader-Following Consensus for a Class of Nonlinear Cascaded Multi-Agent Systems
8
作者 LI Xianda KANG Jianling 《Journal of Donghua University(English Edition)》 2025年第2期213-218,共6页
This paper focuses on the problem of leaderfollowing consensus for nonlinear cascaded multi-agent systems.The control strategies for these systems are transformed into successive control problem schemes for lower-orde... This paper focuses on the problem of leaderfollowing consensus for nonlinear cascaded multi-agent systems.The control strategies for these systems are transformed into successive control problem schemes for lower-order error subsystems.A distributed consensus analysis for the corresponding error systems is conducted by employing recursive methods and virtual controllers,accompanied by a series of Lyapunov functions devised throughout the iterative process,which solves the leaderfollowing consensus problem of a class of nonlinear cascaded multi-agent systems.Specific simulation examples illustrate the effectiveness of the proposed control algorithm. 展开更多
关键词 cascaded multi-agent system distributed control CONSENSUS recursive method
在线阅读 下载PDF
Group formation tracking for heterogeneous linear multi-agent systems under switching topologies
9
作者 Shiyu Zhou Dong Sun 《Journal of Automation and Intelligence》 2025年第2期108-114,共7页
This article investigates the time-varying output group formation tracking control(GFTC)problem for heterogeneous multi-agent systems(HMASs)under switching topologies.The objective is to design a distributed control s... This article investigates the time-varying output group formation tracking control(GFTC)problem for heterogeneous multi-agent systems(HMASs)under switching topologies.The objective is to design a distributed control strategy that enables the outputs of the followers to form the desired sub-formations and track the outputs of the leader in each subgroup.Firstly,novel distributed observers are developed to estimate the states of the leaders under switching topologies.Then,GFTC protocols are designed based on the proposed observers.It is shown that with the distributed protocol,the GFTC problem for HMASs under switching topologies is solved if the average dwell time associated with the switching topologies is larger than a fixed threshold.Finally,an example is provided to illustrate the effectiveness of the proposed control strategy. 展开更多
关键词 Formation tracking Group division Switching topologies multi-agent systems
在线阅读 下载PDF
Dynamic Decoupling-Driven Cooperative Pursuit for Multi-UAV Systems:A Multi-Agent Reinforcement Learning Policy Optimization Approach
10
作者 Lei Lei Chengfu Wu Huaimin Chen 《Computers, Materials & Continua》 2025年第10期1339-1363,共25页
This paper proposes a Multi-Agent Attention Proximal Policy Optimization(MA2PPO)algorithm aiming at the problems such as credit assignment,low collaboration efficiency and weak strategy generalization ability existing... This paper proposes a Multi-Agent Attention Proximal Policy Optimization(MA2PPO)algorithm aiming at the problems such as credit assignment,low collaboration efficiency and weak strategy generalization ability existing in the cooperative pursuit tasks of multiple unmanned aerial vehicles(UAVs).Traditional algorithms often fail to effectively identify critical cooperative relationships in such tasks,leading to low capture efficiency and a significant decline in performance when the scale expands.To tackle these issues,based on the proximal policy optimization(PPO)algorithm,MA2PPO adopts the centralized training with decentralized execution(CTDE)framework and introduces a dynamic decoupling mechanism,that is,sharing the multi-head attention(MHA)mechanism for critics during centralized training to solve the credit assignment problem.This method enables the pursuers to identify highly correlated interactions with their teammates,effectively eliminate irrelevant and weakly relevant interactions,and decompose large-scale cooperation problems into decoupled sub-problems,thereby enhancing the collaborative efficiency and policy stability among multiple agents.Furthermore,a reward function has been devised to facilitate the pursuers to encircle the escapee by combining a formation reward with a distance reward,which incentivizes UAVs to develop sophisticated cooperative pursuit strategies.Experimental results demonstrate the effectiveness of the proposed algorithm in achieving multi-UAV cooperative pursuit and inducing diverse cooperative pursuit behaviors among UAVs.Moreover,experiments on scalability have demonstrated that the algorithm is suitable for large-scale multi-UAV systems. 展开更多
关键词 multi-agent reinforcement learning multi-UAV systems pursuit-evasion games
在线阅读 下载PDF
Recent Advancement in Formation Control of Multi-Agent Systems:A Review
11
作者 Aamir Farooq Zhengrong Xiang +1 位作者 Wen-Jer Chang Muhammad Shamrooz Aslam 《Computers, Materials & Continua》 2025年第6期3623-3674,共52页
Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distribut... Formation control in multi-agent systems has become a critical area of interest due to its wide-ranging applications in robotics,autonomous transportation,and surveillance.While various studies have explored distributed cooperative control,this review focuses on the theoretical foundations and recent developments in formation control strategies.The paper categorizes and analyzes key formation types,including formation maintenance,group or cluster formation,bipartite formations,event-triggered formations,finite-time convergence,and constrained formations.A significant portion of the review addresses formation control under constrained dynamics,presenting both modelbased and model-free approaches that consider practical limitations such as actuator bounds,communication delays,and nonholonomic constraints.Additionally,the paper discusses emerging trends,including the integration of eventdriven mechanisms and AI-enhanced coordination strategies.Comparative evaluations highlight the trade-offs among various methodologies regarding scalability,robustness,and real-world feasibility.Practical implementations are reviewed across diverse platforms,and the review identifies the current achievements and unresolved challenges in the field.The paper concludes by outlining promising research directions,such as adaptive control for dynamic environments,energy-efficient coordination,and using learning-based control under uncertainty.This review synthesizes the current state of the art and provides a road map for future investigation,making it a valuable reference for researchers and practitioners aiming to advance formation control in multi-agent systems. 展开更多
关键词 Cooperative control multi-agent systems formation control formation containment group formation bipartite formation
在线阅读 下载PDF
Sufficient and Necessary Conditions for Leader-Following Consensus of Second-Order Multi-Agent Systems via Intermittent Sampled Control
12
作者 Ziyang Wang Yuanzhen Feng +1 位作者 Zhengxin Wang Cong Zheng 《Computers, Materials & Continua》 2025年第6期4835-4853,共19页
Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To de... Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To decrease the control cost,based on ISC,several LFC problems are investigated for second-order MASs without and with time delay,respectively.Firstly,an intermittent sampled controller is designed,and a sufficient and necessary condition is derived,under which state errors between the leader and all the followers approach zero asymptotically.Considering that time delay is inevitable,a new protocol is proposed to deal with the time-delay situation.The error system’s stability is analyzed using the Schur stability theorem,and sufficient and necessary conditions for LFC are obtained,which are closely associated with the coupling gain,the system parameters,and the network structure.Furthermore,for the case where the current position and velocity information are not available,a distributed protocol is designed that depends only on the sampled position information.The sufficient and necessary conditions for LFC are also given.The results show that second-order MASs can achieve the LFC if and only if the system parameters satisfy the inequalities proposed in the paper.Finally,the correctness of the obtained results is verified by numerical simulations. 展开更多
关键词 Intermittent sampled control leader-following consensus time delay second-order multi-agent system
在线阅读 下载PDF
Achievement of Fish School Milling Motion Based on Distributed Multi-agent Reinforcement Learning
13
作者 Jincun Liu Yinjie Ren +3 位作者 Yang Liu Yan Meng Dong An Yaoguang Wei 《Journal of Bionic Engineering》 2025年第4期1683-1701,共19页
In recent years,significant research attention has been directed towards swarm intelligence.The Milling behavior of fish schools,a prime example of swarm intelligence,shows how simple rules followed by individual agen... In recent years,significant research attention has been directed towards swarm intelligence.The Milling behavior of fish schools,a prime example of swarm intelligence,shows how simple rules followed by individual agents lead to complex collective behaviors.This paper studies Multi-Agent Reinforcement Learning to simulate fish schooling behavior,overcoming the challenges of tuning parameters in traditional models and addressing the limitations of single-agent methods in multi-agent environments.Based on this foundation,a novel Graph Convolutional Networks(GCN)-Critic MADDPG algorithm leveraging GCN is proposed to enhance cooperation among agents in a multi-agent system.Simulation experiments demonstrate that,compared to traditional single-agent algorithms,the proposed method not only exhibits significant advantages in terms of convergence speed and stability but also achieves tighter group formations and more naturally aligned Milling behavior.Additionally,a fish school self-organizing behavior research platform based on an event-triggered mechanism has been developed,providing a robust tool for exploring dynamic behavioral changes under various conditions. 展开更多
关键词 Collective motion Collective behavior SELF-ORGANIZATION Fish school multi-agent reinforcement learning
在线阅读 下载PDF
An Adaptive Virtual Impedance Control for Voltage and Frequency Regulation of Islanded Distribution Networks Based on Multi-Agent Consensus
14
作者 Jiran Zhu Silin He +5 位作者 Chun Chen Li Zhou Hongqing Li Di Zhang Fenglin Hua Tianhao Zhu 《Energy Engineering》 2025年第6期2465-2483,共19页
In the islanded operation of distribution networks,due to the mismatch of line impedance at the inverter output,conventional droop control leads to inaccurate power sharing according to capacity,resulting in voltage a... In the islanded operation of distribution networks,due to the mismatch of line impedance at the inverter output,conventional droop control leads to inaccurate power sharing according to capacity,resulting in voltage and frequency fluctuations under minor external disturbances.To address this issue,this paper introduces an enhanced scheme for power sharing and voltage-frequency control.First,to solve the power distribution problem,we propose an adaptive virtual impedance control based on multi-agent consensus,which allows for precise active and reactive power allocation without requiring feeder impedance knowledge.Moreover,a novel consensus-based voltage and frequency control is proposed to correct the voltage deviation inherent in droop control and virtual impedance methods.This strategy maintains voltage and frequency stability even during communication disruptions and enhances system robustness.Additionally,a small-signal model is established for system stability analysis,and the control parameters are optimized.Simulation results validate the effectiveness of the proposed control scheme. 展开更多
关键词 Active island adaptive virtual impedance power distribution multi-agent communication failure
在线阅读 下载PDF
Defending Against Jamming and Interference for Internet of UAVs Using Cooperative Multi-Agent Reinforcement Learning with Mutual Information
15
作者 Lin Yan Wu Zhijuan +4 位作者 Peng Nuoheng Zhao Tianyu Zhang Yijin Shu Feng Li Jun 《China Communications》 2025年第5期220-237,共18页
The Internet of Unmanned Aerial Vehicles(I-UAVs)is expected to execute latency-sensitive tasks,but limited by co-channel interference and malicious jamming.In the face of unknown prior environmental knowledge,defendin... The Internet of Unmanned Aerial Vehicles(I-UAVs)is expected to execute latency-sensitive tasks,but limited by co-channel interference and malicious jamming.In the face of unknown prior environmental knowledge,defending against jamming and interference through spectrum allocation becomes challenging,especially when each UAV pair makes decisions independently.In this paper,we propose a cooperative multi-agent reinforcement learning(MARL)-based anti-jamming framework for I-UAVs,enabling UAV pairs to learn their own policies cooperatively.Specifically,we first model the problem as a modelfree multi-agent Markov decision process(MAMDP)to maximize the long-term expected system throughput.Then,for improving the exploration of the optimal policy,we resort to optimizing a MARL objective function with a mutual-information(MI)regularizer between states and actions,which can dynamically assign the probability for actions frequently used by the optimal policy.Next,through sharing their current channel selections and local learning experience(their soft Q-values),the UAV pairs can learn their own policies cooperatively relying on only preceding observed information and predicting others’actions.Our simulation results show that for both sweep jamming and Markov jamming patterns,the proposed scheme outperforms the benchmarkers in terms of throughput,convergence and stability for different numbers of jammers,channels and UAV pairs. 展开更多
关键词 anti-jamming communication internet of UAVs multi-agent reinforcement learning spectrum allocation
在线阅读 下载PDF
A pipelining task offloading strategy via delay-aware multi-agent reinforcement learning in Cybertwin-enabled 6G network
16
作者 Haiwen Niu Luhan Wang +3 位作者 Keliang Du Zhaoming Lu Xiangming Wen Yu Liu 《Digital Communications and Networks》 2025年第1期92-105,共14页
Cybertwin-enabled 6th Generation(6G)network is envisioned to support artificial intelligence-native management to meet changing demands of 6G applications.Multi-Agent Deep Reinforcement Learning(MADRL)technologies dri... Cybertwin-enabled 6th Generation(6G)network is envisioned to support artificial intelligence-native management to meet changing demands of 6G applications.Multi-Agent Deep Reinforcement Learning(MADRL)technologies driven by Cybertwins have been proposed for adaptive task offloading strategies.However,the existence of random transmission delay between Cybertwin-driven agents and underlying networks is not considered in related works,which destroys the standard Markov property and increases the decision reaction time to reduce the task offloading strategy performance.In order to address this problem,we propose a pipelining task offloading method to lower the decision reaction time and model it as a delay-aware Markov Decision Process(MDP).Then,we design a delay-aware MADRL algorithm to minimize the weighted sum of task execution latency and energy consumption.Firstly,the state space is augmented using the lastly-received state and historical actions to rebuild the Markov property.Secondly,Gate Transformer-XL is introduced to capture historical actions'importance and maintain the consistent input dimension dynamically changed due to random transmission delays.Thirdly,a sampling method and a new loss function with the difference between the current and target state value and the difference between real state-action value and augmented state-action value are designed to obtain state transition trajectories close to the real ones.Numerical results demonstrate that the proposed methods are effective in reducing reaction time and improving the task offloading performance in the random-delay Cybertwin-enabled 6G networks. 展开更多
关键词 Cybertwin multi-agent Deep Reinforcement Learning(MADRL) Task offloading PIPELINING Delay-aware
在线阅读 下载PDF
An Asynchronous Genetic Algorithm for Multi-agent Path Planning Inspired by Biomimicry
17
作者 Bin Liu Shikai Jin +3 位作者 Yuzhu Li Zhuo Wang Donglai Zhao Wenjie Ge 《Journal of Bionic Engineering》 2025年第2期851-865,共15页
To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic ... To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic Algorithm (AGA) to solve multi-agent path planning problems effectively. To enhance the real-time performance and computational efficiency of Multi-Agent Systems (MAS) in path planning, the AGA incorporates an Equal-Size Clustering Algorithm (ESCA) based on the K-means clustering method. The ESCA divides the primary task evenly into a series of subtasks, thereby reducing the gene length in the subsequent GA process. The algorithm then employs GA to solve each subtask sequentially. To evaluate the effectiveness of the proposed method, a simulation program was designed to perform path planning for 100 trajectories, and the results were compared with those of State-Of-The-Art (SOTA) methods. The simulation results demonstrate that, although the solutions provided by AGA are suboptimal, it exhibits significant advantages in terms of execution speed and solution stability compared to other algorithms. 展开更多
关键词 multi-agent path planning Asynchronous genetic algorithm Equal-size clustering Genetic algorithm
在线阅读 下载PDF
Multi-Agent Reinforcement Learning for Moving Target Defense Temporal Decision-Making Approach Based on Stackelberg-FlipIt Games
18
作者 Rongbo Sun Jinlong Fei +1 位作者 Yuefei Zhu Zhongyu Guo 《Computers, Materials & Continua》 2025年第8期3765-3786,共22页
Moving Target Defense(MTD)necessitates scientifically effective decision-making methodologies for defensive technology implementation.While most MTD decision studies focus on accurately identifying optimal strategies,... Moving Target Defense(MTD)necessitates scientifically effective decision-making methodologies for defensive technology implementation.While most MTD decision studies focus on accurately identifying optimal strategies,the issue of optimal defense timing remains underexplored.Current default approaches—periodic or overly frequent MTD triggers—lead to suboptimal trade-offs among system security,performance,and cost.The timing of MTD strategy activation critically impacts both defensive efficacy and operational overhead,yet existing frameworks inadequately address this temporal dimension.To bridge this gap,this paper proposes a Stackelberg-FlipIt game model that formalizes asymmetric cyber conflicts as alternating control over attack surfaces,thereby capturing the dynamic security state evolution of MTD systems.We introduce a belief factor to quantify information asymmetry during adversarial interactions,enhancing the precision of MTD trigger timing.Leveraging this game-theoretic foundation,we employMulti-Agent Reinforcement Learning(MARL)to derive adaptive temporal strategies,optimized via a novel four-dimensional reward function that holistically balances security,performance,cost,and timing.Experimental validation using IP addressmutation against scanning attacks demonstrates stable strategy convergence and accelerated defense response,significantly improving cybersecurity affordability and effectiveness. 展开更多
关键词 Cyber security moving target defense multi-agent reinforcement learning security metrics game theory
在线阅读 下载PDF
Optimal condition analysis of target localization using multi-agents with uncertain positions
19
作者 Yi Hou Ning Hao +2 位作者 Fenghua He Chen Xie Yu Yao 《Control Theory and Technology》 2025年第1期131-144,共14页
This paper delves into the problem of optimal placement conditions for a group of agents collaboratively localizing a target using range-only or bearing-only measurements.The challenge in this study stems from the unc... This paper delves into the problem of optimal placement conditions for a group of agents collaboratively localizing a target using range-only or bearing-only measurements.The challenge in this study stems from the uncertainty associated with the positions of the agents,which may experience drift or disturbances during the target localization process.Initially,we derive the Cramer-Rao lower bound(CRLB)of the target position as the primary analytical metric.Subsequently,we establish the necessary and sufficient conditions for the optimal placement of agents.Based on these conditions,we analyze the maximal allowable agent position error for an expected mean squared error(MSE),providing valuable guidance for the selection of agent positioning sensors.The analytical findings are further validated through simulation experiments. 展开更多
关键词 Cramer-Rao lower bound(CRLB) Target localization Uncertain sensor position multi-agent systems
原文传递
AoI and TTC Based Resource Allocation in C-V2X Sidelink via Multi-Agent Reinforcement Learning
20
作者 Tong Xiaolu Shi Yan +2 位作者 Xu Yaqi Chen Shanzhi Ge Yuming 《China Communications》 2025年第8期281-297,共17页
The rapid development of the Internet of Vehicles(IoVs)underscores the importance of Vehicle-to-Everything(V2X)communication for ensuring driving safety.V2X supports control systems by providing reliable and real-time... The rapid development of the Internet of Vehicles(IoVs)underscores the importance of Vehicle-to-Everything(V2X)communication for ensuring driving safety.V2X supports control systems by providing reliable and real-time information,while the control system's decisions,in turn,affect the communication topology and channel state.Depending on the coupling between communication and control,radio resource allocation(RRA)should be controlaware.However,current RRA methods often focus on optimizing communication metrics,neglecting the needs of the control system.To promote the co-design of communication and control,this paper proposes a novel RRA method that integrates both communication and control considerations.From the communication perspective,the Age of Information(AoI)is introduced to measure the freshness of packets.From the control perspective,a weighted utility function based on Time-to-Collision(TTC)and driving distance is designed,emphasizing the neighboring importance and potentially dangerous vehicles.By synthesizing these two metrics,an optimization objective minimizing weighted AoI based on TTC and driving distance is formulated.The RRA process is modeled as a partially observable Markov decision process,and a multi-agent reinforcement learning algorithm incorporating positional encoding and attention mechanisms(PAMARL)is proposed.Simulation results show that PAMARL can reduce Collision Risk(CR)with better Packet Delivery Ratio(PDR)than others. 展开更多
关键词 age of information multi-agent reinforcement learning resource allocation time to collision
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部