期刊文献+
共找到187篇文章
< 1 2 10 >
每页显示 20 50 100
Multi-Objective Loosely Synchronized Search for Multi-Objective Multi-Agent Path Finding with Asynchronous Actions
1
作者 DU Haikuo GUO Zhengyu +1 位作者 ZHANG Lulu CAI Yunze 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第4期667-677,共11页
In recent years,the path planning for multi-agent technology has gradually matured,and has made breakthrough progress.The main difficulties in path planning for multi-agent are large state space,long algorithm running... In recent years,the path planning for multi-agent technology has gradually matured,and has made breakthrough progress.The main difficulties in path planning for multi-agent are large state space,long algorithm running time,multiple optimization objectives,and asynchronous action of multiple agents.To solve the above problems,this paper first introduces the main problem of the research:multi-objective multi-agent path finding with asynchronous action,and proposes the algorithm framework of multi-objective loose synchronous(MO-LS)search.By combining A*and M*,MO-LS-A*and MO-LS-M*algorithms are respectively proposed.The completeness and optimality of the algorithm are proved,and a series of comparative experiments are designed to analyze the factors affecting the performance of the algorithm,verifying that the proposed MO-LS-M*algorithm has certain advantages. 展开更多
关键词 multi-agent path finding multi-objective path planning asynchronous action loosely synchronous search
原文传递
An Improved Bounded Conflict-Based Search for Multi-AGV Pathfinding in Automated Container Terminals
2
作者 Xinci Zhou Jin Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2705-2727,共23页
As the number of automated guided vehicles(AGVs)within automated container terminals(ACT)continues to rise,conflicts have becomemore frequent.Addressing point and edge conflicts ofAGVs,amulti-AGVconflict-free path pla... As the number of automated guided vehicles(AGVs)within automated container terminals(ACT)continues to rise,conflicts have becomemore frequent.Addressing point and edge conflicts ofAGVs,amulti-AGVconflict-free path planning model has been formulated to minimize the total path length of AGVs between shore bridges and yards.For larger terminalmaps and complex environments,the grid method is employed to model AGVs’road networks.An improved bounded conflict-based search(IBCBS)algorithmtailored to ACT is proposed,leveraging the binary tree principle to resolve conflicts and employing focal search to expand the search range.Comparative experiments involving 60 AGVs indicate a reduction in computing time by 37.397%to 64.06%while maintaining the over cost within 1.019%.Numerical experiments validate the proposed algorithm’s efficacy in enhancing efficiency and ensuring solution quality. 展开更多
关键词 Automated terminals multi-agV multi-agent path finding(MAPF) conflict based search(CBS) AGV path planning
在线阅读 下载PDF
An Asynchronous Genetic Algorithm for Multi-agent Path Planning Inspired by Biomimicry
3
作者 Bin Liu Shikai Jin +3 位作者 Yuzhu Li Zhuo Wang Donglai Zhao Wenjie Ge 《Journal of Bionic Engineering》 2025年第2期851-865,共15页
To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic ... To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic Algorithm (AGA) to solve multi-agent path planning problems effectively. To enhance the real-time performance and computational efficiency of Multi-Agent Systems (MAS) in path planning, the AGA incorporates an Equal-Size Clustering Algorithm (ESCA) based on the K-means clustering method. The ESCA divides the primary task evenly into a series of subtasks, thereby reducing the gene length in the subsequent GA process. The algorithm then employs GA to solve each subtask sequentially. To evaluate the effectiveness of the proposed method, a simulation program was designed to perform path planning for 100 trajectories, and the results were compared with those of State-Of-The-Art (SOTA) methods. The simulation results demonstrate that, although the solutions provided by AGA are suboptimal, it exhibits significant advantages in terms of execution speed and solution stability compared to other algorithms. 展开更多
关键词 multi-agent path planning Asynchronous genetic algorithm Equal-size clustering Genetic algorithm
在线阅读 下载PDF
Multi-Agent Path Planning Method Based on Improved Deep Q-Network in Dynamic Environments
4
作者 LI Shuyi LI Minzhe JING Zhongliang 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第4期601-612,共12页
The multi-agent path planning problem presents significant challenges in dynamic environments,primarily due to the ever-changing positions of obstacles and the complex interactions between agents’actions.These factor... The multi-agent path planning problem presents significant challenges in dynamic environments,primarily due to the ever-changing positions of obstacles and the complex interactions between agents’actions.These factors contribute to a tendency for the solution to converge slowly,and in some cases,diverge altogether.In addressing this issue,this paper introduces a novel approach utilizing a double dueling deep Q-network(D3QN),tailored for dynamic multi-agent environments.A novel reward function based on multi-agent positional constraints is designed,and a training strategy based on incremental learning is performed to achieve collaborative path planning of multiple agents.Moreover,the greedy and Boltzmann probability selection policy is introduced for action selection and avoiding convergence to local extremum.To match radar and image sensors,a convolutional neural network-long short-term memory(CNN-LSTM)architecture is constructed to extract the feature of multi-source measurement as the input of the D3QN.The algorithm’s efficacy and reliability are validated in a simulated environment,utilizing robot operating system and Gazebo.The simulation results show that the proposed algorithm provides a real-time solution for path planning tasks in dynamic scenarios.In terms of the average success rate and accuracy,the proposed method is superior to other deep learning algorithms,and the convergence speed is also improved. 展开更多
关键词 multi-agent path planning deep reinforcement learning deep Q-network
原文传递
Development of Multi-Agent-Based Indoor 3D Reconstruction
5
作者 Hoi Chuen Cheng Frederick Ziyang Hong +2 位作者 Babar Hussain Yiru Wang Chik Patrick Yue 《Computers, Materials & Continua》 SCIE EI 2024年第10期161-181,共21页
Large-scale indoor 3D reconstruction with multiple robots faces challenges in core enabling technologies.This work contributes to a framework addressing localization,coordination,and vision processing for multi-agent ... Large-scale indoor 3D reconstruction with multiple robots faces challenges in core enabling technologies.This work contributes to a framework addressing localization,coordination,and vision processing for multi-agent reconstruction.A system architecture fusing visible light positioning,multi-agent path finding via reinforcement learning,and 360°camera techniques for 3D reconstruction is proposed.Our visible light positioning algorithm leverages existing lighting for centimeter-level localization without additional infrastructure.Meanwhile,a decentralized reinforcement learning approach is developed to solve the multi-agent path finding problem,with communications among agents optimized.Our 3D reconstruction pipeline utilizes equirectangular projection from 360°cameras to facilitate depth-independent reconstruction from posed monocular images using neural networks.Experimental validation demonstrates centimeter-level indoor navigation and 3D scene reconstruction capabilities of our framework.The challenges and limitations stemming from the above enabling technologies are discussed at the end of each corresponding section.In summary,this research advances fundamental techniques for multi-robot indoor 3D modeling,contributing to automated,data-driven applications through coordinated robot navigation,perception,and modeling. 展开更多
关键词 multi-agent system multi-robot human collaboration visible light communication visible light positioning 3D reconstruction reinforcement learning multi-agent path finding
在线阅读 下载PDF
Optimal path finding algorithms based on SLSD road network model 被引量:3
6
作者 张小国 王庆 龚福祥 《Journal of Southeast University(English Edition)》 EI CAS 2010年第4期558-562,共5页
A solution to compute the optimal path based on a single-line-single-directional(SLSD)road network model is proposed.Unlike the traditional road network model,in the SLSD conceptual model,being single-directional an... A solution to compute the optimal path based on a single-line-single-directional(SLSD)road network model is proposed.Unlike the traditional road network model,in the SLSD conceptual model,being single-directional and single-line style,a road is no longer a linkage of road nodes but abstracted as a network node.Similarly,a road node is abstracted as the linkage of two ordered single-directional roads.This model can describe turn restrictions,circular roads,and other real scenarios usually described using a super-graph.Then a computing framework for optimal path finding(OPF)is presented.It is proved that classical Dijkstra and A algorithms can be directly used for OPF computing of any real-world road networks by transferring a super-graph to an SLSD network.Finally,using Singapore road network data,the proposed conceptual model and its corresponding optimal path finding algorithms are validated using a two-step optimal path finding algorithm with a pre-computing strategy based on the SLSD road network. 展开更多
关键词 optimal path finding road network model conceptual model digital map vehicle navigation system A algorithm Dijkstra algorithm
在线阅读 下载PDF
Dynamic A^*path finding algorithm and 3D lidar based obstacle avoidance strategy for autonomous vehicles 被引量:3
7
作者 Wang Xiaohua Ma Pin +1 位作者 Wang Hua Li Li 《High Technology Letters》 EI CAS 2020年第4期383-389,共7页
This paper presents a novel dynamic A^*path finding algorithm and 3D lidar based local obstacle avoidance strategy for an autonomous vehicle.3D point cloud data is collected and analyzed in real time.Local obstacles a... This paper presents a novel dynamic A^*path finding algorithm and 3D lidar based local obstacle avoidance strategy for an autonomous vehicle.3D point cloud data is collected and analyzed in real time.Local obstacles are detected online and a 2D local obstacle grid map is constructed at 10 Hz/s.The A^*path finding algorithm is employed to generate a local path in this local obstacle grid map by considering both the target position and obstacles.The vehicle avoids obstacles under the guidance of the generated local path.Experiment results have shown the effectiveness of the obstacle avoidance navigation algorithm proposed. 展开更多
关键词 autonomous navigation local obstacle avoidance dynamic A*path finding algorithm point cloud processing local obstacle map
在线阅读 下载PDF
System Vulnerability Analysis Using Graph Pathfinding Strategies in Partitioned Networks
8
作者 Milad Ghiasi Rad Pedram Gharghabi +1 位作者 Mohiyeddin Rahmani Bamdad Falahati 《Journal of Power and Energy Engineering》 2017年第4期15-24,共10页
In this paper, a new method has been introduced to find the most vulnerable lines in the system dynamically in an interconnected power system to help with the security and load flow analysis in these networks. Using t... In this paper, a new method has been introduced to find the most vulnerable lines in the system dynamically in an interconnected power system to help with the security and load flow analysis in these networks. Using the localization of power networks, the power grid can be divided into several divisions of sub-networks in which, the connection of the elements is stronger than the elements outside of that division. By using our proposed method, the probable important lines in the network can be identified to do the placement of the protection apparatus and planning for the extra extensions in the system. In this paper, we have studied the pathfinding strategies in most vulnerable line detection in a partitioned network. The method has been tested on IEEE39-bus system which is partitioned using hierarchical spectral clustering to show the feasibility of the proposed method. 展开更多
关键词 Power Systems Network GRAPH Partitioning path finding VULNERABILITY ANALYSIS
在线阅读 下载PDF
Distributed collaborative complete coverage path planning based on hybrid strategy 被引量:1
9
作者 ZHANG Jia DU Xin +1 位作者 DONG Qichen XIN Bin 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期463-472,共10页
Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm ... Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably. 展开更多
关键词 multi-agent cooperation unmanned aerial vehicles(UAV) distributed algorithm complete coverage path planning(CCPP)
在线阅读 下载PDF
多目标多智能体路径规划方法
10
作者 张静 王祎 +1 位作者 陈子龙 李云松 《浙江大学学报(工学版)》 北大核心 2025年第8期1689-1697,共9页
为了实现高效地将任务分配给每个智能体,为智能体规划出尽可能短且不与其他智能体发生碰撞的路径,提出多目标多智能体路径规划方法.针对传统路径规划算法使用离散时间导致成功率低的问题,该算法定义连续时间下智能体间的冲突定义与解冲... 为了实现高效地将任务分配给每个智能体,为智能体规划出尽可能短且不与其他智能体发生碰撞的路径,提出多目标多智能体路径规划方法.针对传统路径规划算法使用离散时间导致成功率低的问题,该算法定义连续时间下智能体间的冲突定义与解冲突方式,在A^(*)算法的基础上引入安全间隔与标签的概念,使得A^(*)算法可以规划出满足连续时间约束的最优路径.针对多智能体路径规划问题中因碰撞检测、冲突避免造成的较大计算量,提出冲突分级策略,减少了算法求解过程中扩展的节点数量.实验结果表明,利用所提出的算法能够求解得到更优的解决方案,且该算法具有更好的适用性;在智能体分布密集的场景下,该算法表现出更低的路径总成本和更高的求解成功率. 展开更多
关键词 多智能体系统 路径规划 任务分配 改进A^(*)算法 冲突搜索
在线阅读 下载PDF
基于动态冲突预测的多智体寻路算法 被引量:1
11
作者 张萌希 韩建军 肖彦 《计算机科学》 北大核心 2025年第4期21-32,共12页
多智体寻路(MAPF)是为多个智能体寻找无冲突路径的问题,灵活显式估计的基于冲突搜索算法是目前解决MAPF问题最有效的有界次优算法之一,但该算法仍存在调用底层算法次数多、迭代中冲突数量减少速度慢等问题。为此,提出基于动态冲突预测... 多智体寻路(MAPF)是为多个智能体寻找无冲突路径的问题,灵活显式估计的基于冲突搜索算法是目前解决MAPF问题最有效的有界次优算法之一,但该算法仍存在调用底层算法次数多、迭代中冲突数量减少速度慢等问题。为此,提出基于动态冲突预测的多智体寻路算法(DCPB-MAPF)。该算法分为两层,在底层提出基于关键区间的动态避障方法与基于路径成本预测的迭代方法,用以提升底层算法的运算效率;以此为基础,在顶层提出基于冲突预测的搜索算法,通过快速预测冲突数量以优化冲突选择技术,进一步提出冲突数量优先的启发式函数以加速减少冲突数量。实验结果表明,相比现有算法,所提算法能显著提升多智体寻路问题的运算效率及成功率。 展开更多
关键词 多智体路径寻找 有界次优算法 启发式搜索 路径成本预测 冲突预测
在线阅读 下载PDF
A greedy path planning algorithm based on pre-path-planning and real-time-conflict for multiple automated guided vehicles in large-scale outdoor scenarios 被引量:2
12
作者 王腾达 WU Wenjun +2 位作者 YANG Feng SUN Teng GAO Qiang 《High Technology Letters》 EI CAS 2023年第3期279-287,共9页
With the wide application of automated guided vehicles(AGVs) in large scale outdoor scenarios with complex terrain,the collaborative work of a large number of AGVs becomes the main trend.The effective multi-agent path... With the wide application of automated guided vehicles(AGVs) in large scale outdoor scenarios with complex terrain,the collaborative work of a large number of AGVs becomes the main trend.The effective multi-agent path finding(MAPF) algorithm is urgently needed to ensure the efficiency and realizability of the whole system. The complex terrain of outdoor scenarios is fully considered by using different values of passage cost to quantify different terrain types. The objective of the MAPF problem is to minimize the cost of passage while the Manhattan distance of paths and the time of passage are also evaluated for a comprehensive comparison. The pre-path-planning and real-time-conflict based greedy(PRG) algorithm is proposed as the solution. Simulation is conducted and the proposed PRG algorithm is compared with waiting-stop A^(*) and conflict based search(CBS) algorithms. Results show that the PRG algorithm outperforms the waiting-stop A^(*) algorithm in all three performance indicators,and it is more applicable than the CBS algorithm when a large number of AGVs are working collaboratively with frequent collisions. 展开更多
关键词 automated guided vehicle(AGV) multi-agent path finding(MAPF) complex terrain greedy algorithm
在线阅读 下载PDF
基于深度强化学习的未知越野环境空地协同路径搜索方法
13
作者 王容川 宋文杰 +3 位作者 毛梓豪 王凯 杨毅 付梦印 《中国惯性技术学报》 北大核心 2025年第4期394-401,共8页
面对先验信息未知、地形复杂的越野环境,传统空地协同方法采用贪婪策略易陷入局部最优,且缺乏对地形风险信息考虑,难以实现无人车安全、高效的自主行驶。针对以上问题,提出一种基于深度强化学习的空地协同路径搜索方法。首先,采用栅格... 面对先验信息未知、地形复杂的越野环境,传统空地协同方法采用贪婪策略易陷入局部最优,且缺乏对地形风险信息考虑,难以实现无人车安全、高效的自主行驶。针对以上问题,提出一种基于深度强化学习的空地协同路径搜索方法。首先,采用栅格地图构建方法,引入几何特征分析以实现地形风险信息精确刻画。其次,提出一种无人机视角下基于柔性演员-评论家强化学习的决策方法,通过构建增量式节点拓扑图,结合多级Transformer编码-解码网络提取特征,确保高效选择局部目标点以引导无人车。最后,使用贝塞尔曲线,结合无人车局部地形分析结果,生成安全、平滑的行驶轨迹。仿真结果表明,与三种典型空地协同路径搜索方法相比,所提方法使无人车的平均路径风险值减少约20.8%,局部目标点决策步骤的平均计算时间减少约82.6%,有效提升了无人车在未知越野环境中的自主行驶能力。 展开更多
关键词 强化学习 地形风险分析 未知越野环境 空地协同 路径搜索
在线阅读 下载PDF
基于冲突概率反馈的CBS分层多机器人路径规划
14
作者 杨邹 毛剑琳 +3 位作者 李大焱 王妮娅 张凯翔 李昊楠 《计算机集成制造系统》 北大核心 2025年第9期3391-3400,共10页
在多机器人路径规划中,针对基于冲突搜索(CBS)框架下存在高层冲突消解时间长以及底层扩展节点多的问题,提出了一种基于冲突概率反馈的改进CBS(ICBS-CPF)分层求解框架和方法。首先定义路径节点的冲突概率计算方法,并引入跳点搜索结合冲... 在多机器人路径规划中,针对基于冲突搜索(CBS)框架下存在高层冲突消解时间长以及底层扩展节点多的问题,提出了一种基于冲突概率反馈的改进CBS(ICBS-CPF)分层求解框架和方法。首先定义路径节点的冲突概率计算方法,并引入跳点搜索结合冲突概率反馈,将跳点搜索作为冲突概率的反馈载体。其次在CBS的高层和底层之间加入改进后的跳点搜索算法作为引导层来指导A^(*)的搜索方向。通过不同规模和结构的基准地图测试结果表明,冲突概率反馈可以有效减少机器人之间的冲突。ICBS-CPF算法不但能加快冲突的消减过程,而且在大地图复杂环境中,算法底层的扩展节点数量有明显减少。同时,算法能够有效改善多机器人路径规划问题中的求解时间以及求解成功率。 展开更多
关键词 分层求解框架 多机器人路径规划 冲突概率反馈 改进跳点搜索 引导A^(*)规划
在线阅读 下载PDF
基于行为克隆和奖励重构的AGV路径规划算法
15
作者 罗磊 赵宁 任成栋 《计算机集成制造系统》 北大核心 2025年第10期3744-3761,共18页
针对使用强化学习算法解决移动机器人拣选系统(RMFS)中AGV路径规划所存在的数据利用效率低、有效数据采集困难的问题,提出一种结合行为克隆方法和奖励重构方法的新的强化学习训练框架,来提升神经网络的训练效果。行为克隆方法通过监督... 针对使用强化学习算法解决移动机器人拣选系统(RMFS)中AGV路径规划所存在的数据利用效率低、有效数据采集困难的问题,提出一种结合行为克隆方法和奖励重构方法的新的强化学习训练框架,来提升神经网络的训练效果。行为克隆方法通过监督学习的方式,让神经网络直接学习专家经验,来迅速提升神经网络的决策能力;奖励重构方法通过更加精细的奖励值函数设计,来提升强化学习的训练效果。实验表明,同时使用行为克隆方法与奖励重构方法的强化学习过程,其训练效果远优于标准的强化学习算法(既不使用行为克隆方法也不使用奖励重构方法)。 展开更多
关键词 移动机器人拣选系统 自动导引小车 路径规划 策略梯度算法 行为克隆 奖励重构
在线阅读 下载PDF
一种结合选择性通信与冲突解决的多智能体路径规划方法
16
作者 王昱 张旭秀 《电子与信息学报》 北大核心 2025年第8期2830-2840,共11页
在动态密集场景中,路径规划方法面临计算复杂度高、系统可扩展性差等问题,尤其在障碍物密度大、智能体数量多的结构化环境中,易出现寻路效果不佳及碰撞死锁等现象。针对复杂场景下多智能体路径规划通信与动态冲突的双重挑战,该文提出一... 在动态密集场景中,路径规划方法面临计算复杂度高、系统可扩展性差等问题,尤其在障碍物密度大、智能体数量多的结构化环境中,易出现寻路效果不佳及碰撞死锁等现象。针对复杂场景下多智能体路径规划通信与动态冲突的双重挑战,该文提出一种基于选择性通信与冲突解决的多智能体路径规划方式(DCCPR)。该方法构建动态联合屏蔽补充决策机制,通过融合A^(*)算法生成的期望路径与双惩罚项强化学习,在实现任务目标的同时减少路径偏差;引入基于多层次动态加权的优先级冲突解决策略,结合初始距离优先级、任务Q值动态调整及轮流通行机制,有效处理系统中冲突情境。通过在训练期间从未见过的结构化地图上测试,相比决策因果通信(DCC)任务成功率提高约79%,平均回合步长降低了46.4%。 展开更多
关键词 多智能体路径规划 强化学习 选择性通信 冲突解决
在线阅读 下载PDF
启发式搜索的多智能体异速轨迹规划
17
作者 鲁宇 匡金骏 +1 位作者 肖峣 龚建伟 《计算机工程与应用》 北大核心 2025年第2期344-354,共11页
在多智能体系统研究中,多智能体路径规划(multi-agent path finding,MAPF)是一个核心难题,其目标是为各个智能体规定独立路径,确保智能体在移动过程中不发生碰撞。这是一个NP难题,亟须高效解决算法。创新性地提出了一种多智能体路径规... 在多智能体系统研究中,多智能体路径规划(multi-agent path finding,MAPF)是一个核心难题,其目标是为各个智能体规定独立路径,确保智能体在移动过程中不发生碰撞。这是一个NP难题,亟须高效解决算法。创新性地提出了一种多智能体路径规划算法——启发式导向冲突搜索(heuristic guided conflict-based search,HG-CBS),以解决复杂的MAPF场景,如智能体移动速度不同或各条边的道路长度不同。为优化HG-CBS算法,构建了三种独特的启发式计算方法:(1)加权求和法,以所有启发式的加权总和作为最终启发式;(2)帕累托集合法,构建一个帕累托集并从中选择节点;(3)交替法,在搜索迭代过程中交替使用各种启发式。实验结果显示,相比于传统方法,带有启发值的HG-CBS在成功率、运行时间及扩展节点数量等关键性能指标上均表现更优。例如,在包含16个智能体的复杂场景下,HG-CBS-h3(交替法)将运行时间缩短了89%,将拓展节点的数目减少了95%。此外,随着场景复杂度的提升,HG-CBS-h3的性能优势更加明显。这些结果证明了HG-CBS算法的有效性和高效性,对多智能体轨迹规划问题具有显著的理论和应用价值。 展开更多
关键词 多智能体路径规划 启发式导向冲突搜索 启发式搜索 帕累托集
在线阅读 下载PDF
Multi-UAV Cooperative Target Search Based on Autonomous Connectivity in Uncertain Network Environment
18
作者 Wang Shan Sun Sheng +4 位作者 Liu Min Wang Yuwei Chen Yali Liu Danni Lin Fuhong 《China Communications》 2025年第8期257-280,共24页
Multiple UAVs cooperative target search has been widely used in various environments,such as emergency rescue and traffic monitoring.However,uncertain communication network among UAVs exhibits unstable links and rapid... Multiple UAVs cooperative target search has been widely used in various environments,such as emergency rescue and traffic monitoring.However,uncertain communication network among UAVs exhibits unstable links and rapid topological fluctuations due to mission complexity and unpredictable environmental states.This limitation hinders timely information sharing and insightful path decisions for UAVs,resulting in inefficient or even failed collaborative search.Aiming at this issue,this paper proposes a multi-UAV cooperative search strategy by developing a real-time trajectory decision that incorporates autonomous connectivity to reinforce multi-UAV collaboration and achieve search acceleration in uncertain search environments.Specifically,an autonomous connectivity strategy based on node cognitive information and network states is introduced to enable effective message transmission and adapt to the dynamic network environment.Based on the fused information,we formalize the trajectory planning as a multiobjective optimization problem by jointly considering search performance and UAV energy harnessing.A multi-agent deep reinforcement learning based algorithm is proposed to solve it,where the reward-guided real-time path is determined to achieve an energyefficient search.Finally,extensive experimental results show that the proposed algorithm outperforms existing works in terms of average search rate and coverage rate with reduced energy consumption under uncertain search environments. 展开更多
关键词 autonomous connectivity multi-agent reinforcement learning multi-UAV collaboration path planning target search
在线阅读 下载PDF
基于A*算法的AGV路径规划研究文献综述
19
作者 宋作玲 殷祥栋 《物流科技》 2025年第3期41-43,共3页
随着科技的不断进步,自动导引车辆(AGV)在仓库、港口等物流领域的应用愈加广泛。文章针对近年来A*算法的AGV研究现状、算法改进,以及在仓库或港口环境下多AGV的研究现状做出整理与总结。文章分析了A*算法的排序过程和时间因子的改进,结... 随着科技的不断进步,自动导引车辆(AGV)在仓库、港口等物流领域的应用愈加广泛。文章针对近年来A*算法的AGV研究现状、算法改进,以及在仓库或港口环境下多AGV的研究现状做出整理与总结。文章分析了A*算法的排序过程和时间因子的改进,结合交通规则和预约表的A*算法以及动态加权地图方法解决AGV车辆工作时路径冲突与堵塞问题。接着,阐述了在仓库、港口环境下多AGV的研究现状,通过匹配AGV与货物托盘、改进遗传算法、设置权值减少转弯次数等方法提高路径规划效率和车辆运行效率。最后,总结了研究成果和应用价值,并指出了未来研究方向。 展开更多
关键词 寻路算法 路径规划 自动引导车
在线阅读 下载PDF
一种考虑行程安全性的城市绿色路径规划算法
20
作者 赵国强 谢李鑫 《测绘技术装备》 2025年第1期33-38,共6页
为了减少交通活动造成的化石燃料消耗,提高驾驶安全性,本文提出了一种考虑行程安全性的城市绿色路径规划算法。首先,选取行程安全、行程时间和行程油耗等影响路径选择的重要因素,开发多目标优化模型;其次,基于A^(*)技术,精确实现所提出... 为了减少交通活动造成的化石燃料消耗,提高驾驶安全性,本文提出了一种考虑行程安全性的城市绿色路径规划算法。首先,选取行程安全、行程时间和行程油耗等影响路径选择的重要因素,开发多目标优化模型;其次,基于A^(*)技术,精确实现所提出模型;最后,利用交通数据对北京路网进行综合案例研究,证明所提出算法在实际应用中的有效性和效率。 展开更多
关键词 绿色路径规划 行程安全 行程费用 A^(*)技术 多目标最优路径
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部