An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and coll...An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller.展开更多
Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus...Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus algorithm. A novel distributed control model is proposed for the multi-agent system to form the anticipated formation as well as achieve obstacle avoidance. Based on the consensus algorithm, a distributed control function consisting of three terms (formation control term, velocity matching term, and obstacle avoidance term) is presented. By establishing a novel formation control matrix, a formation control term is constructed such that the agents can converge to consensus and reach the anticipated formation. A new obstacle avoidance function is developed by using the modified potential field approach to make sure that obstacle avoidance can be achieved whether the obstacle is in a dynamic state or a stationary state. A velocity matching term is also put forward to guarantee that the velocities of all agents converge to the same value. Furthermore, stability of the control model is proven. Simulation results are provided to demonstrate the effectiveness of the proposed control.展开更多
To solve the problems of difficult control law design,poor portability,and poor stability of traditional multi-agent formation obstacle avoidance algorithms,a multi-agent formation obstacle avoidance method based on d...To solve the problems of difficult control law design,poor portability,and poor stability of traditional multi-agent formation obstacle avoidance algorithms,a multi-agent formation obstacle avoidance method based on deep reinforcement learning(DRL)is proposed.This method combines the perception ability of convolutional neural networks(CNNs)with the decision-making ability of reinforcement learning in a general form and realizes direct output control from the visual perception input of the environment to the action through an end-to-end learning method.The multi-agent system(MAS)model of the follow-leader formation method was designed with the wheelbarrow as the control object.An improved deep Q netwrok(DQN)algorithm(we improved its discount factor and learning efficiency and designed a reward value function that considers the distance relationship between the agent and the obstacle and the coordination factor between the multi-agents)was designed to achieve obstacle avoidance and collision avoidance in the process of multi-agent formation into the desired formation.The simulation results show that the proposed method achieves the expected goal of multi-agent formation obstacle avoidance and has stronger portability compared with the traditional algorithm.展开更多
This paper deals with the problem of distributed formation tracking control and obstacle avoidance of multivehicle systems(MVSs)in complex obstacle-laden environments.The MVS under consideration consists of a leader v...This paper deals with the problem of distributed formation tracking control and obstacle avoidance of multivehicle systems(MVSs)in complex obstacle-laden environments.The MVS under consideration consists of a leader vehicle with an unknown control input and a group of follower vehicles,connected via a directed interaction topology,subject to simultaneous unknown heterogeneous nonlinearities and external disturbances.The central aim is to achieve effective and collisionfree formation tracking control for the nonlinear and uncertain MVS with obstacles encountered in formation maneuvering,while not demanding global information of the interaction topology.Toward this goal,a radial basis function neural network is used to model the unknown nonlinearity of vehicle dynamics in each vehicle and repulsive potentials are employed for obstacle avoidance.Furthermore,a scalable distributed adaptive formation tracking control protocol with a built-in obstacle avoidance mechanism is developed.It is proved that,with the proposed protocol,the resulting formation tracking errors are uniformly ultimately bounded and obstacle collision avoidance is guaranteed.Comprehensive simulation results are elaborated to substantiate the effectiveness and the promising collision avoidance performance of the proposed scalable adaptive formation control approach.展开更多
Based on the double integrator mathematic model, a new kind of potential function is presented in this paper by referring to the concepts of the electric field; then a new formation control method is proposed, in whic...Based on the double integrator mathematic model, a new kind of potential function is presented in this paper by referring to the concepts of the electric field; then a new formation control method is proposed, in which the potential functions are used between agent-agent and between agent-obstacle, while state feedback control is applied for the agent and its goal. This strategy makes the whole potential field simpler and helps avoid some local minima. The stability of this combination of potential functions and state feedback control is proven. Some simulations are presented to show the rationality of this control method.展开更多
In this paper, the fixed-time event-triggered obstacle avoidance consensus control for a multi-AUV time-varying formation system in a 3D environment is presented by using an improved artificial potential field and lea...In this paper, the fixed-time event-triggered obstacle avoidance consensus control for a multi-AUV time-varying formation system in a 3D environment is presented by using an improved artificial potential field and leader-follower strategy(IAPF-LF). Firstly, the proposed fixed-time control can achieve the desired multi-AUV formation within a fixed settling time in any initial system state. Secondly, an event-triggered communication strategy is developed to govern the communication among AUVs, and the communication energy consumption can be decremented. The time-varying formation obstacle avoidance control algorithm based on IAPF-LF is designed to avoid static and dynamic obstacles, the desired formation is maintained in the presence of external disturbances, and there is no Zeno behavior under the fixed-time event-triggered consensus control strategy.The stability of the system is proved by the Lyapunov function and inequality scaling. Finally, simulation examples and water pool experiments are reported to verify the performance of the proposed theoretical algorithms.展开更多
This paper considers the problems of target tracking and obstacle avoidance for multi-agent systems. To solve the problem that multiple agents cannot effectively track the target while avoiding obstacle in dynamic env...This paper considers the problems of target tracking and obstacle avoidance for multi-agent systems. To solve the problem that multiple agents cannot effectively track the target while avoiding obstacle in dynamic environment, a novel control algorithm based on potential function and behavior rules is proposed. Meanwhile, the interactions among agents are also considered. According to the state whether an agent is within the area of its neighbors' influence, two kinds of potential functions are presented. Meanwhile, the distributed control input of each agent is determined by relative velocities as well as relative positions among agents, target and obstacle. The maximum linear speed of the agents is also discussed. Finally, simulation studies are given to demonstrate the performance of the proposed algorithm.展开更多
In this paper, the problems of target tracking and obstacle avoidance for multi-agent networks with input constraints are investigated. When there is a moving obstacle, the control objectives are to make the agents tr...In this paper, the problems of target tracking and obstacle avoidance for multi-agent networks with input constraints are investigated. When there is a moving obstacle, the control objectives are to make the agents track a moving target and to avoid collisions among agents. First, without considering the input constraints, a novel distributed controller can be obtained based on the potential function. Second, at each sampling time, the control algorithm is optimized. Furthermore, to solve the problem that agents cannot effectively avoid the obstacles in dynamic environment where the obstacles are moving, a new velocity repulsive potential is designed. One advantage of the designed control algorithm is that each agent only requires local knowledge of its neighboring agents. Finally, simulation results are provided to verify the effectiveness of the proposed approach.展开更多
在这份报纸,形成控制和障碍回避问题被处理一统一了控制算法,它允许追随者当维持从领导人的需要的相对适用或相对距离时,避免障碍。In the known 领导人追随者机器人形成控制文学,领导人机器人的绝对运动状态被要求控制追随者,它...在这份报纸,形成控制和障碍回避问题被处理一统一了控制算法,它允许追随者当维持从领导人的需要的相对适用或相对距离时,避免障碍。In the known 领导人追随者机器人形成控制文学,领导人机器人的绝对运动状态被要求控制追随者,它不能在一些环境是可得到的。在这研究,领导人追随者机器人形成以在领导人和追随者机器人之间的相对运动状态被建模并且控制。领导人机器人的绝对运动状态没在建议形成控制器被要求。而且,研究基于察觉到在机器人和障碍之间的相对运动被扩大了到一个新奇障碍回避计划。试验性的调查用平台被进行了由活动机器人和计算机视觉系统,和结果表明了的三 nonholonomic 组成了建议方法的有效性。展开更多
In light of the intricate and volatile nature of battlefield environments,unmanned aerial vehicle(UAV)swarms have become a critical asset in contemporary military operations.The autonomous obstacle avoidance capabilit...In light of the intricate and volatile nature of battlefield environments,unmanned aerial vehicle(UAV)swarms have become a critical asset in contemporary military operations.The autonomous obstacle avoidance capabilities of UAV swarms are crucial for enhancing their operational effectiveness and survivability in complex battlefield conditions.Consequently,this technology has garnered significant attention from researchers globally,positioning it as a key area of advanced military technology.In response to the diverse characteristics of obstacles in combat environments,a cooperative obstacle avoidance strategy for UAV swarms on the basis of an improved artificial potential field(APF)method and a variable topology structure is proposed in this study.By considering the properties of static and dynamic obstacles on the battlefield,the proposed strategy models the flight space with obstacles as being segmented into multiple smaller navigable regions between these obstacles.To address the limitations of the traditional APF method,this study introduces velocity adaptation components,angle factors,and auxiliary traction forces to optimize the repulsive force component of the traditional APF method.Additionally,combining this approach with a coalition-based variable topology formation reconfiguration algorithm,the strategy realizes autonomous obstacle avoidance for UAV swarms in battlefield obstacle environments.This method not only resolves the common issue of local minima in traditional APF obstacle avoidance techniques but also ensures effective obstacle avoidance by UAV swarms when large obstacles are encountered.The results of simulation experiments demonstrate the feasibility and performance of the proposed strategy.展开更多
Considering that the inevitable disturbances and coupled constraints pose an ongoing challenge to distributed control algorithms,this paper proposes a distributed robust model predictive control(MPC)algorithm for a mu...Considering that the inevitable disturbances and coupled constraints pose an ongoing challenge to distributed control algorithms,this paper proposes a distributed robust model predictive control(MPC)algorithm for a multi-agent system with additive external disturbances and obstacle and collision avoidance constraints.In particular,all the agents are allowed to solve optimization problems simultaneously at each time step to obtain their control inputs,and the obstacle and collision avoidance are accomplished in the context of full-dimensional controlled objects and obstacles.To achieve the collision avoidance between agents in the distributed framework,an assumed state trajectory is introduced for each agent which is transmitted to its neighbors to construct the polyhedral over-approximations of it.Then the polyhedral over-approximations of the agent and the obstacles are used to smoothly reformulate the original nonconvex obstacle and collision avoidance constraints.And a compatibility constraint is designed to restrict the deviation between the predicted and assumed trajectories.Moreover,recursive feasibility of each local MPC optimization problem with all these constraints derived and input-to-state stability of the closed-loop system can be ensured through a sufficient condition on controller parameters.Finally,simulations with four agents and two obstacles demonstrate the efficiency of the proposed algorithm.展开更多
In this paper,we study the circular formation problem for the second-order multi-agent systems in a plane,in which the agents maintain a circular formation based on a probabilistic position.A distributed hybrid contro...In this paper,we study the circular formation problem for the second-order multi-agent systems in a plane,in which the agents maintain a circular formation based on a probabilistic position.A distributed hybrid control protocol based on a probabilistic position is designed to achieve circular formation stabilization and consensus.In the current framework,the mobile agents follow the following rules:1)the agent must follow a circular trajectory;2)all the agents in the same circular trajectory must have the same direction.The formation control objective includes two parts:1)drive all the agents to the circular formation;2)avoid a collision.Based on Lyapunov methods,convergence and stability of the proposed circular formation protocol are provided.Due to limitations in collision avoidance,we extend the results to LaSalle’s invariance principle.Some theoretical examples and numerical simulations show the effectiveness of the proposed scheme.展开更多
The paper proposes a Virtual Target Guidance(VTG)-based distributed Model Predictive Control(MPC) scheme for formation control of multiple Unmanned Aerial Vehicles(UAVs).First, a framework of distributed MPC scheme is...The paper proposes a Virtual Target Guidance(VTG)-based distributed Model Predictive Control(MPC) scheme for formation control of multiple Unmanned Aerial Vehicles(UAVs).First, a framework of distributed MPC scheme is designed in which each UAV only shares the information with its neighbors, and the obtained local Finite-Horizon Optimal Control Problem(FHOCP) can be solved by swarm intelligent optimization algorithm.Then, a VTG approach is developed and integrated into the distributed MPC scheme to achieve trajectory tracking and obstacle avoidance.Further, an event-triggered mechanism is proposed to reduce the computational burden for UAV formation control, which takes into consideration the predictive state errors as well as the convergence of cost function.Numerical simulations show that the proposed VTG-based distributed MPC scheme is more computationally efficient to achieve formation control of multiple UAVs in comparison with the traditional distributed MPC method.展开更多
In this paper, a formation control algorithm and an obstade avoidance control algorithm for mobile robots are developed based on a relative motion sensory system such as a pan/tilt camera vision system, without the ne...In this paper, a formation control algorithm and an obstade avoidance control algorithm for mobile robots are developed based on a relative motion sensory system such as a pan/tilt camera vision system, without the need for global sensing and between robots. This is achieved by employing the velocity variation, instead of actual velocities, as the control inputs. Simulation and experimental results have demonstrated the effectiveness of the proposed control methods.展开更多
基金founded by the National Science and Technology Council of the Republic of China under contract NSTC113-2221-E-019-032.
文摘An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller.
基金supported by the National High Technology Research and Development Program of China(Grant No.2011AA040103)the Research Foundationof Shanghai Institute of Technology,China(Grant No.B504)
文摘Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus algorithm. A novel distributed control model is proposed for the multi-agent system to form the anticipated formation as well as achieve obstacle avoidance. Based on the consensus algorithm, a distributed control function consisting of three terms (formation control term, velocity matching term, and obstacle avoidance term) is presented. By establishing a novel formation control matrix, a formation control term is constructed such that the agents can converge to consensus and reach the anticipated formation. A new obstacle avoidance function is developed by using the modified potential field approach to make sure that obstacle avoidance can be achieved whether the obstacle is in a dynamic state or a stationary state. A velocity matching term is also put forward to guarantee that the velocities of all agents converge to the same value. Furthermore, stability of the control model is proven. Simulation results are provided to demonstrate the effectiveness of the proposed control.
基金the National Natural Science Foun-dation of China(No.61963006)the Nat-ural Science Foundation of Guangxi Province(Nos.2020GXNSFDA238011,2018GXNSFAA050029,and 2018GXNSFAA294085)。
文摘To solve the problems of difficult control law design,poor portability,and poor stability of traditional multi-agent formation obstacle avoidance algorithms,a multi-agent formation obstacle avoidance method based on deep reinforcement learning(DRL)is proposed.This method combines the perception ability of convolutional neural networks(CNNs)with the decision-making ability of reinforcement learning in a general form and realizes direct output control from the visual perception input of the environment to the action through an end-to-end learning method.The multi-agent system(MAS)model of the follow-leader formation method was designed with the wheelbarrow as the control object.An improved deep Q netwrok(DQN)algorithm(we improved its discount factor and learning efficiency and designed a reward value function that considers the distance relationship between the agent and the obstacle and the coordination factor between the multi-agents)was designed to achieve obstacle avoidance and collision avoidance in the process of multi-agent formation into the desired formation.The simulation results show that the proposed method achieves the expected goal of multi-agent formation obstacle avoidance and has stronger portability compared with the traditional algorithm.
文摘This paper deals with the problem of distributed formation tracking control and obstacle avoidance of multivehicle systems(MVSs)in complex obstacle-laden environments.The MVS under consideration consists of a leader vehicle with an unknown control input and a group of follower vehicles,connected via a directed interaction topology,subject to simultaneous unknown heterogeneous nonlinearities and external disturbances.The central aim is to achieve effective and collisionfree formation tracking control for the nonlinear and uncertain MVS with obstacles encountered in formation maneuvering,while not demanding global information of the interaction topology.Toward this goal,a radial basis function neural network is used to model the unknown nonlinearity of vehicle dynamics in each vehicle and repulsive potentials are employed for obstacle avoidance.Furthermore,a scalable distributed adaptive formation tracking control protocol with a built-in obstacle avoidance mechanism is developed.It is proved that,with the proposed protocol,the resulting formation tracking errors are uniformly ultimately bounded and obstacle collision avoidance is guaranteed.Comprehensive simulation results are elaborated to substantiate the effectiveness and the promising collision avoidance performance of the proposed scalable adaptive formation control approach.
基金the Jiangsu Province Fundamental Research Plan (Natural Science Foundation) (No.BK2006202).
文摘Based on the double integrator mathematic model, a new kind of potential function is presented in this paper by referring to the concepts of the electric field; then a new formation control method is proposed, in which the potential functions are used between agent-agent and between agent-obstacle, while state feedback control is applied for the agent and its goal. This strategy makes the whole potential field simpler and helps avoid some local minima. The stability of this combination of potential functions and state feedback control is proven. Some simulations are presented to show the rationality of this control method.
基金supported in part by the National Natural Science Foundation of China (62033009)the Creative Activity Plan for Science and Technology Commission of Shanghai (20510712300,21DZ2293500)the Supported by Science Foundation of Donghai Laboratory。
文摘In this paper, the fixed-time event-triggered obstacle avoidance consensus control for a multi-AUV time-varying formation system in a 3D environment is presented by using an improved artificial potential field and leader-follower strategy(IAPF-LF). Firstly, the proposed fixed-time control can achieve the desired multi-AUV formation within a fixed settling time in any initial system state. Secondly, an event-triggered communication strategy is developed to govern the communication among AUVs, and the communication energy consumption can be decremented. The time-varying formation obstacle avoidance control algorithm based on IAPF-LF is designed to avoid static and dynamic obstacles, the desired formation is maintained in the presence of external disturbances, and there is no Zeno behavior under the fixed-time event-triggered consensus control strategy.The stability of the system is proved by the Lyapunov function and inequality scaling. Finally, simulation examples and water pool experiments are reported to verify the performance of the proposed theoretical algorithms.
基金supported by National Basic Research Program of China (973 Program) (No. 2010CB731800)Key Program of National Natural Science Foundation of China (No. 60934003)Key Project for Natural Science Research of Hebei Education Department(No. ZD200908)
文摘This paper considers the problems of target tracking and obstacle avoidance for multi-agent systems. To solve the problem that multiple agents cannot effectively track the target while avoiding obstacle in dynamic environment, a novel control algorithm based on potential function and behavior rules is proposed. Meanwhile, the interactions among agents are also considered. According to the state whether an agent is within the area of its neighbors' influence, two kinds of potential functions are presented. Meanwhile, the distributed control input of each agent is determined by relative velocities as well as relative positions among agents, target and obstacle. The maximum linear speed of the agents is also discussed. Finally, simulation studies are given to demonstrate the performance of the proposed algorithm.
基金supported by National Basic Research Program of China (973 Program) (No. 2010CB731800)Key Project of National Science Foundation of China (No. 60934003)+2 种基金National Nature Science Foundation of China (No. 61074065)Key Project for Natural Science Research of Hebei Education Department, PRC(No. ZD200908)Key Project for Shanghai Committee of Science and Technology (No. 08511501600)
文摘In this paper, the problems of target tracking and obstacle avoidance for multi-agent networks with input constraints are investigated. When there is a moving obstacle, the control objectives are to make the agents track a moving target and to avoid collisions among agents. First, without considering the input constraints, a novel distributed controller can be obtained based on the potential function. Second, at each sampling time, the control algorithm is optimized. Furthermore, to solve the problem that agents cannot effectively avoid the obstacles in dynamic environment where the obstacles are moving, a new velocity repulsive potential is designed. One advantage of the designed control algorithm is that each agent only requires local knowledge of its neighboring agents. Finally, simulation results are provided to verify the effectiveness of the proposed approach.
基金Supported in part by National High Technology Research and Development Program of P.R.China(2001AA422140)
文摘在这份报纸,形成控制和障碍回避问题被处理一统一了控制算法,它允许追随者当维持从领导人的需要的相对适用或相对距离时,避免障碍。In the known 领导人追随者机器人形成控制文学,领导人机器人的绝对运动状态被要求控制追随者,它不能在一些环境是可得到的。在这研究,领导人追随者机器人形成以在领导人和追随者机器人之间的相对运动状态被建模并且控制。领导人机器人的绝对运动状态没在建议形成控制器被要求。而且,研究基于察觉到在机器人和障碍之间的相对运动被扩大了到一个新奇障碍回避计划。试验性的调查用平台被进行了由活动机器人和计算机视觉系统,和结果表明了的三 nonholonomic 组成了建议方法的有效性。
基金supported by the National Natural Science Foundation of China(Grant No.72471204)。
文摘In light of the intricate and volatile nature of battlefield environments,unmanned aerial vehicle(UAV)swarms have become a critical asset in contemporary military operations.The autonomous obstacle avoidance capabilities of UAV swarms are crucial for enhancing their operational effectiveness and survivability in complex battlefield conditions.Consequently,this technology has garnered significant attention from researchers globally,positioning it as a key area of advanced military technology.In response to the diverse characteristics of obstacles in combat environments,a cooperative obstacle avoidance strategy for UAV swarms on the basis of an improved artificial potential field(APF)method and a variable topology structure is proposed in this study.By considering the properties of static and dynamic obstacles on the battlefield,the proposed strategy models the flight space with obstacles as being segmented into multiple smaller navigable regions between these obstacles.To address the limitations of the traditional APF method,this study introduces velocity adaptation components,angle factors,and auxiliary traction forces to optimize the repulsive force component of the traditional APF method.Additionally,combining this approach with a coalition-based variable topology formation reconfiguration algorithm,the strategy realizes autonomous obstacle avoidance for UAV swarms in battlefield obstacle environments.This method not only resolves the common issue of local minima in traditional APF obstacle avoidance techniques but also ensures effective obstacle avoidance by UAV swarms when large obstacles are encountered.The results of simulation experiments demonstrate the feasibility and performance of the proposed strategy.
基金the National Natural Science Foundation of China(Nos.62173036,62003040,62122014)the Beijing Institute of Technology Research Fund Program for Young Scholars.
文摘Considering that the inevitable disturbances and coupled constraints pose an ongoing challenge to distributed control algorithms,this paper proposes a distributed robust model predictive control(MPC)algorithm for a multi-agent system with additive external disturbances and obstacle and collision avoidance constraints.In particular,all the agents are allowed to solve optimization problems simultaneously at each time step to obtain their control inputs,and the obstacle and collision avoidance are accomplished in the context of full-dimensional controlled objects and obstacles.To achieve the collision avoidance between agents in the distributed framework,an assumed state trajectory is introduced for each agent which is transmitted to its neighbors to construct the polyhedral over-approximations of it.Then the polyhedral over-approximations of the agent and the obstacles are used to smoothly reformulate the original nonconvex obstacle and collision avoidance constraints.And a compatibility constraint is designed to restrict the deviation between the predicted and assumed trajectories.Moreover,recursive feasibility of each local MPC optimization problem with all these constraints derived and input-to-state stability of the closed-loop system can be ensured through a sufficient condition on controller parameters.Finally,simulations with four agents and two obstacles demonstrate the efficiency of the proposed algorithm.
文摘In this paper,we study the circular formation problem for the second-order multi-agent systems in a plane,in which the agents maintain a circular formation based on a probabilistic position.A distributed hybrid control protocol based on a probabilistic position is designed to achieve circular formation stabilization and consensus.In the current framework,the mobile agents follow the following rules:1)the agent must follow a circular trajectory;2)all the agents in the same circular trajectory must have the same direction.The formation control objective includes two parts:1)drive all the agents to the circular formation;2)avoid a collision.Based on Lyapunov methods,convergence and stability of the proposed circular formation protocol are provided.Due to limitations in collision avoidance,we extend the results to LaSalle’s invariance principle.Some theoretical examples and numerical simulations show the effectiveness of the proposed scheme.
基金supported in part by the National Natural Science Foundation of China(No.61803009)Fundamental Research Funds for the Central Universities,China(No.YWF-19-BJ-J-205)Aeronautical Science Foundation of China(No.20175851032)。
文摘The paper proposes a Virtual Target Guidance(VTG)-based distributed Model Predictive Control(MPC) scheme for formation control of multiple Unmanned Aerial Vehicles(UAVs).First, a framework of distributed MPC scheme is designed in which each UAV only shares the information with its neighbors, and the obtained local Finite-Horizon Optimal Control Problem(FHOCP) can be solved by swarm intelligent optimization algorithm.Then, a VTG approach is developed and integrated into the distributed MPC scheme to achieve trajectory tracking and obstacle avoidance.Further, an event-triggered mechanism is proposed to reduce the computational burden for UAV formation control, which takes into consideration the predictive state errors as well as the convergence of cost function.Numerical simulations show that the proposed VTG-based distributed MPC scheme is more computationally efficient to achieve formation control of multiple UAVs in comparison with the traditional distributed MPC method.
文摘In this paper, a formation control algorithm and an obstade avoidance control algorithm for mobile robots are developed based on a relative motion sensory system such as a pan/tilt camera vision system, without the need for global sensing and between robots. This is achieved by employing the velocity variation, instead of actual velocities, as the control inputs. Simulation and experimental results have demonstrated the effectiveness of the proposed control methods.