期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
MATD3-Based End-Edge Collaborative Resource Optimization for NOMA-Assisted Industrial Wireless Networks
1
作者 Ru Hao Chi Xu Jing Liu 《Computers, Materials & Continua》 2025年第2期3203-3222,共20页
Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resource... Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resources. This paper minimizes the system overhead regarding task processing delay and energy consumption for the IWN with hybrid NOMA and orthogonal multiple access (OMA) schemes. Specifically, we formulate the system overhead minimization (SOM) problem by considering the limited computation and communication resources and NOMA efficiency. To solve the complex mixed-integer nonconvex problem, we combine the multi-agent twin delayed deep deterministic policy gradient (MATD3) and convex optimization, namely MATD3-CO, for iterative optimization. Specifically, we first decouple SOM into two sub-problems, i.e., joint sub-channel allocation and task offloading sub-problem, and computation resource allocation sub-problem. Then, we propose MATD3 to optimize the sub-channel allocation and task offloading ratio, and employ the convex optimization to allocate the computation resource with a closed-form expression derived by the Karush-Kuhn-Tucker (KKT) conditions. The solution is obtained by iteratively solving these two sub-problems. The experimental results indicate that the MATD3-CO scheme, when compared to the benchmark schemes, significantly decreases system overhead with respect to both delay and energy consumption. 展开更多
关键词 Industrial wireless networks(IWNs) multi-access edge computing(mec) non-orthogonal multiple access(NOMA) task offloading resource allocation
在线阅读 下载PDF
Associative Tasks Computing Offloading Scheme in Internet of Medical Things with Deep Reinforcement Learning 被引量:1
2
作者 Jiang Fan Qin Junwei +1 位作者 Liu Lei Tian Hui 《China Communications》 SCIE CSCD 2024年第4期38-52,共15页
The Internet of Medical Things(Io MT) is regarded as a critical technology for intelligent healthcare in the foreseeable 6G era. Nevertheless, due to the limited computing power capability of edge devices and task-rel... The Internet of Medical Things(Io MT) is regarded as a critical technology for intelligent healthcare in the foreseeable 6G era. Nevertheless, due to the limited computing power capability of edge devices and task-related coupling relationships, Io MT faces unprecedented challenges. Considering the associative connections among tasks, this paper proposes a computing offloading policy for multiple-user devices(UDs) considering device-to-device(D2D) communication and a multi-access edge computing(MEC)technique under the scenario of Io MT. Specifically,to minimize the total delay and energy consumption concerning the requirement of Io MT, we first analyze and model the detailed local execution, MEC execution, D2D execution, and associated tasks offloading exchange model. Consequently, the associated tasks’ offloading scheme of multi-UDs is formulated as a mixed-integer nonconvex optimization problem. Considering the advantages of deep reinforcement learning(DRL) in processing tasks related to coupling relationships, a Double DQN based associative tasks computing offloading(DDATO) algorithm is then proposed to obtain the optimal solution, which can make the best offloading decision under the condition that tasks of UDs are associative. Furthermore, to reduce the complexity of the DDATO algorithm, the cacheaided procedure is intentionally introduced before the data training process. This avoids redundant offloading and computing procedures concerning tasks that previously have already been cached by other UDs. In addition, we use a dynamic ε-greedy strategy in the action selection section of the algorithm, thus preventing the algorithm from falling into a locally optimal solution. Simulation results demonstrate that compared with other existing methods for associative task models concerning different structures in the Io MT network, the proposed algorithm can lower the total cost more effectively and efficiently while also providing a tradeoff between delay and energy consumption tolerance. 展开更多
关键词 associative tasks cache-aided procedure double deep Q-network Internet of Medical Things(IoMT) multi-access edge computing(mec)
在线阅读 下载PDF
Beyond 5G Networks: Integration of Communication, Computing, Caching, and Control 被引量:5
3
作者 Musbahu Mohammed Adam Liqiang Zhao +1 位作者 Kezhi Wang Zhu Han 《China Communications》 SCIE CSCD 2023年第7期137-174,共38页
In recent years,the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks.Such challenges can be potentially overcome by integrating c... In recent years,the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks.Such challenges can be potentially overcome by integrating communication,computing,caching,and control(i4C)technologies.In this survey,we first give a snapshot of different aspects of the i4C,comprising background,motivation,leading technological enablers,potential applications,and use cases.Next,we describe different models of communication,computing,caching,and control(4C)to lay the foundation of the integration approach.We review current stateof-the-art research efforts related to the i4C,focusing on recent trends of both conventional and artificial intelligence(AI)-based integration approaches.We also highlight the need for intelligence in resources integration.Then,we discuss the integration of sensing and communication(ISAC)and classify the integration approaches into various classes.Finally,we propose open challenges and present future research directions for beyond 5G networks,such as 6G. 展开更多
关键词 4C 6G integration of communication computing caching and control i4C multi-access edge computing(mec)
在线阅读 下载PDF
一种改进蛇优化算法的边缘服务器动态放置策略
4
作者 武小丰 袁培燕 《计算机工程》 北大核心 2025年第6期255-265,共11页
移动边缘计算(MEC)可为用户提供低延迟和高可靠性的服务,近年来受到了学术界和工业界的广泛关注。边缘服务器部署是MEC应用实施的关键环节,具有重要的研究价值,选择合适的放置位置不仅能够满足计算需求,还可以提高系统的资源利用率,降... 移动边缘计算(MEC)可为用户提供低延迟和高可靠性的服务,近年来受到了学术界和工业界的广泛关注。边缘服务器部署是MEC应用实施的关键环节,具有重要的研究价值,选择合适的放置位置不仅能够满足计算需求,还可以提高系统的资源利用率,降低部署成本。因此,对时变网络状态下的边缘服务器放置问题进行研究。首先,将边缘服务器划分为静态服务器和动态服务器两类;然后,提出一种改进的蛇优化(ISO)算法来确定每个时刻边缘服务器的部署数量和放置位置,以满足一定范围内用户卸载数据的传输延迟要求;最后,利用内点法进一步降低服务成本。实验结果表明,所提方法能够动态地部署边缘服务器,同时与经典算法相比,在相同的实验条件下所提方法能够减少20%~43%的服务成本。 展开更多
关键词 移动边缘计算 服务器放置 线性规划 蛇优化算法 物联网
在线阅读 下载PDF
Jointly Optimized Request Dispatching and Service Placement for MEC in LEO Network 被引量:8
5
作者 Chengcheng Li Yasheng Zhang +1 位作者 Xuekun Hao Tao Huang 《China Communications》 SCIE CSCD 2020年第8期199-208,共10页
Integrating Multi-access Edge Computing(MEC) in Low Earth Orbit(LEO) network is an important way to provide globally seamless low-delay service. In this paper, we consider the scenario that MEC platforms with computat... Integrating Multi-access Edge Computing(MEC) in Low Earth Orbit(LEO) network is an important way to provide globally seamless low-delay service. In this paper, we consider the scenario that MEC platforms with computation and storage resource are deployed on LEO satellites, which is called "LEO-MEC". Service request dispatching decision is very important for resource utilization of the whole LEO-MEC system and Qo E of MEC users. Another important problem is service placement that is closely coupled with request dispatching. This paper models the joint service request dispatching and service placement problem as an optimization problem, which is a Mixed Integer Linear Programming(MILP). Our proposed mechanism solves this problem and uses the solved decision variables to dispatch requests and place services. Simulation results show that our proposed mechanism can achieve better performance in terms of ratio of served users and average hop count compared with baseline mechanism. 展开更多
关键词 Low Earth Orbit(LEO)network multi-access edge computing(mec) request dispatching service placement
在线阅读 下载PDF
Joint resource allocation for hybrid NOMA-assisted MEC in 6G networks 被引量:7
6
作者 Haodong Li Fang Fang Zhiguo Ding 《Digital Communications and Networks》 SCIE 2020年第3期241-252,共12页
Multi-access Edge Computing(MEC)is an essential technology for expanding computing power of mobile devices,which can combine the Non-Orthogonal Multiple Access(NOMA)in the power domain to multiplex signals to improve ... Multi-access Edge Computing(MEC)is an essential technology for expanding computing power of mobile devices,which can combine the Non-Orthogonal Multiple Access(NOMA)in the power domain to multiplex signals to improve spectral efficiency.We study the integration of the MEC with the NOMA to improve the computation service for the Beyond Fifth-Generation(B5G)and the Sixth-Generation(6G)wireless networks.This paper aims to minimize the energy consumption of a hybrid NOMA-assisted MEC system.In a hybrid NOMA system,a user can offload its task during a time slot shared with another user by the NOMA,and then upload the remaining data during an exclusive time duration served by Orthogonal Multiple Access(OMA).The original energy minimization problem is non-convex.To efficiently solve it,we first assume that the user grouping is given,and focuses on the one group case.Then,a multilevel programming method is proposed to solve the non-convex problem by decomposing it into three subproblems,i.e.,power allocation,time slot scheduling,and offloading task assignment,which are solved optimally by carefully studying their convexity and monotonicity.The derived solution is optimal to the original problem by substituting the closed expressions obtained from those decomposed subproblems.Furthermore,we investigate the multi-user case,in which a close-to-optimal algorithm with lowcomplexity is proposed to form users into different groups with unique time slots.The simulation results verify the superior performance of the proposed scheme compared with some benchmarks,such as OMA and pure NOMA. 展开更多
关键词 Non-orthogonal multiple access(NOMA) multi-access edge computing(mec) Resource allocation User grouping Task assignment
在线阅读 下载PDF
基于成本感知的边缘服务器部署方法 被引量:1
7
作者 史振飞 胡朋 +2 位作者 李波 杨志军 丁洪伟 《计算机工程与设计》 北大核心 2024年第1期63-70,共8页
针对移动边缘计算(mobile edge computing,MEC)中边缘服务器(edge server,ES)供应商的成本预算问题,建立一种以最小化时延和部署成本为目标的数学模型。通过归一化方法将其转化为单目标优化问题,提出一种基于交叉算法的鲸鱼优化算法的... 针对移动边缘计算(mobile edge computing,MEC)中边缘服务器(edge server,ES)供应商的成本预算问题,建立一种以最小化时延和部署成本为目标的数学模型。通过归一化方法将其转化为单目标优化问题,提出一种基于交叉算法的鲸鱼优化算法的边缘服务器部署方法;采用精英反向学习策略构造新种群,提高种群的多样性和全局收敛速度;采用改进的非线性收敛因子平衡算法的整体开发能力和局部探索能力;利用纵横交叉策略提高算法跳出局部最优的能力。使用上海电信基站的真实数据集进行仿真,其结果表明,与其它4种算法相比,该算法在时延和部署成本方面的表现均优于其它算法,系统成本下降了42.1%。 展开更多
关键词 移动边缘计算 边缘服务器 鲸鱼优化算法 纵横交叉策略 收敛因子 部署成本 时延
在线阅读 下载PDF
基于高空平台的边缘计算卸载:网络、算法和展望
8
作者 孙恩昌 李梦思 +2 位作者 何若兰 张卉 张延华 《北京工业大学学报》 CAS CSCD 北大核心 2024年第3期348-361,共14页
高空平台(high altitude platform,HAP)技术与多接入边缘计算(multi-access edge computing,MEC)技术的结合将MEC服务器部署区域由地面扩展到空中,打破传统地面MEC网络的局限性,为用户提供无处不在的计算卸载服务。针对基于HAP的MEC卸... 高空平台(high altitude platform,HAP)技术与多接入边缘计算(multi-access edge computing,MEC)技术的结合将MEC服务器部署区域由地面扩展到空中,打破传统地面MEC网络的局限性,为用户提供无处不在的计算卸载服务。针对基于HAP的MEC卸载研究进行综述,首先,从HAP计算节点的优势、网络组成部分、网络结构、主要挑战及其应对技术4个方面分析基于HAP的MEC网络;其次,分别从图论、博弈论、机器学习、联邦学习等理论的角度对基于HAP的MEC卸载算法进行横向分析和纵向对比;最后,指出基于HAP的MEC卸载技术目前存在的问题,并对该技术的未来研究方向进行展望。 展开更多
关键词 高空平台(high altitude platform HAP) 多接入边缘计算(multi-access edge computing mec) 计算卸载 图论 博弈论 机器学习
在线阅读 下载PDF
移动边缘计算中基于混合人工蜂群算法的计算卸载策略
9
作者 沈正林 吴涛 +1 位作者 周启钊 陈曦 《南京信息工程大学学报》 CAS 北大核心 2024年第4期520-527,共8页
计算卸载是移动边缘计算(Mobile Edge Computing,MEC)中的关键技术.针对多用户多MEC服务器场景中计算卸载策略的不足,本文提出一种混合人工蜂群算法(Artificial Reverse Sine-Cosine,ARSC).首先,使用反向学习策略初始化种群,优化种群的... 计算卸载是移动边缘计算(Mobile Edge Computing,MEC)中的关键技术.针对多用户多MEC服务器场景中计算卸载策略的不足,本文提出一种混合人工蜂群算法(Artificial Reverse Sine-Cosine,ARSC).首先,使用反向学习策略初始化种群,优化种群的初始解;然后,在雇佣蜂阶段利用正余弦算法的全局最优引导信息,提升算法的局部搜索能力;最后,为了平衡算法的全局搜索能力和局部搜索能力,引入动态感知因子对算法的步长因子进行改进.仿真实验结果表明,相比基于粒子群算法的卸载策略、基于人工蜂群算法的卸载策略,ARSC策略在系统时延、系统能耗、收敛性等指标上均有所改善. 展开更多
关键词 移动边缘计算 计算卸载 人工蜂群算法 正余弦算法 多用户多mec
在线阅读 下载PDF
移动边缘计算网络中基于任务转移的负载均衡优化方案 被引量:2
10
作者 孙欢欢 《计算机与数字工程》 2024年第6期1759-1762,1768,共5页
针对MEC服务器之间的负载不均衡问题,论文提出了一种基于任务转移的负载均衡算法。该算法在考虑任务转移时延的前提下,确定是否将任务转移至其他MEC服务器,并在当前时隙结束时做出最优的任务转移决策。实验结果表明,提出方案的性能优于... 针对MEC服务器之间的负载不均衡问题,论文提出了一种基于任务转移的负载均衡算法。该算法在考虑任务转移时延的前提下,确定是否将任务转移至其他MEC服务器,并在当前时隙结束时做出最优的任务转移决策。实验结果表明,提出方案的性能优于其他方案,使得MEC服务器之间的负载更加均衡。 展开更多
关键词 负载均衡 mec服务器 任务转移 移动边缘计算
在线阅读 下载PDF
5G技术在工厂数据采集中的实施探讨
11
作者 赵云龙 《大众科学》 2024年第22期21-23,共3页
随着工业4.0的发展和智能制造的兴起,5G技术已经逐渐成为当前信息通信领域的热门话题。作为第五代移动通信技术,5G在传输速度、容量、延迟等方面具有巨大优势,已经逐渐渗透到生产生活中的各个领域。数据采集作为工厂底层基础,在生产过... 随着工业4.0的发展和智能制造的兴起,5G技术已经逐渐成为当前信息通信领域的热门话题。作为第五代移动通信技术,5G在传输速度、容量、延迟等方面具有巨大优势,已经逐渐渗透到生产生活中的各个领域。数据采集作为工厂底层基础,在生产过程中变得愈发重要。通过收集和分析工厂的数据,能赋予企业更深入的洞察力,进而优化生产过程,并做出更明智的决策。基于此,论述如何实现利用5G技术在工厂数据采集中的实施应用。 展开更多
关键词 工业4.0 5G 技术 数据采集 mec 服务器
在线阅读 下载PDF
移动边缘计算技术在高铁通信网络中的应用 被引量:12
12
作者 郜城城 周旭 +1 位作者 范鹏飞 任勇毛 《计算机系统应用》 2018年第8期56-62,共7页
随着高铁的日益普及,在高铁列车与地面之间建立移动数据通道,满足车地数据传输以及旅客上网的需求,成为越来越迫切的问题.现有GSM-R和LTE-R的解决方案,还存在带宽小、时延大、传输不稳定等问题.为此,本文提出采用移动边缘计算(Mobile Ed... 随着高铁的日益普及,在高铁列车与地面之间建立移动数据通道,满足车地数据传输以及旅客上网的需求,成为越来越迫切的问题.现有GSM-R和LTE-R的解决方案,还存在带宽小、时延大、传输不稳定等问题.为此,本文提出采用移动边缘计算(Mobile Edge Computing,简称为MEC)技术来优化高铁通信网络.主要思想是在车厢和基站部署MEC服务器,经过两级MEC服务器的协同配合,达到复用空口链路、提升无线传输稳定性和降低时延的目的,并最终提升用户体验.通过实际网络试验结果显示,该方案可显著提升传输速率、减小传输时延. 展开更多
关键词 移动边缘计算 mec服务器 协同配合 传输稳定性 传输时延
在线阅读 下载PDF
车联网中基于任务紧急性的联合卸载方案 被引量:6
13
作者 张建军 代帅康 张本宏 《电子测量与仪器学报》 CSCD 北大核心 2020年第11期66-71,共6页
在车联网中,任务卸载可以有效地解决车辆的存储资源和计算资源不足的问题,单个的MEC(mobile edge computing)服务器通常无法满足车辆密集区域的任务卸载需求。针对上述不足,设计了一种多MEC服务器的联合卸载方案(joint offloading metho... 在车联网中,任务卸载可以有效地解决车辆的存储资源和计算资源不足的问题,单个的MEC(mobile edge computing)服务器通常无法满足车辆密集区域的任务卸载需求。针对上述不足,设计了一种多MEC服务器的联合卸载方案(joint offloading method based on task urgency,JOMTU)。车辆递交任务卸载请求给本地MEC服务器时,后者在负载严重的情况下,会根据任务的紧急性和服务器负载情况等因素,将任务发送给附近MEC服务器处理以满足任务的截止日期要求。仿真实验结果表明,与传统的方案相比,所提出的方案将系统的整体任务失败率降低17%,并且优化了整个网络的服务器负载情况、增加了网络的可靠性。 展开更多
关键词 移动边缘计算 车联网 mec服务器 任务紧急性 任务卸载
原文传递
基于移动边缘计算的任务卸载优化 被引量:2
14
作者 彭昇 赵建保 +1 位作者 魏敏捷 秦伦明 《计算机系统应用》 2023年第4期262-267,共6页
随着智慧物联体系的发展,物联网中应用程序的种类与数量不断增加.在移动边缘计算(mobile edge computing,MEC)中,通过允许移动用户将任务卸载至附近MEC服务器以加快移动应用程序的速度.本文通过考虑不同任务属性、用户的移动性和时间延... 随着智慧物联体系的发展,物联网中应用程序的种类与数量不断增加.在移动边缘计算(mobile edge computing,MEC)中,通过允许移动用户将任务卸载至附近MEC服务器以加快移动应用程序的速度.本文通过考虑不同任务属性、用户的移动性和时间延迟约束模拟移动边缘场景.根据用户移动轨迹,将目标建模为寻找满足时延约束条件且在卸载过程中产生最小能耗MEC服务器优化模型,并提出一种最小能耗卸载算法求解该问题的最优解.仿真结果表明,在约束条件下,提出的算法可以找到在用户移动轨迹中产生最小能耗的MEC服务器,并显著降低任务卸载过程的能耗与时延,提高应用程序服务质量. 展开更多
关键词 移动边缘计算 任务卸载 物联网(IoT) mec服务器
在线阅读 下载PDF
User association and resource allocation in green mobile edge networks using deep reinforcement learning
15
作者 Zheng Ying Sun Siyuan +1 位作者 Wei Yifei Song Mei 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2021年第3期1-10,27,共11页
In order to meet the emerging requirements for high computational complexity, low delay and energy consumption of the 5 th generation wireless systems(5 G) network, ultra-dense networks(UDNs) combined with multi-acces... In order to meet the emerging requirements for high computational complexity, low delay and energy consumption of the 5 th generation wireless systems(5 G) network, ultra-dense networks(UDNs) combined with multi-access edge computing(MEC) can further improve network capacity and computing capability. In addition, the integration of green energy can effectively reduce the on-grid energy consumption of system and realize green computation. This paper studies the joint optimization of user association(UA) and resource allocation(RA) in MEC enabled UDNs under the green energy supply pattern, users need to perceive the green energy status of base stations(BSs) and choose the one with abundant resources to associate. To minimize the computation cost for all users, the optimization problem is formulated as a mixed integer nonlinear programming(MINLP) which is NP-hard. In order to solve the problem, a deep reinforcement learning(DRL)-based association and optimized allocation(DAOA) scheme is designed to solve it in two stages. The simulation results show that the proposed scheme has good performance in terms of computation cost and time out ratio, as well achieve load balancing potentially. 展开更多
关键词 multi-access edge computing(mec) ultra-dense networks(UDNs) deep reinforcement learning(DRL) user association(UA) resource allocation(RA) green energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部