Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resource...Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resources. This paper minimizes the system overhead regarding task processing delay and energy consumption for the IWN with hybrid NOMA and orthogonal multiple access (OMA) schemes. Specifically, we formulate the system overhead minimization (SOM) problem by considering the limited computation and communication resources and NOMA efficiency. To solve the complex mixed-integer nonconvex problem, we combine the multi-agent twin delayed deep deterministic policy gradient (MATD3) and convex optimization, namely MATD3-CO, for iterative optimization. Specifically, we first decouple SOM into two sub-problems, i.e., joint sub-channel allocation and task offloading sub-problem, and computation resource allocation sub-problem. Then, we propose MATD3 to optimize the sub-channel allocation and task offloading ratio, and employ the convex optimization to allocate the computation resource with a closed-form expression derived by the Karush-Kuhn-Tucker (KKT) conditions. The solution is obtained by iteratively solving these two sub-problems. The experimental results indicate that the MATD3-CO scheme, when compared to the benchmark schemes, significantly decreases system overhead with respect to both delay and energy consumption.展开更多
The Internet of Medical Things(Io MT) is regarded as a critical technology for intelligent healthcare in the foreseeable 6G era. Nevertheless, due to the limited computing power capability of edge devices and task-rel...The Internet of Medical Things(Io MT) is regarded as a critical technology for intelligent healthcare in the foreseeable 6G era. Nevertheless, due to the limited computing power capability of edge devices and task-related coupling relationships, Io MT faces unprecedented challenges. Considering the associative connections among tasks, this paper proposes a computing offloading policy for multiple-user devices(UDs) considering device-to-device(D2D) communication and a multi-access edge computing(MEC)technique under the scenario of Io MT. Specifically,to minimize the total delay and energy consumption concerning the requirement of Io MT, we first analyze and model the detailed local execution, MEC execution, D2D execution, and associated tasks offloading exchange model. Consequently, the associated tasks’ offloading scheme of multi-UDs is formulated as a mixed-integer nonconvex optimization problem. Considering the advantages of deep reinforcement learning(DRL) in processing tasks related to coupling relationships, a Double DQN based associative tasks computing offloading(DDATO) algorithm is then proposed to obtain the optimal solution, which can make the best offloading decision under the condition that tasks of UDs are associative. Furthermore, to reduce the complexity of the DDATO algorithm, the cacheaided procedure is intentionally introduced before the data training process. This avoids redundant offloading and computing procedures concerning tasks that previously have already been cached by other UDs. In addition, we use a dynamic ε-greedy strategy in the action selection section of the algorithm, thus preventing the algorithm from falling into a locally optimal solution. Simulation results demonstrate that compared with other existing methods for associative task models concerning different structures in the Io MT network, the proposed algorithm can lower the total cost more effectively and efficiently while also providing a tradeoff between delay and energy consumption tolerance.展开更多
In recent years,the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks.Such challenges can be potentially overcome by integrating c...In recent years,the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks.Such challenges can be potentially overcome by integrating communication,computing,caching,and control(i4C)technologies.In this survey,we first give a snapshot of different aspects of the i4C,comprising background,motivation,leading technological enablers,potential applications,and use cases.Next,we describe different models of communication,computing,caching,and control(4C)to lay the foundation of the integration approach.We review current stateof-the-art research efforts related to the i4C,focusing on recent trends of both conventional and artificial intelligence(AI)-based integration approaches.We also highlight the need for intelligence in resources integration.Then,we discuss the integration of sensing and communication(ISAC)and classify the integration approaches into various classes.Finally,we propose open challenges and present future research directions for beyond 5G networks,such as 6G.展开更多
Integrating Multi-access Edge Computing(MEC) in Low Earth Orbit(LEO) network is an important way to provide globally seamless low-delay service. In this paper, we consider the scenario that MEC platforms with computat...Integrating Multi-access Edge Computing(MEC) in Low Earth Orbit(LEO) network is an important way to provide globally seamless low-delay service. In this paper, we consider the scenario that MEC platforms with computation and storage resource are deployed on LEO satellites, which is called "LEO-MEC". Service request dispatching decision is very important for resource utilization of the whole LEO-MEC system and Qo E of MEC users. Another important problem is service placement that is closely coupled with request dispatching. This paper models the joint service request dispatching and service placement problem as an optimization problem, which is a Mixed Integer Linear Programming(MILP). Our proposed mechanism solves this problem and uses the solved decision variables to dispatch requests and place services. Simulation results show that our proposed mechanism can achieve better performance in terms of ratio of served users and average hop count compared with baseline mechanism.展开更多
Multi-access Edge Computing(MEC)is an essential technology for expanding computing power of mobile devices,which can combine the Non-Orthogonal Multiple Access(NOMA)in the power domain to multiplex signals to improve ...Multi-access Edge Computing(MEC)is an essential technology for expanding computing power of mobile devices,which can combine the Non-Orthogonal Multiple Access(NOMA)in the power domain to multiplex signals to improve spectral efficiency.We study the integration of the MEC with the NOMA to improve the computation service for the Beyond Fifth-Generation(B5G)and the Sixth-Generation(6G)wireless networks.This paper aims to minimize the energy consumption of a hybrid NOMA-assisted MEC system.In a hybrid NOMA system,a user can offload its task during a time slot shared with another user by the NOMA,and then upload the remaining data during an exclusive time duration served by Orthogonal Multiple Access(OMA).The original energy minimization problem is non-convex.To efficiently solve it,we first assume that the user grouping is given,and focuses on the one group case.Then,a multilevel programming method is proposed to solve the non-convex problem by decomposing it into three subproblems,i.e.,power allocation,time slot scheduling,and offloading task assignment,which are solved optimally by carefully studying their convexity and monotonicity.The derived solution is optimal to the original problem by substituting the closed expressions obtained from those decomposed subproblems.Furthermore,we investigate the multi-user case,in which a close-to-optimal algorithm with lowcomplexity is proposed to form users into different groups with unique time slots.The simulation results verify the superior performance of the proposed scheme compared with some benchmarks,such as OMA and pure NOMA.展开更多
In order to meet the emerging requirements for high computational complexity, low delay and energy consumption of the 5 th generation wireless systems(5 G) network, ultra-dense networks(UDNs) combined with multi-acces...In order to meet the emerging requirements for high computational complexity, low delay and energy consumption of the 5 th generation wireless systems(5 G) network, ultra-dense networks(UDNs) combined with multi-access edge computing(MEC) can further improve network capacity and computing capability. In addition, the integration of green energy can effectively reduce the on-grid energy consumption of system and realize green computation. This paper studies the joint optimization of user association(UA) and resource allocation(RA) in MEC enabled UDNs under the green energy supply pattern, users need to perceive the green energy status of base stations(BSs) and choose the one with abundant resources to associate. To minimize the computation cost for all users, the optimization problem is formulated as a mixed integer nonlinear programming(MINLP) which is NP-hard. In order to solve the problem, a deep reinforcement learning(DRL)-based association and optimized allocation(DAOA) scheme is designed to solve it in two stages. The simulation results show that the proposed scheme has good performance in terms of computation cost and time out ratio, as well achieve load balancing potentially.展开更多
基金supported by the National Natural Science Foundation of China under Grants 92267108,62173322 and 61821005the Science and Technology Program of Liaoning Province under Grants 2023JH3/10200004 and 2022JH25/10100005.
文摘Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resources. This paper minimizes the system overhead regarding task processing delay and energy consumption for the IWN with hybrid NOMA and orthogonal multiple access (OMA) schemes. Specifically, we formulate the system overhead minimization (SOM) problem by considering the limited computation and communication resources and NOMA efficiency. To solve the complex mixed-integer nonconvex problem, we combine the multi-agent twin delayed deep deterministic policy gradient (MATD3) and convex optimization, namely MATD3-CO, for iterative optimization. Specifically, we first decouple SOM into two sub-problems, i.e., joint sub-channel allocation and task offloading sub-problem, and computation resource allocation sub-problem. Then, we propose MATD3 to optimize the sub-channel allocation and task offloading ratio, and employ the convex optimization to allocate the computation resource with a closed-form expression derived by the Karush-Kuhn-Tucker (KKT) conditions. The solution is obtained by iteratively solving these two sub-problems. The experimental results indicate that the MATD3-CO scheme, when compared to the benchmark schemes, significantly decreases system overhead with respect to both delay and energy consumption.
基金supported by National Natural Science Foundation of China(Grant No.62071377,62101442,62201456)Natural Science Foundation of Shaanxi Province(Grant No.2023-YBGY-036,2022JQ-687)The Graduate Student Innovation Foundation Project of Xi’an University of Posts and Telecommunications under Grant CXJJDL2022003.
文摘The Internet of Medical Things(Io MT) is regarded as a critical technology for intelligent healthcare in the foreseeable 6G era. Nevertheless, due to the limited computing power capability of edge devices and task-related coupling relationships, Io MT faces unprecedented challenges. Considering the associative connections among tasks, this paper proposes a computing offloading policy for multiple-user devices(UDs) considering device-to-device(D2D) communication and a multi-access edge computing(MEC)technique under the scenario of Io MT. Specifically,to minimize the total delay and energy consumption concerning the requirement of Io MT, we first analyze and model the detailed local execution, MEC execution, D2D execution, and associated tasks offloading exchange model. Consequently, the associated tasks’ offloading scheme of multi-UDs is formulated as a mixed-integer nonconvex optimization problem. Considering the advantages of deep reinforcement learning(DRL) in processing tasks related to coupling relationships, a Double DQN based associative tasks computing offloading(DDATO) algorithm is then proposed to obtain the optimal solution, which can make the best offloading decision under the condition that tasks of UDs are associative. Furthermore, to reduce the complexity of the DDATO algorithm, the cacheaided procedure is intentionally introduced before the data training process. This avoids redundant offloading and computing procedures concerning tasks that previously have already been cached by other UDs. In addition, we use a dynamic ε-greedy strategy in the action selection section of the algorithm, thus preventing the algorithm from falling into a locally optimal solution. Simulation results demonstrate that compared with other existing methods for associative task models concerning different structures in the Io MT network, the proposed algorithm can lower the total cost more effectively and efficiently while also providing a tradeoff between delay and energy consumption tolerance.
基金supported in part by National Key R&D Program of China(2019YFE0196400)Key Research and Development Program of Shaanxi(2022KWZ09)+4 种基金National Natural Science Foundation of China(61771358,61901317,62071352)Fundamental Research Funds for the Central Universities(JB190104)Joint Education Project between China and Central-Eastern European Countries(202005)the 111 Project(B08038)。
文摘In recent years,the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks.Such challenges can be potentially overcome by integrating communication,computing,caching,and control(i4C)technologies.In this survey,we first give a snapshot of different aspects of the i4C,comprising background,motivation,leading technological enablers,potential applications,and use cases.Next,we describe different models of communication,computing,caching,and control(4C)to lay the foundation of the integration approach.We review current stateof-the-art research efforts related to the i4C,focusing on recent trends of both conventional and artificial intelligence(AI)-based integration approaches.We also highlight the need for intelligence in resources integration.Then,we discuss the integration of sensing and communication(ISAC)and classify the integration approaches into various classes.Finally,we propose open challenges and present future research directions for beyond 5G networks,such as 6G.
基金funded by the Excellent Postdoctoral Study Project Funding of Hebei Province,grant number B2019005006。
文摘Integrating Multi-access Edge Computing(MEC) in Low Earth Orbit(LEO) network is an important way to provide globally seamless low-delay service. In this paper, we consider the scenario that MEC platforms with computation and storage resource are deployed on LEO satellites, which is called "LEO-MEC". Service request dispatching decision is very important for resource utilization of the whole LEO-MEC system and Qo E of MEC users. Another important problem is service placement that is closely coupled with request dispatching. This paper models the joint service request dispatching and service placement problem as an optimization problem, which is a Mixed Integer Linear Programming(MILP). Our proposed mechanism solves this problem and uses the solved decision variables to dispatch requests and place services. Simulation results show that our proposed mechanism can achieve better performance in terms of ratio of served users and average hop count compared with baseline mechanism.
文摘Multi-access Edge Computing(MEC)is an essential technology for expanding computing power of mobile devices,which can combine the Non-Orthogonal Multiple Access(NOMA)in the power domain to multiplex signals to improve spectral efficiency.We study the integration of the MEC with the NOMA to improve the computation service for the Beyond Fifth-Generation(B5G)and the Sixth-Generation(6G)wireless networks.This paper aims to minimize the energy consumption of a hybrid NOMA-assisted MEC system.In a hybrid NOMA system,a user can offload its task during a time slot shared with another user by the NOMA,and then upload the remaining data during an exclusive time duration served by Orthogonal Multiple Access(OMA).The original energy minimization problem is non-convex.To efficiently solve it,we first assume that the user grouping is given,and focuses on the one group case.Then,a multilevel programming method is proposed to solve the non-convex problem by decomposing it into three subproblems,i.e.,power allocation,time slot scheduling,and offloading task assignment,which are solved optimally by carefully studying their convexity and monotonicity.The derived solution is optimal to the original problem by substituting the closed expressions obtained from those decomposed subproblems.Furthermore,we investigate the multi-user case,in which a close-to-optimal algorithm with lowcomplexity is proposed to form users into different groups with unique time slots.The simulation results verify the superior performance of the proposed scheme compared with some benchmarks,such as OMA and pure NOMA.
文摘在车联网中,任务卸载可以有效地解决车辆的存储资源和计算资源不足的问题,单个的MEC(mobile edge computing)服务器通常无法满足车辆密集区域的任务卸载需求。针对上述不足,设计了一种多MEC服务器的联合卸载方案(joint offloading method based on task urgency,JOMTU)。车辆递交任务卸载请求给本地MEC服务器时,后者在负载严重的情况下,会根据任务的紧急性和服务器负载情况等因素,将任务发送给附近MEC服务器处理以满足任务的截止日期要求。仿真实验结果表明,与传统的方案相比,所提出的方案将系统的整体任务失败率降低17%,并且优化了整个网络的服务器负载情况、增加了网络的可靠性。
基金supported by the National Natural Science Foundation of China (61871058)。
文摘In order to meet the emerging requirements for high computational complexity, low delay and energy consumption of the 5 th generation wireless systems(5 G) network, ultra-dense networks(UDNs) combined with multi-access edge computing(MEC) can further improve network capacity and computing capability. In addition, the integration of green energy can effectively reduce the on-grid energy consumption of system and realize green computation. This paper studies the joint optimization of user association(UA) and resource allocation(RA) in MEC enabled UDNs under the green energy supply pattern, users need to perceive the green energy status of base stations(BSs) and choose the one with abundant resources to associate. To minimize the computation cost for all users, the optimization problem is formulated as a mixed integer nonlinear programming(MINLP) which is NP-hard. In order to solve the problem, a deep reinforcement learning(DRL)-based association and optimized allocation(DAOA) scheme is designed to solve it in two stages. The simulation results show that the proposed scheme has good performance in terms of computation cost and time out ratio, as well achieve load balancing potentially.