期刊文献+
共找到978篇文章
< 1 2 49 >
每页显示 20 50 100
Priority-Based Scheduling and Orchestration in Edge-Cloud Computing:A Deep Reinforcement Learning-Enhanced Concurrency Control Approach
1
作者 Mohammad A Al Khaldy Ahmad Nabot +4 位作者 Ahmad Al-Qerem Mohammad Alauthman Amina Salhi Suhaila Abuowaida Naceur Chihaoui 《Computer Modeling in Engineering & Sciences》 2025年第10期673-697,共25页
The exponential growth of Internet ofThings(IoT)devices has created unprecedented challenges in data processing and resource management for time-critical applications.Traditional cloud computing paradigms cannot meet ... The exponential growth of Internet ofThings(IoT)devices has created unprecedented challenges in data processing and resource management for time-critical applications.Traditional cloud computing paradigms cannot meet the stringent latency requirements of modern IoT systems,while pure edge computing faces resource constraints that limit processing capabilities.This paper addresses these challenges by proposing a novel Deep Reinforcement Learning(DRL)-enhanced priority-based scheduling framework for hybrid edge-cloud computing environments.Our approach integrates adaptive priority assignment with a two-level concurrency control protocol that ensures both optimal performance and data consistency.The framework introduces three key innovations:(1)a DRL-based dynamic priority assignmentmechanism that learns fromsystem behavior,(2)a hybrid concurrency control protocol combining local edge validation with global cloud coordination,and(3)an integrated mathematical model that formalizes sensor-driven transactions across edge-cloud architectures.Extensive simulations across diverse workload scenarios demonstrate significant quantitative improvements:40%latency reduction,25%throughput increase,85%resource utilization(compared to 60%for heuristicmethods),40%reduction in energy consumption(300 vs.500 J per task),and 50%improvement in scalability factor(1.8 vs.1.2 for EDF)compared to state-of-the-art heuristic and meta-heuristic approaches.These results establish the framework as a robust solution for large-scale IoT and autonomous applications requiring real-time processing with consistency guarantees. 展开更多
关键词 edge computing cloud computing scheduling algorithms orchestration strategies deep reinforcement learning concurrency control real-time systems IoT
在线阅读 下载PDF
A Comprehensive Study of Resource Provisioning and Optimization in Edge Computing
2
作者 Sreebha Bhaskaran Supriya Muthuraman 《Computers, Materials & Continua》 2025年第6期5037-5070,共34页
Efficient resource provisioning,allocation,and computation offloading are critical to realizing lowlatency,scalable,and energy-efficient applications in cloud,fog,and edge computing.Despite its importance,integrating ... Efficient resource provisioning,allocation,and computation offloading are critical to realizing lowlatency,scalable,and energy-efficient applications in cloud,fog,and edge computing.Despite its importance,integrating Software Defined Networks(SDN)for enhancing resource orchestration,task scheduling,and traffic management remains a relatively underexplored area with significant innovation potential.This paper provides a comprehensive review of existing mechanisms,categorizing resource provisioning approaches into static,dynamic,and user-centric models,while examining applications across domains such as IoT,healthcare,and autonomous systems.The survey highlights challenges such as scalability,interoperability,and security in managing dynamic and heterogeneous infrastructures.This exclusive research evaluates how SDN enables adaptive policy-based handling of distributed resources through advanced orchestration processes.Furthermore,proposes future directions,including AI-driven optimization techniques and hybrid orchestrationmodels.By addressing these emerging opportunities,thiswork serves as a foundational reference for advancing resource management strategies in next-generation cloud,fog,and edge computing ecosystems.This survey concludes that SDN-enabled computing environments find essential guidance in addressing upcoming management opportunities. 展开更多
关键词 cloud computing edge computing fog computing resource provisioning resource allocation computation offloading optimization techniques software defined network
在线阅读 下载PDF
Standardised interworking and deployment of IoT and edge computing platforms
3
作者 Jieun Lee JooSung Kim +2 位作者 Seong Ki Yoo Tarik Taleb JaeSeung Song 《Digital Communications and Networks》 2025年第5期1578-1587,共10页
Edge computing is swiftly gaining traction and is being standardised by the European Telecommunications Standards Institute(ETSI)as Multi-access Edge Computing(MEC).Simultaneously,oneM2M has been actively developing s... Edge computing is swiftly gaining traction and is being standardised by the European Telecommunications Standards Institute(ETSI)as Multi-access Edge Computing(MEC).Simultaneously,oneM2M has been actively developing standards for dynamic data management and IoT services at the edge,particularly for applications that require real-time support and security.Integrating MEC and oneM2M offers a unique opportunity to maximize their individual strengths.Therefore,this article proposes a framework that integrates MEC and oneM2M standard platforms for IoT applications,demonstrating how the synergy of these architectures can leverage the geographically distributed computing resources at base stations,enabling efficient deployment and added value for time-sensitive IoT applications.In addition,this study offers a concept of potential interworking models between oneM2M and the MEC architectures.The adoption of these standard architectures can enable various IoT edge services,such as smart city mobility and real-time analytics functions,by leveraging the oneM2M common service layer instantiated on the MEC host. 展开更多
关键词 Internet of things multi-access edge computing oneM2M INTERWORKING STANDARDS
在线阅读 下载PDF
Indoor Localization Using Multi-Bluetooth Beacon Deployment in a Sparse Edge Computing Environment
4
作者 Soheil Saghafi Yashar Kiarashi +3 位作者 Amy D.Rodriguez Allan I.Levey Hyeokhyen Kwon Gari D.Clifford 《Digital Twins and Applications》 2025年第1期49-56,共8页
Bluetooth low energy(BLE)-based indoor localization has been extensively researched due to its cost-effectiveness,low power consumption,and ubiquity.Despite these advantages,the variability of received signal strength... Bluetooth low energy(BLE)-based indoor localization has been extensively researched due to its cost-effectiveness,low power consumption,and ubiquity.Despite these advantages,the variability of received signal strength indicator(RSSI)measurements,influenced by physical obstacles,human presence,and electronic interference,poses a significant challenge to accurate localization.In this work,we present an optimised method to enhance indoor localization accuracy by utilising multiple BLE beacons in a radio frequency(RF)-dense modern building environment.Through a proof-of-concept study,we demonstrate that using three BLE beacons reduces localization error from a worst-case distance of 9.09-2.94 m,whereas additional beacons offer minimal incremental benefit in such settings.Furthermore,our framework for BLE-based localization,implemented on an edge network of Raspberry Pies,has been released under an open-source license,enabling broader application and further research. 展开更多
关键词 ambient health monitoring bluetooth low energy cloud computing edge computing indoor localization
在线阅读 下载PDF
Intelligent Energy-Efficient Resource Allocation for Multi-UAV-Assisted Mobile Edge Computing Networks
5
作者 Hu Han Shen Le +2 位作者 Zhou Fuhui Wang Qun Zhu Hongbo 《China Communications》 2025年第4期339-355,共17页
The unmanned aerial vehicle(UAV)-assisted mobile edge computing(MEC)has been deemed a promising solution for energy-constrained devices to run smart applications with computationintensive and latency-sensitive require... The unmanned aerial vehicle(UAV)-assisted mobile edge computing(MEC)has been deemed a promising solution for energy-constrained devices to run smart applications with computationintensive and latency-sensitive requirements,especially in some infrastructure-limited areas or some emergency scenarios.However,the multi-UAVassisted MEC network remains largely unexplored.In this paper,the dynamic trajectory optimization and computation offloading are studied in a multi-UAVassisted MEC system where multiple UAVs fly over a target area with different trajectories to serve ground users.By considering the dynamic channel condition and random task arrival and jointly optimizing UAVs'trajectories,user association,and subchannel assignment,the average long-term sum of the user energy consumption minimization problem is formulated.To address the problem involving both discrete and continuous variables,a hybrid decision deep reinforcement learning(DRL)-based intelligent energyefficient resource allocation and trajectory optimization algorithm is proposed,named HDRT algorithm,where deep Q network(DQN)and deep deterministic policy gradient(DDPG)are invoked to process discrete and continuous variables,respectively.Simulation results show that the proposed HDRT algorithm converges fast and outperforms other benchmarks in the aspect of user energy consumption and latency. 展开更多
关键词 dynamic trajectory optimization intelligent resource allocation unmanned aerial vehicle uav assisted uav assisted mec energy efficiency smart applications mobile edge computing mec deep reinforcement learning
在线阅读 下载PDF
DeAOff:Dependence-Aware Offloading of Decoder-Based Generative Models for Edge Computing
6
作者 Ning Jiahong Yang Tingting +3 位作者 Zheng Ce Wang Xinghan Feng Ping Zhang Xiufeng 《China Communications》 2025年第7期14-29,共16页
This paper presents an algorithm named the dependency-aware offloading framework(DeAOff),which is designed to optimize the deployment of Gen-AI decoder models in mobile edge computing(MEC)environments.These models,suc... This paper presents an algorithm named the dependency-aware offloading framework(DeAOff),which is designed to optimize the deployment of Gen-AI decoder models in mobile edge computing(MEC)environments.These models,such as decoders,pose significant challenges due to their interlayer dependencies and high computational demands,especially under edge resource constraints.To address these challenges,we propose a two-phase optimization algorithm that first handles dependencyaware task allocation and subsequently optimizes energy consumption.By modeling the inference process using directed acyclic graphs(DAGs)and applying constraint relaxation techniques,our approach effectively reduces execution latency and energy usage.Experimental results demonstrate that our method achieves a reduction of up to 20%in task completion time and approximately 30%savings in energy consumption compared to traditional methods.These outcomes underscore our solution’s robustness in managing complex sequential dependencies and dynamic MEC conditions,enhancing quality of service.Thus,our work presents a practical and efficient resource optimization strategy for deploying models in resourceconstrained MEC scenarios. 展开更多
关键词 dependency-aware offloading(DeAOff) directed acyclic graph(DAG) generative AI(Gen-AI) mobile edge computing(mec)
在线阅读 下载PDF
Edge Cloud Selection in Mobile Edge Computing(MEC)-Aided Applications for Industrial Internet of Things(IIoT)Services
7
作者 Dae-Young Kim SoYeon Lee +1 位作者 MinSeung Kim Seokhoon Kim 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2049-2060,共12页
In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to im... In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method. 展开更多
关键词 Industrial Internet of Things(IIoT)network IIoT service mobile edge computing(mec) edge cloud selection mec-aided application
在线阅读 下载PDF
Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network 被引量:19
8
作者 Ziying Wu Danfeng Yan 《China Communications》 SCIE CSCD 2021年第11期26-41,共16页
Multi-access Edge Computing(MEC)is one of the key technologies of the future 5G network.By deploying edge computing centers at the edge of wireless access network,the computation tasks can be offloaded to edge servers... Multi-access Edge Computing(MEC)is one of the key technologies of the future 5G network.By deploying edge computing centers at the edge of wireless access network,the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios.Meanwhile,with the development of IOV(Internet of Vehicles)technology,various delay-sensitive and compute-intensive in-vehicle applications continue to appear.Compared with traditional Internet business,these computation tasks have higher processing priority and lower delay requirements.In this paper,we design a 5G-based vehicle-aware Multi-access Edge Computing network(VAMECN)and propose a joint optimization problem of minimizing total system cost.In view of the problem,a deep reinforcement learningbased joint computation offloading and task migration optimization(JCOTM)algorithm is proposed,considering the influences of multiple factors such as concurrent multiple computation tasks,system computing resources distribution,and network communication bandwidth.And,the mixed integer nonlinear programming problem is described as a Markov Decision Process.Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption,optimize computing offloading and resource allocation schemes,and improve system resource utilization,compared with other computing offloading policies. 展开更多
关键词 multi-access edge computing computation offloading 5G vehicle-aware deep reinforcement learning deep q-network
在线阅读 下载PDF
Energy-Optimal and Delay-Bounded Computation Offloading in Mobile Edge Computing with Heterogeneous Clouds 被引量:27
9
作者 Tianchu Zhao Sheng Zhou +3 位作者 Linqi Song Zhiyuan Jiang Xueying Guo Zhisheng Niu 《China Communications》 SCIE CSCD 2020年第5期191-210,共20页
By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task off... By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task offloading in multi-user MEC systems with heterogeneous clouds, including edge clouds and remote clouds. Tasks are forwarded from mobile devices to edge clouds via wireless channels, and they can be further forwarded to remote clouds via the Internet. Our objective is to minimize the total energy consumption of multiple mobile devices, subject to bounded-delay requirements of tasks. Based on dynamic programming, we propose an algorithm that minimizes the energy consumption, by jointly allocating bandwidth and computational resources to mobile devices. The algorithm is of pseudo-polynomial complexity. To further reduce the complexity, we propose an approximation algorithm with energy discretization, and its total energy consumption is proved to be within a bounded gap from the optimum. Simulation results show that, nearly 82.7% energy of mobile devices can be saved by task offloading compared with mobile device execution. 展开更多
关键词 mobile edge computing heterogeneous clouds energy saving delay bounds dynamic programming
在线阅读 下载PDF
Mobile Edge Communications, Computing, and Caching(MEC3) Technology in the Maritime Communication Network 被引量:18
10
作者 Jie Zeng Jiaying Sun +1 位作者 Binwei Wu Xin Su 《China Communications》 SCIE CSCD 2020年第5期223-234,共12页
With the increasing maritime activities and the rapidly developing maritime economy, the fifth-generation(5G) mobile communication system is expected to be deployed at the ocean. New technologies need to be explored t... With the increasing maritime activities and the rapidly developing maritime economy, the fifth-generation(5G) mobile communication system is expected to be deployed at the ocean. New technologies need to be explored to meet the requirements of ultra-reliable and low latency communications(URLLC) in the maritime communication network(MCN). Mobile edge computing(MEC) can achieve high energy efficiency in MCN at the cost of suffering from high control plane latency and low reliability. In terms of this issue, the mobile edge communications, computing, and caching(MEC3) technology is proposed to sink mobile computing, network control, and storage to the edge of the network. New methods that enable resource-efficient configurations and reduce redundant data transmissions can enable the reliable implementation of computing-intension and latency-sensitive applications. The key technologies of MEC3 to enable URLLC are analyzed and optimized in MCN. The best response-based offloading algorithm(BROA) is adopted to optimize task offloading. The simulation results show that the task latency can be decreased by 26.5’ ms, and the energy consumption in terminal users can be reduced to 66.6%. 展开更多
关键词 best response-based offloading algorithm(BROA) energy consumption mobile edge computing(mec) mobile edge communications computing and caching(mec3) task offloading
在线阅读 下载PDF
On Cost Aware Cloudlet Placement for Mobile Edge Computing 被引量:6
11
作者 Qiang Fan Nirwan Ansari 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第4期926-937,共12页
As accessing computing resources from the remote cloud inherently incurs high end-to-end(E2E)delay for mobile users,cloudlets,which are deployed at the edge of a network,can potentially mitigate this problem.Although ... As accessing computing resources from the remote cloud inherently incurs high end-to-end(E2E)delay for mobile users,cloudlets,which are deployed at the edge of a network,can potentially mitigate this problem.Although some research works focus on allocating workloads among cloudlets,the cloudlet placement aiming to minimize the deployment cost(i.e.,consisting of both the cloudlet cost and average E2E delay cost)has not been addressed effectively so far.The locations and number of cloudlets have a crucial impact on both the cloudlet cost in the network and average E2E delay of users.Therefore,in this paper,we propose the Cost Aware cloudlet PlAcement in moBiLe Edge computing(CAPABLE)strategy,where both the cloudlet cost and average E2E delay are considered in the cloudlet placement.To solve this problem,a Lagrangian heuristic algorithm is developed to achieve the suboptimal solution.After cloudlets are placed in the network,we also design a workload allocation scheme to minimize the E2E delay between users and their cloudlets by considering the user mobility.The performance of CAPABLE has been validated by extensive simulations. 展开更多
关键词 cloudLET PLACEMENT MOBILE cloud computing MOBILE edge computing
在线阅读 下载PDF
Intelligent Immunity Based Security Defense System for Multi-Access Edge Computing Network 被引量:3
12
作者 Chengcheng Zhou Yanping Yu +1 位作者 Shengsong Yang Haitao Xu 《China Communications》 SCIE CSCD 2021年第1期100-107,共8页
In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to p... In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to protect the security of whole system.In the proposed security defense system,the security is protected by the intelligent immunity through three functions,identification function,learning function,and regulation function,respectively.Meanwhile,a three process-based intelligent algorithm is proposed for the intelligent immunity system.Numerical simulations are given to prove the effeteness of the proposed approach. 展开更多
关键词 intelligent immunity security defense multi-access edge computing network security
在线阅读 下载PDF
Integration of Communication and Computing in Blockchain-Enabled Multi-Access Edge Computing Systems 被引量:2
13
作者 Zhonghua Zhang Jie Feng +2 位作者 Qingqi Pei Le Wang Lichuan Ma 《China Communications》 SCIE CSCD 2021年第12期297-314,共18页
Blockchain and multi-access edge com-puting(MEC)are two emerging promising tech-nologies that have received extensive attention from academia and industry.As a brand-new information storage,dissemination and managemen... Blockchain and multi-access edge com-puting(MEC)are two emerging promising tech-nologies that have received extensive attention from academia and industry.As a brand-new information storage,dissemination and management mechanism,blockchain technology achieves the reliable transmis-sion of data and value.While as a new computing paradigm,multi-access edge computing enables the high-frequency interaction and real-time transmission of data.The integration of communication and com-puting in blockchain-enabled multi-access edge com-puting networks has been studied without a systemat-ical view.In the survey,we focus on the integration of communication and computing,explores the mu-tual empowerment and mutual promotion effects be-tween the blockchain and MEC,and introduces the resource integration architecture of blockchain and multi-access edge computing.Then,the paper sum-marizes the applications of the resource integration ar-chitecture,resource management,data sharing,incen-tive mechanism,and consensus mechanism,and ana-lyzes corresponding applications in real-world scenar-ios.Finally,future challenges and potentially promis-ing research directions are discussed and present in de-tail. 展开更多
关键词 blockchain multi-access edge computing mutual empowerment network architecture
在线阅读 下载PDF
DQN-Based Proactive Trajectory Planning of UAVs in Multi-Access Edge Computing 被引量:2
14
作者 Adil Khan Jinling Zhang +3 位作者 Shabeer Ahmad Saifullah Memon Babar Hayat Ahsan Rafiq 《Computers, Materials & Continua》 SCIE EI 2023年第3期4685-4702,共18页
The main aim of future mobile networks is to provide secure,reliable,intelligent,and seamless connectivity.It also enables mobile network operators to ensure their customer’s a better quality of service(QoS).Nowadays... The main aim of future mobile networks is to provide secure,reliable,intelligent,and seamless connectivity.It also enables mobile network operators to ensure their customer’s a better quality of service(QoS).Nowadays,Unmanned Aerial Vehicles(UAVs)are a significant part of the mobile network due to their continuously growing use in various applications.For better coverage,cost-effective,and seamless service connectivity and provisioning,UAVs have emerged as the best choice for telco operators.UAVs can be used as flying base stations,edge servers,and relay nodes in mobile networks.On the other side,Multi-access EdgeComputing(MEC)technology also emerged in the 5G network to provide a better quality of experience(QoE)to users with different QoS requirements.However,UAVs in a mobile network for coverage enhancement and better QoS face several challenges such as trajectory designing,path planning,optimization,QoS assurance,mobilitymanagement,etc.The efficient and proactive path planning and optimization in a highly dynamic environment containing buildings and obstacles are challenging.So,an automated Artificial Intelligence(AI)enabled QoSaware solution is needed for trajectory planning and optimization.Therefore,this work introduces a well-designed AI and MEC-enabled architecture for a UAVs-assisted future network.It has an efficient Deep Reinforcement Learning(DRL)algorithm for real-time and proactive trajectory planning and optimization.It also fulfills QoS-aware service provisioning.A greedypolicy approach is used to maximize the long-term reward for serving more users withQoS.Simulation results reveal the superiority of the proposed DRL mechanism for energy-efficient and QoS-aware trajectory planning over the existing models. 展开更多
关键词 multi-access edge computing UAVS trajectory planning QoS assurance reinforcement learning deep Q network
在线阅读 下载PDF
A Review in the Core Technologies of 5G: Device-to-Device Communication, Multi-Access Edge Computing and Network Function Virtualization 被引量:2
15
作者 Ruixuan Tu Ruxun Xiang +1 位作者 Yang Xu Yihan Mei 《International Journal of Communications, Network and System Sciences》 2019年第9期125-150,共26页
5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and ... 5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and network function virtualization (NFV) with ClickOS, have been a significant part of 5G, and this paper mainly discusses them. D2D enables direct communication between devices without the relay of base station. In 5G, a two-tier cellular network composed of traditional cellular network system and D2D is an efficient method for realizing high-speed communication. MEC unloads work from end devices and clouds platforms to widespread nodes, and connects the nodes together with outside devices and third-party providers, in order to diminish the overloading effect on any device caused by enormous applications and improve users’ quality of experience (QoE). There is also a NFV method in order to fulfill the 5G requirements. In this part, an optimized virtual machine for middle-boxes named ClickOS is introduced, and it is evaluated in several aspects. Some middle boxes are being implemented in the ClickOS and proved to have outstanding performances. 展开更多
关键词 5th Generation Network VIRTUALIZATION Device-To-Device COMMUNICATION Base STATION Direct COMMUNICATION INTERFERENCE multi-access edge computing Mobile edge computing
在线阅读 下载PDF
Security Implications of Edge Computing in Cloud Networks 被引量:2
16
作者 Sina Ahmadi 《Journal of Computer and Communications》 2024年第2期26-46,共21页
Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this r... Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this regard. The findings have shown that many challenges are linked to edge computing, such as privacy concerns, security breaches, high costs, low efficiency, etc. Therefore, there is a need to implement proper security measures to overcome these issues. Using emerging trends, like machine learning, encryption, artificial intelligence, real-time monitoring, etc., can help mitigate security issues. They can also develop a secure and safe future in cloud computing. It was concluded that the security implications of edge computing can easily be covered with the help of new technologies and techniques. 展开更多
关键词 edge computing cloud Networks Artificial Intelligence Machine Learning cloud Security
在线阅读 下载PDF
An Edge Computing Algorithm Based on Multi-Level Star Sensor Cloud
17
作者 Siyu Ren Shi Qiu Keyang Cheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1643-1659,共17页
Star sensors are an important means of autonomous navigation and access to space information for satellites.They have been widely deployed in the aerospace field.To satisfy the requirements for high resolution,timelin... Star sensors are an important means of autonomous navigation and access to space information for satellites.They have been widely deployed in the aerospace field.To satisfy the requirements for high resolution,timeliness,and confidentiality of star images,we propose an edge computing algorithm based on the star sensor cloud.Multiple sensors cooperate with each other to forma sensor cloud,which in turn extends the performance of a single sensor.The research on the data obtained by the star sensor has very important research and application values.First,a star point extraction model is proposed based on the fuzzy set model by analyzing the star image composition,which can reduce the amount of data computation.Then,a mappingmodel between content and space is constructed to achieve low-rank image representation and efficient computation.Finally,the data collected by the wireless sensor is delivered to the edge server,and a differentmethod is used to achieve privacy protection.Only a small amount of core data is stored in edge servers and local servers,and other data is transmitted to the cloud.Experiments show that the proposed algorithm can effectively reduce the cost of communication and storage,and has strong privacy. 展开更多
关键词 Star-sensing sensor cloud fuzzy set edge computing mapping
在线阅读 下载PDF
A PSO Improved with Imbalanced Mutation and Task Rescheduling for Task Offloading in End-Edge-Cloud Computing
18
作者 Kaili Shao Hui Fu +1 位作者 Ying Song Bo Wang 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2259-2274,共16页
To serve various tasks requested by various end devices with different requirements,end-edge-cloud(E2C)has attracted more and more attention from specialists in both academia and industry,by combining both benefits of... To serve various tasks requested by various end devices with different requirements,end-edge-cloud(E2C)has attracted more and more attention from specialists in both academia and industry,by combining both benefits of edge and cloud computing.But nowadays,E2C still suffers from low service quality and resource efficiency,due to the geographical distribution of edge resources and the high dynamic of network topology and user mobility.To address these issues,this paper focuses on task offloading,which makes decisions that which resources are allocated to tasks for their processing.This paper first formulates the problem into binary non-linear programming and then proposes a particle swarm optimization(PSO)-based algorithm to solve the problem.The proposed algorithm exploits an imbalance mutation operator and a task rescheduling approach to improve the performance of PSO.The proposed algorithm concerns the resource heterogeneity by correlating the probability that a computing node is decided to process a task with its capacity,by the imbalance mutation.The task rescheduling approach improves the acceptance ratio for a task offloading solution,by reassigning rejected tasks to computing nodes with available resources.Extensive simulated experiments are conducted.And the results show that the proposed offloading algorithm has an 8.93%–37.0%higher acceptance ratio than ten of the classical and up-to-date algorithms,and verify the effectiveness of the imbalanced mutation and the task rescheduling. 展开更多
关键词 cloud computing edge computing edge cloud task scheduling task offloading particle swarm optimization
在线阅读 下载PDF
Improved Harris Hawks Optimization Algorithm Based Data Placement Strategy for Integrated Cloud and Edge Computing
19
作者 V.Nivethitha G.Aghila 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期887-904,共18页
Cloud computing is considered to facilitate a more cost-effective way to deploy scientific workflows.The individual tasks of a scientific work-flow necessitate a diversified number of large states that are spatially l... Cloud computing is considered to facilitate a more cost-effective way to deploy scientific workflows.The individual tasks of a scientific work-flow necessitate a diversified number of large states that are spatially located in different datacenters,thereby resulting in huge delays during data transmis-sion.Edge computing minimizes the delays in data transmission and supports the fixed storage strategy for scientific workflow private datasets.Therefore,this fixed storage strategy creates huge amount of bottleneck in its storage capacity.At this juncture,integrating the merits of cloud computing and edge computing during the process of rationalizing the data placement of scientific workflows and optimizing the energy and time incurred in data transmission across different datacentres remains a challenge.In this paper,Adaptive Cooperative Foraging and Dispersed Foraging Strategies-Improved Harris Hawks Optimization Algorithm(ACF-DFS-HHOA)is proposed for optimizing the energy and data transmission time in the event of placing data for a specific scientific workflow.This ACF-DFS-HHOA considered the factors influencing transmission delay and energy consumption of data centers into account during the process of rationalizing the data placement of scientific workflows.The adaptive cooperative and dispersed foraging strategy is included in HHOA to guide the position updates that improve population diversity and effectively prevent the algorithm from being trapped into local optimality points.The experimental results of ACF-DFS-HHOA confirmed its predominance in minimizing energy and data transmission time incurred during workflow execution. 展开更多
关键词 edge computing cloud computing scientific workflow data placement energy of datacenters data transmission time
在线阅读 下载PDF
Optimization and Design of Cloud-Edge-End Collaboration Computing for Autonomous Robot Control Using 5G and Beyond
20
作者 Hao Wang 《Journal of Beijing Institute of Technology》 EI CAS 2022年第5期454-463,共10页
Robots have important applications in industrial production, transportation, environmental monitoring and other fields, and multi-robot collaboration is a research hotspot in recent years. Multi-robot autonomous colla... Robots have important applications in industrial production, transportation, environmental monitoring and other fields, and multi-robot collaboration is a research hotspot in recent years. Multi-robot autonomous collaborative tasks are limited by communication, and there are problems such as poor resource allocation balance, slow response of the system to dynamic changes in the environment, and limited collaborative operation capabilities. The combination of 5G and beyond communication and edge computing can effectively reduce the transmission delay of task offloading and improve task processing efficiency. First, this paper designs a robot autonomous collaborative computing architecture based on 5G and beyond and mobile edge computing(MEC).Then, the robot cooperative computing optimization problem is studied according to the task characteristics of the robot swarm. Then, a reinforcement learning task offloading scheme based on Qlearning is further proposed, so that the overall energy consumption and delay of the robot cluster can be minimized. Finally, simulation experiments demonstrate that the method has significant performance advantages. 展开更多
关键词 robot collaboration mobile edge computing(mec) 5G and beyond network task offloading resource allocation
在线阅读 下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部