Sediment yield dynamics on the Edwards Plateau region of Texas was dramatically influenced by a multi-year drought that occurred there during the 1950s. To assess the effect of this drought on sediment yield, we used ...Sediment yield dynamics on the Edwards Plateau region of Texas was dramatically influenced by a multi-year drought that occurred there during the 1950s. To assess the effect of this drought on sediment yield, we used the Soil and Water Assessment Tool (SWAT) to identify the factors that contributed erosion and to propose potential mitigation measures in case of future drought recurrence. The basins of interest to this study were Brady Creek One (BC 1) and Deep Creek Three (DC 3), located in McCulloch County, Texas. Although the streams in these basins are not gauged, the land cover and reservoir sediment budgets have been assessed in a past study. Calibration of SWAT flow simulation was accomplished using parameter transfer from a gauging station located in San Saba River. The results showed that sediment yield from storms above 60 mm was five times more during and immediately after drought period than during continuous wet seasons. Approximately half of the total drought period sediment yield was from five major rainstorms. The multi-year drought coupled with historical high grazing intensity resulted in significant loss of plant cover, which was considered critical in determining erosion and sedimentation rates. To test this hypothesis, the model was run for the periods of high land cover (1990s) using the 1950s multi-year drought data which showed that sediment yield was 24% of that simulated for 1950s land cover. It was concluded that maintenance of surface cover could play a critical role associated with multi-year drought extreme events.展开更多
Understanding the evolution and lag effects of droughts is critical to effective drought warning and water resources management.However,due to limited hydrological data,few studies have examined hydrological droughts ...Understanding the evolution and lag effects of droughts is critical to effective drought warning and water resources management.However,due to limited hydrological data,few studies have examined hydrological droughts and their lag time from meteorological droughts at a daily scale.In this study,precipitation data were collected to calculate the standardized precipitation index(SPI),and runoff data simulated by the variable infiltration capacity(VIC)model were utilized to compute the standardized runoff index(SRI).The three-threshold run theory was used to identify drought characteristics in China.These drought characteristics were utilized to investigate spatiotemporal variations,seasonal trends,and temporal changes in areas affected by meteorological and hydrological droughts.Additionally,the interconnections and lag effects between meteorological and hydrological droughts were explored.The results indicated that(1)drought occurred during approximately 28%of the past 34 years in China;(2)drought conditions tended to worsen in autumn and weaken in winter;(3)drought-affected areas shifted from northwest to northeast and finally to southern China;and(4)the correlation between meteorological and hydrological droughts was lower in the northwest and higher in the southeast,with all correlation coefficients exceeding 0.7.The lag times between meteorological and hydrological droughts were longest(5 d)in the Yangtze River,Yellow River,and Hai River basins,and shortest(0 d)in the Tarim River Basin.This study provides a scientific basis for effective early warning of droughts.展开更多
Since the mid-20th century,the Mongolian Plateau(MP)has experienced decadal droughts coupled with extreme heatwaves,severely affecting regional ecology and social development.However,the mechanisms behind these decada...Since the mid-20th century,the Mongolian Plateau(MP)has experienced decadal droughts coupled with extreme heatwaves,severely affecting regional ecology and social development.However,the mechanisms behind these decadalscale compound heatwavedrought events remain debated.Here,using reconstructions and simulations from the Community Earth System Model Last Millennium Ensemble,we demonstrate that,over the last millennium,decadal droughts on the MP occurred under both warm and cold conditions,differing from recent compound heatwavedrought events.We found that by examining temperature changes during these drought periods,the distinct influences of external forcings and internal variability can be simply and effectively distinguished.Specifically,colddry events were primarily driven by volcanic eruptions that weakened the East Asian summer monsoon and midlatitude westerlies,reducing moisture transport to the MP.In contrast,warmdry events were predominantly induced by internal variability,notably the negative phase of the Atlantic Multidecadal Oscillation and the expansion of the Barents Sea ice extent.The recent extreme compound event was probably influenced by the combined effects of anthropogenic forcings and internal variability.These findings deepen our understanding of how external forcings and internal variability affect decadal drought events on the MP and highlight that recent compound events are unprecedented in the context of the last millennium.展开更多
Flash drought is characterized by a period of rapid drought intensification with impacts on agriculture,water resources,ecosystems,and human environment.In the Qilian Mountains,northwestern China,flash droughts are be...Flash drought is characterized by a period of rapid drought intensification with impacts on agriculture,water resources,ecosystems,and human environment.In the Qilian Mountains,northwestern China,flash droughts are becoming more frequently due to the global climate warming.However,the spatiotemporal variations and their driving factors of flash droughts are not clear in this region.In this study,the European Centre for Medium-range Weather Forecasts(ECMWF)Reanalysis v5-Land(ERA5-Land)dataset was utilized to identify two types of flash drought events(heatwave-induced and water scarcity-induced flash drought events)that occurred in the growing season(April‒September)during 1981-2020 in this area.The results showed that the frequency of heatwave-induced flash droughts has decreased since 2010,while the frequency of water scarcity-induced flash droughts has declined markedly.Spatially,heatwave-induced flash droughts were predominantly concentrated in the western Qilian Mountains,whereas water scarcity-induced flash droughts were primarily concentrated in the central and eastern Qilian Mountains.A significantly increasing temporal trend in both types of flash droughts in the eastern Qilian Mountains was found.Meanwhile,there was a decreasing temporal trend of heatwave-induced flash droughts in the southwestern part of the region.Additionally,the influence of two major atmospheric modes,i.e.,the El Niño‒Southern Oscillation(ENSO)and North Atlantic Oscillation(NAO),on these two types of flash droughts was explored by the Superposed Epoch Analysis.The ENSO mainly influences flash droughts in the central and eastern parts of the Qilian Mountains by altering the strength of the East Asian monsoon,while the NAO mainly affects flash droughts in the entire parts of the Qilian Mountains by inducing anomalous westerlies activity.Our findings have important implications for predicting the evolution of flash drought events in the Qilian Mountains region under continued climate warming.展开更多
Under current climate warming, the growth resilience of plantation forests after extreme droughts has garnered increasing attention. Platycladus orientalis Linn. is an evergreen tree species commonly used for afforest...Under current climate warming, the growth resilience of plantation forests after extreme droughts has garnered increasing attention. Platycladus orientalis Linn. is an evergreen tree species commonly used for afforestation, and the stability of P. orientalis plantation forests in the Loess Hilly region directly affects the ecological and environmental security of the entire Loess Plateau of China.However, systematic analyses of the growth resilience of P. orientalis plantation forests after extreme droughts along precipitation gradients remain scarce. In this study, we collected tree ring samples of P.orientalis along a precipitation gradient(255, 400, and 517 mm) from 2021 to 2023 and used dendroecological methods to explore the growth resilience of P. orientalis to drought stress on the Loess Plateau. Our findings revealed that the growth resilience of P. orientalis increased with increasing precipitation, enabling the trees to recover to the pre-drought growth levels. In regions with low precipitation(255 mm), the plantation forests were more sensitive to extreme droughts, struggling to recover to previous growth levels, necessitating conditional artificial irrigation. In regions with medium precipitation(400 mm), the growth of P. orientalis was significantly limited by drought stress and exhibited some recovery ability after extreme droughts, therefore warranting management through rainwater harvesting and conservation measures. Conversely, in regions with high precipitation(517 mm), the impacts of extreme droughts on P. orientalis plantation forests were relatively minor. This study underscored the need for targeted strategies tailored to different precipitation conditions rather than a "one-size-fits-all" approach to utilize precipitation resources effectively and maximize the ecological benefits of plantation forests. The findings will help maintain the stability of plantation forests and improve their ecosystem service functions in arid and semi-arid areas.展开更多
Drought stress is a serious natural challenge for tea plants that significantly affects tea yield and quality.miR171s play critical roles in plant stress responses,however,their role in drought stress tolerance in tea...Drought stress is a serious natural challenge for tea plants that significantly affects tea yield and quality.miR171s play critical roles in plant stress responses,however,their role in drought stress tolerance in tea plants(Camellia sinensis)is poorly understood.This study experimentally verified the expression patterns of csn-miR171b-3p_2 and its target,scarecrow-like(SCL).We found that csn-miR171b-3p_2 could target and regulate CsSCL6-4 to play an important role in the defense against drought stress in tea plants.CsSCL6-4 is located in the nucleus and is selfactivated in vivo.In addition,we obtained 819 putative binding regions of CsSCL6-4 using DNA affinity purification sequencing analysis,which were assigned to 786 different genes,four of which were drought-resistant genes(CsPrx,CsSDR,CsFAD7,and CsCER1).Yeast one-hybrid and dual-luciferase reporter assays revealed that CsSCL6-4 directly promoted the expression of these four drought resistance genes by binding motifs 1/2/3 in their promoter regions.Both overexpression and suppression of CsSCL6-4 proved that CsSCL6-4 participated in the defense against drought stress in tea plants by regulating the expression of CsPrx,CsSDR,CsFAD7,and CsCER1.In addition,suppression of csn-miR171b-3p_2 expression significantly increased the expression of CsSCL6-4 and activated CsSCL6-4-bound gene transcription under drought stress.Therefore,the csn-miR171b-3p_2-CsSCL6-4 module participates in tea plant resistance to drought stress by promoting the expression of drought resistance genes.Our results revealed the function of csn-miR171b-3p_2 in tea plants and provided new insights into the mechanism of tea plant resistance to drought stress.展开更多
Drought stress significantly impedes apple growth,development,and yield,leading to substantial economic losses within the global apple industry.Malus prunifolia(Mp),a commonly utilized apple rootstock,has shown promis...Drought stress significantly impedes apple growth,development,and yield,leading to substantial economic losses within the global apple industry.Malus prunifolia(Mp),a commonly utilized apple rootstock,has shown promise in augmenting cultivated apple resistance to abiotic stress.Although Alfin-like(ALs)proteins have demonstrated pivotal roles in dicotyledonous plants'response to abiotic stresses,knowledge about AL genes in apple rootstocks is limited,and their functions remain largely elusive.In this study,we identified and characterized 10 MpAL gene members in the apple rootstock genome,confirming their localization within the nucleus.Our investigation revealed the significant regulation of MpALs'expression under drought and abscisic acid(ABA)stresses in M.prunifolia.In this study,one of the members,MpAL1,was selected for further exploration in Arabidopsis and apple to explore its potential function in response to drought and ABA stresses.The results showed that overexpression-MpAL1 transgenic apple calli grew significantly better than WT and MpAL1-RNAi lines,which regulates the accumulation of H_(2)O_(2)and O_(2).-levels.Additionally,transgenic Arabidopsis plants overexpressing MpAL1 exhibited positively regulating antioxidant enzymes activities under stress treatments.Further study showed that silencing MpAL1 in apple plants showed obvious chlorosis in leaves,and accumulation of reactive oxygen species under drought stress.Moreover,our detailed analysis established that MpAL1 regulates several drought and ABA-responsive genes,exerting an influence on their expression in transgenic apple.Collectively,our findings identify MpAL1 as a positive regulator that increases drought stress in apple,shedding light on its potential significance in bolstering drought resistance in this fruit crop.展开更多
Tajikistan,a mountainous country and a vital water tower for Central Asia,is becoming increasingly vulnerable to snow drought under climate change,threatening its snow-and glacier-fed streamflow.Yet,the impacts of sno...Tajikistan,a mountainous country and a vital water tower for Central Asia,is becoming increasingly vulnerable to snow drought under climate change,threatening its snow-and glacier-fed streamflow.Yet,the impacts of snow drought on the regional hydrology remain insufficiently understood.In this study,we integrated multisource data,including the Fifth Generation European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis for Land Applications(ERA5-Land)data and hydrological station data,to systematically assess the snow drought patterns and their impacts on streamflow during 1950–2023.We identified snow drought events based on precipitation and snow fraction anomalies relative to climatological means and classified them into warm snow drought,dry snow drought,and warm&dry snow drought.The results revealed that snow drought was a recurrent phenomenon,occurring in 51.70%of the years during the study period,with warm&dry snow drought accounting for 21.90%of the total events.Both the frequency and severity exhibited pronounced spatial variability,largely governed by the elevation and snowfall fraction.Specifically,the frequency of warm snow drought was negatively correlated with the snowfall fraction,decreasing on average by 0.20 per unit increase in snowfall fraction,whereas the frequency of dry snow drought was positively correlated,increasing by 0.07 per unit increase.The streamflow analysis results demonstrated that snow drought typically reduced the warm-season discharge by 5.00%–18.00%in certain rivers,thereby exacerbating the water stress during the dry season.The results of this study advance our understanding by explicitly linking the types of snow drought to hydrological responses in Central Asia’s high mountains,providing a scientific basis for climate adaptation and sustainable water resource management in Tajikistan.展开更多
As part of my master’s programme in resource use and environmental science at China Agricultural University,I had the privilege of joining a study trip to the Shiyang River Basin and its surrounding areas from 17 to ...As part of my master’s programme in resource use and environmental science at China Agricultural University,I had the privilege of joining a study trip to the Shiyang River Basin and its surrounding areas from 17 to 21 July 2025.This trip to Gansu Province was organised under the China-Africa Joint Centre for Agricultural Demonstration and Training in Arid Regions programme,an initiative aligned with President Xi Jinping’s call for deeper China-Africa cooperation.展开更多
According to the "jacking-up" theory, which relates the cause of earthquakes to outer core convection ascension bodies, the crust will gradually recover after an earthquake. In such cases, the crust is stretched, th...According to the "jacking-up" theory, which relates the cause of earthquakes to outer core convection ascension bodies, the crust will gradually recover after an earthquake. In such cases, the crust is stretched, the underground temperature is reduced, precipitation decreases, and drought occurs. In this paper, precipitation is compared with ground temperature and seismic data to determine the spatial and temporal relationship between earthquakes and subsequent droughts. Our objective is to develop a new method of drought prediction. With a few exceptions in location, the analysis of the first drought to occur after the Ms 〉 7 earthquakes in China's Mainland and the adjacent areas since 1950 shows that droughts tended to occur in regions near earthquake epicenters and in the eastern regions of the epicenters at the same latitude within six months after the earthquakes. In addition, and the differences between the starting time of the earthquakes and the droughts nearly share the same probability of 0 to 6 months. After careful analysis of 34 Ms 〉 6.5 earthquakes occurring in western China from 1980 to 2011, we determined that a second drought tends to occur approximately six months following the first drought, indicating a quasi-half-year period. Moreover, the duration of the quasi-half-year fluctuation increases with the magnitude of earthquake, at approximately 2.5 years for Ms 6.5 earthquake and approximately 5 years for Ms 8 earthquake.展开更多
Based on the monthly precipitation and air temperature from 1960 to 1989 in the Luanhe River Basin, the standardized precipitation evapotranspiration index (SPEI) and standardized precipitation index (SPI) at thre...Based on the monthly precipitation and air temperature from 1960 to 1989 in the Luanhe River Basin, the standardized precipitation evapotranspiration index (SPEI) and standardized precipitation index (SPI) at three- and six-month time scales and the self-calibrating Palmer drought severity index (sc-PDSI) were calculated to evaluate droughts in the study area. Temporal variations of the drought severity from 1960 to 1989 were analyzed and compared based on the results of different drought indices, and some typical drought events were identified. Spatial distributions of the drought severity according to the indices were also plotted and investigated. The results reveal the following: the performances of different drought indices are closely associated with the drought duration and the dominant factors of droughts; the SPEI is more accurate than the SPI when both evaporation and precipitation play important roles in drought events; the drought severity shown by the sc-PDSI is generally milder than the actual drought severity from 1960 to 1989; and the evolution of the droughts is usually delayed according to the scPDSI. This study provides valuable references for building drought early warning and mitigation systems in the Luanhe River Basin.展开更多
This paper describes a study on the combined impacts of antecedent earthquakes and droughts on disastrous debris flows.This is a novel attempt in quantifying such impacts using the effective peak acceleration(EPA)(to ...This paper describes a study on the combined impacts of antecedent earthquakes and droughts on disastrous debris flows.This is a novel attempt in quantifying such impacts using the effective peak acceleration(EPA)(to represent earthquakes) and standardized precipitation index(SPI)(to represent droughts).The study is based on the analysis of 116 disastrous debris flow events occurred in China's Mainland in the last 100 years covering a wide spectrum of climate types and landforms.It has been found that the combined impacts from earthquakes and droughts on disastrous debris flows do exist and vary from low to very high according to different climate conditions and terrains.The impacts from earthquakes increase with the increased terrain relief,and the impacts from droughts are strongest in semi-humid climate condition(with reduced impacts in humid and semi-arid /arid climate conditions).Hypothetical explanations on the study discoveries have been proposed.This study reveals the possible reasons for the disastrous debris flow distributions around the world and has significant implications in paleo-climate-seismicanalysis and disastrous debris flow risk management.展开更多
The most important climatological feature of the South Asian region is the occurrence of monsoons. With increasing concerns about climate change, the need to understand the nature and variability of such climatic cond...The most important climatological feature of the South Asian region is the occurrence of monsoons. With increasing concerns about climate change, the need to understand the nature and variability of such climatic conditions and to evaluate possible future changes becomes increasingly important. This paper deals with long-term above and below normal monsoon precipitation causing prolong meteorological droughts and floods in India. Five regions across India comprising variable climates were selected for the study. Apart from long-term trends for individual regions, long-term trends were also calculated for the Indian region as a whole. The results show that intra-region variability for monsoon precipitation is large and there are increasing numbers of meteorological summer droughts. Meteorological monsoon floods were found to have negative long-term trends everywhere except in the peninsular Indian region. The results overall suggest generic conclusions concerning the region-wide long-term trend of severity of monsoon droughts and floods in India and their spatial variability.展开更多
The normalized difference vegetation index (NDVI) has proven to be typically employed to assess terrestrial vegetation conditions. However, one limitation of NDVI for drought monitoring is the apparent time lag betw...The normalized difference vegetation index (NDVI) has proven to be typically employed to assess terrestrial vegetation conditions. However, one limitation of NDVI for drought monitoring is the apparent time lag between rainfall deficit and NDVI response. To better understand this relationship, time series NDVI (2000-2010) during the growing season in Sichuan Province and Chongqing City were analyzed. The vegetation condition index (VCI) was used to construct a new drought index, time-integrated vegetation condition index (TIVCI), and was then compared with meteorological drought indices-standardized precipitation index (SPI), a multiple-time scale meteorological-drought index based on precipitation, to examine the sensitivity on droughts. Our research findings indicate the followings: (1) farmland NDVI sensitivity to precipitation in study area has a time lag of 16-24 d, and it maximally responds to the temperature with a lag of about 16 d. (2) We applied the approach to Sichuan Province and Chongqing City for extreme drought monitoring in 2006 and 2003, and the results show that the monitoring results from TIVCI are closer to the published China agricultural statistical data than VCI. Compared to VCI, the best results from TIVCI3 were found with the relative errors of -4.5 and 6.36% in 2006 for drought affected area and drought disaster area respectively, and 5.11 and -5.95% in 2003. (3) Compared to VCI, TIVCI has better correlation with the SPI, which indicates the lag and cumulative effects of precipitation on vegetation. Our finding proved that TIVCI is an effective indicator of drought detection when the time lag effects between NDVI and climate factors are taken into consideration.展开更多
The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricte...The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricted by atmospheric circulation, and basin-wide law is restricted by underlying surface. The commensurability method was used to identify the almost period law, the wave method was applied to deducing the random law, and the precursor method was applied in order to forecast runoff magnitude for the current year. These three methods can be used to assess each other and to forecast runoff. The system can also be applied to forecasting wet years, normal years and dry years for a particular year as well as forecasting years when floods with similar characteristics of previous floods, can be expected. Based on hydrological climate data of Baishan (1933-2009) and Nierji (1886-2009) in the Songhua River Basin, the forecasting results for 2010 show that it was a wet year in the Baishan Reservoir, similar to the year of 1995; it was a secondary dry year in the Nierji Reservoir, similar to the year of 1980. The actual water inflow into the Baishan Reservoir was 1.178 × 10 10 m 3 in 2010, which was markedly higher than average inflows, ranking as the second highest in history since records began. The actual water inflow at the Nierji station in 2010 was 9.96 × 10 9 m 3 , which was lower than the average over a period of many years. These results indicate a preliminary conclusion that the methods proposed in this paper have been proved to be reasonable and reliable, which will encourage the application of the chief reporter release system for each basin. This system was also used to forecast inflows for 2011, indicating a secondary wet year for the Baishan Reservoir in 2011, similar to that experienced in 1991. A secondary wet year was also forecast for the Nierji station in 2011, similar to that experienced during 1983. According to the nature of influencing factors, mechanisms and forecasting methods and the service objects, mid-to long-term hydrological forecasting can be divided into two classes:mid-to long-term runoff forecasting, and severe floods and droughts forecasting. The former can be applied to quantitative forecasting of runoff, which has important applications for water release schedules. The latter, i.e., qualitative disaster forecasting, is important for flood control and drought relief. Practical methods for forecasting severe droughts and floods are discussed in this paper.展开更多
With the precipitation data of 113 stations in East China during the last 50 years,the characteristics of the precipitation,including Precipitation Concentration Degree (PCD) and Precipitation Concentration Period (PC...With the precipitation data of 113 stations in East China during the last 50 years,the characteristics of the precipitation,including Precipitation Concentration Degree (PCD) and Precipitation Concentration Period (PCP) and their tendencies,are analyzed.The results show that the PCD in the northern part of the region is markedly higher than that in the southern part,but the PCP in the south is much earlier than that in the north by about one and a half months,which displays significant regional differences in precipitation.With the global warming,precipitation over East China shows an increasing tendency,but PCD displays a trend that is neither increasing nor decreasing.At the same time,the PCP is later than before,which can be mainly found in Jiangxi and southern Henan provinces.As a result,there are strong associations between the precipitation,PCD and PCP,which can be shown in the years with more precipitation,stronger PCD and later-than-usual PCP.In a word,the abnormal distribution of precipitation,PCP,and PCD over East China results in more extreme events of precipitation and more droughts and floods.展开更多
Extreme droughts are anticipated to have detrimental impacts on forest ecosystems,especially in water-limited regions,due to the influence of climate change.However,considerable uncertainty remains regarding the patte...Extreme droughts are anticipated to have detrimental impacts on forest ecosystems,especially in water-limited regions,due to the influence of climate change.However,considerable uncertainty remains regarding the patterns in species-specific responses to extreme droughts.Here,we conducted a study integrating dendrochronology and remote sensing methods to investigate the mosaic-distributed maple-oak(native)natural forests and poplar plantations(introduced)in the Horqin Sandy Land,Northeast China.We assessed the impacts of extreme droughts on tree performances by measuring interannual variations in radial growth and vegetation index.The results showed that precipitation and self-calibrated palmer drought severity index(scPDSI)are the major factors influencing tree-ring width index(RWI)and normalized difference vegetation index(NDVI).The severe droughts between 2000 and 2004 resulted in reduced RWI in the three studied tree species as well as led to NDVI reductions in both the maple-oak natural forests and the poplar plantations.The RWI reached the nadir during the2000-2004 severe droughts and remained at low levels two years after the severe drought,creating a legacy effect.In contrast to the lack of significant correlation between RWI and scPDSI,NDVI exhibited a significant positive correlation with scPDSI indicating the greater sensitivity of canopy performance to droughts than radial growth.Furthermore,interspecific differences in RWI and NDVI responses were observed,with the fast-growing poplar species experiencing a more significant RWI decrease and more negative NDVI anomaly during severe droughts than native species,highlighting the species-specific trade-offs between drought resilience and growth rate.This study emphasizes the importance of combining tree-level radial growth with landscape-scale canopy remote sensing to understand forest resilience and response.Our study improves our understanding of forest responses to extreme drought and highlights species differences in climate responses,offering crucial insights for optimizing species selection in sustainable afforestation and forest management in water-limited regions under the influence of climate change.展开更多
Both the attribution of historical change and future projections of droughts rely heavily on climate modeling. However,reasonable drought simulations have remained a challenge, and the related performances of the curr...Both the attribution of historical change and future projections of droughts rely heavily on climate modeling. However,reasonable drought simulations have remained a challenge, and the related performances of the current state-of-the-art Coupled Model Intercomparison Project phase 6(CMIP6) models remain unknown. Here, both the strengths and weaknesses of CMIP6 models in simulating droughts and corresponding hydrothermal conditions in drylands are assessed.While the general patterns of simulated meteorological elements in drylands resemble the observations, the annual precipitation is overestimated by ~33%(with a model spread of 2.3%–77.2%), along with an underestimation of potential evapotranspiration(PET) by ~32%(17.5%–47.2%). The water deficit condition, measured by the difference between precipitation and PET, is 50%(29.1%–71.7%) weaker than observations. The CMIP6 models show weaknesses in capturing the climate mean drought characteristics in drylands, particularly with the occurrence and duration largely underestimated in the hyperarid Afro-Asian areas. Nonetheless, the drought-associated meteorological anomalies, including reduced precipitation, warmer temperatures, higher evaporative demand, and increased water deficit conditions, are reasonably reproduced. The simulated magnitude of precipitation(water deficit) associated with dryland droughts is overestimated by 28%(24%) compared to observations. The observed increasing trends in drought fractional area,occurrence, and corresponding meteorological anomalies during 1980–2014 are reasonably reproduced. Still, the increase in drought characteristics, associated precipitation and water deficit are obviously underestimated after the late 1990s,especially for mild and moderate droughts, indicative of a weaker response of dryland drought changes to global warming in CMIP6 models. Our results suggest that it is imperative to employ bias correction approaches in drought-related studies over drylands by using CMIP6 outputs.展开更多
Climate change is expected to have long-term impacts on drought and wildfire risks in Oregon as summers continue to become warmer and drier. This paper investigates the projected changes in drought characteristics and...Climate change is expected to have long-term impacts on drought and wildfire risks in Oregon as summers continue to become warmer and drier. This paper investigates the projected changes in drought characteristics and drought propagation in the Umatilla River Basin in northeastern Oregon for mid-century(2030–2059) and late-century(2070–2099) climate scenarios. Drought characteristics for projected climates were determined using downscaled CMIP5 climate datasets from ten climate models and Soil and Water Assessment Tool to simulate effects on hydrologic processes. Short-term(three months) drought characteristics(frequency, duration, and severity) were analyzed using four drought indices, including the Standardized Precipitation Index(SPI-3), Standardized Precipitation-Evapotranspiration Index(SPEI-3), Standardized Streamflow Index(SSI-3), and the Standardized Soil Moisture Index(SSMI-3). Results indicate that short-term meteorological droughts are projected to become more prevalent, with up to a 20% increase in the frequency of SPI-3drought events. Short-term hydrological droughts are projected to become more frequent(average increase of 11% in frequency of SSI-3 drought events), more severe, and longer in duration(average increase of 8% for short-term droughts).Similarly, short-term agricultural droughts are projected to become more frequent(average increase of 28% in frequency of SSMI-3 drought events) but slightly shorter in duration(average decrease of 4%) in the future. Historically, drought propagation time from meteorological to hydrological drought is shorter than from meteorological to agricultural drought in most sub-basins. For the projected climate scenarios, the decrease in drought propagation time will likely stress the timing and capacity of water supply in the basin for irrigation and other uses.展开更多
To comprehensively investigate characteristics of summer droughts and floods in the Yangtze River valley, a meteorological and hydrological coupling index (MHCI) was developed using meteorological and hydro- logical...To comprehensively investigate characteristics of summer droughts and floods in the Yangtze River valley, a meteorological and hydrological coupling index (MHCI) was developed using meteorological and hydro- logical data. The results indicate that: (1) in representing drought/flood information for the Yangtze River valley, the MHCI can reflect composite features of precipitation and hydrological observations; (2) compre- hensive analysis of the interannual phase difference of the precipitation and hydrological indices is important to recognize and predict annual drought/flood events along the valley; the hydrological index contributes more strongly to nonlinear and continuity features that indicate transition from long-term drought to flood conditions; (3) time series of the MHCI from 1960-2009 are very effective and sensitive in reflecting annual drought/flood characteristics, i.e. there is more rainfall or typical flooding in the valley when the MHCI is positive, and vice versa; and (4) verification of the MHCI indicates that there is significant correlation between precipitation and hydrologic responses in the valley during summer; the correlation coefficient was found to reach 0.82, exceeding the 0.001 significance level.展开更多
文摘Sediment yield dynamics on the Edwards Plateau region of Texas was dramatically influenced by a multi-year drought that occurred there during the 1950s. To assess the effect of this drought on sediment yield, we used the Soil and Water Assessment Tool (SWAT) to identify the factors that contributed erosion and to propose potential mitigation measures in case of future drought recurrence. The basins of interest to this study were Brady Creek One (BC 1) and Deep Creek Three (DC 3), located in McCulloch County, Texas. Although the streams in these basins are not gauged, the land cover and reservoir sediment budgets have been assessed in a past study. Calibration of SWAT flow simulation was accomplished using parameter transfer from a gauging station located in San Saba River. The results showed that sediment yield from storms above 60 mm was five times more during and immediately after drought period than during continuous wet seasons. Approximately half of the total drought period sediment yield was from five major rainstorms. The multi-year drought coupled with historical high grazing intensity resulted in significant loss of plant cover, which was considered critical in determining erosion and sedimentation rates. To test this hypothesis, the model was run for the periods of high land cover (1990s) using the 1950s multi-year drought data which showed that sediment yield was 24% of that simulated for 1950s land cover. It was concluded that maintenance of surface cover could play a critical role associated with multi-year drought extreme events.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFC3006505)the Fundamental Research Funds for the Central Universities of China(Grant No.B240203007)the National Key Laboratory of Water Disaster Prevention(Grant No.524015222)。
文摘Understanding the evolution and lag effects of droughts is critical to effective drought warning and water resources management.However,due to limited hydrological data,few studies have examined hydrological droughts and their lag time from meteorological droughts at a daily scale.In this study,precipitation data were collected to calculate the standardized precipitation index(SPI),and runoff data simulated by the variable infiltration capacity(VIC)model were utilized to compute the standardized runoff index(SRI).The three-threshold run theory was used to identify drought characteristics in China.These drought characteristics were utilized to investigate spatiotemporal variations,seasonal trends,and temporal changes in areas affected by meteorological and hydrological droughts.Additionally,the interconnections and lag effects between meteorological and hydrological droughts were explored.The results indicated that(1)drought occurred during approximately 28%of the past 34 years in China;(2)drought conditions tended to worsen in autumn and weaken in winter;(3)drought-affected areas shifted from northwest to northeast and finally to southern China;and(4)the correlation between meteorological and hydrological droughts was lower in the northwest and higher in the southeast,with all correlation coefficients exceeding 0.7.The lag times between meteorological and hydrological droughts were longest(5 d)in the Yangtze River,Yellow River,and Hai River basins,and shortest(0 d)in the Tarim River Basin.This study provides a scientific basis for effective early warning of droughts.
基金supported by the National Natural Science Foundation of China(Grant Nos.42130604)the National Key Research and Development Program of China(Grant No.2023YFF0804704)+2 种基金the National Natural Science Foundation of China(Grant Nos.42105044)Swedish STINT(Grant No.CH2019-8377)the Priority Academic Program Development of Jiangsu Higher Education Institutions(Grant No.164320H116)。
文摘Since the mid-20th century,the Mongolian Plateau(MP)has experienced decadal droughts coupled with extreme heatwaves,severely affecting regional ecology and social development.However,the mechanisms behind these decadalscale compound heatwavedrought events remain debated.Here,using reconstructions and simulations from the Community Earth System Model Last Millennium Ensemble,we demonstrate that,over the last millennium,decadal droughts on the MP occurred under both warm and cold conditions,differing from recent compound heatwavedrought events.We found that by examining temperature changes during these drought periods,the distinct influences of external forcings and internal variability can be simply and effectively distinguished.Specifically,colddry events were primarily driven by volcanic eruptions that weakened the East Asian summer monsoon and midlatitude westerlies,reducing moisture transport to the MP.In contrast,warmdry events were predominantly induced by internal variability,notably the negative phase of the Atlantic Multidecadal Oscillation and the expansion of the Barents Sea ice extent.The recent extreme compound event was probably influenced by the combined effects of anthropogenic forcings and internal variability.These findings deepen our understanding of how external forcings and internal variability affect decadal drought events on the MP and highlight that recent compound events are unprecedented in the context of the last millennium.
基金supported by the National Natural Science Foundation of China(42477481,42477483)the Science and Technology Program in Gansu Province(23JRRA599)the Chinese Academy of Sciences(CAS)"Light of West China"Program.
文摘Flash drought is characterized by a period of rapid drought intensification with impacts on agriculture,water resources,ecosystems,and human environment.In the Qilian Mountains,northwestern China,flash droughts are becoming more frequently due to the global climate warming.However,the spatiotemporal variations and their driving factors of flash droughts are not clear in this region.In this study,the European Centre for Medium-range Weather Forecasts(ECMWF)Reanalysis v5-Land(ERA5-Land)dataset was utilized to identify two types of flash drought events(heatwave-induced and water scarcity-induced flash drought events)that occurred in the growing season(April‒September)during 1981-2020 in this area.The results showed that the frequency of heatwave-induced flash droughts has decreased since 2010,while the frequency of water scarcity-induced flash droughts has declined markedly.Spatially,heatwave-induced flash droughts were predominantly concentrated in the western Qilian Mountains,whereas water scarcity-induced flash droughts were primarily concentrated in the central and eastern Qilian Mountains.A significantly increasing temporal trend in both types of flash droughts in the eastern Qilian Mountains was found.Meanwhile,there was a decreasing temporal trend of heatwave-induced flash droughts in the southwestern part of the region.Additionally,the influence of two major atmospheric modes,i.e.,the El Niño‒Southern Oscillation(ENSO)and North Atlantic Oscillation(NAO),on these two types of flash droughts was explored by the Superposed Epoch Analysis.The ENSO mainly influences flash droughts in the central and eastern parts of the Qilian Mountains by altering the strength of the East Asian monsoon,while the NAO mainly affects flash droughts in the entire parts of the Qilian Mountains by inducing anomalous westerlies activity.Our findings have important implications for predicting the evolution of flash drought events in the Qilian Mountains region under continued climate warming.
基金funded by the National Natural Science Foundation of China (42071047)Innovation Fund Project for College Teachers in Gansu Province (2025A-008)+1 种基金Research Capability Enhancement Plan for Young Teachers at Northwest Normal University (NWNU-LKQN2024-19)Basic Research Innovation Group Project of Gansu Province (22JR5RA129)。
文摘Under current climate warming, the growth resilience of plantation forests after extreme droughts has garnered increasing attention. Platycladus orientalis Linn. is an evergreen tree species commonly used for afforestation, and the stability of P. orientalis plantation forests in the Loess Hilly region directly affects the ecological and environmental security of the entire Loess Plateau of China.However, systematic analyses of the growth resilience of P. orientalis plantation forests after extreme droughts along precipitation gradients remain scarce. In this study, we collected tree ring samples of P.orientalis along a precipitation gradient(255, 400, and 517 mm) from 2021 to 2023 and used dendroecological methods to explore the growth resilience of P. orientalis to drought stress on the Loess Plateau. Our findings revealed that the growth resilience of P. orientalis increased with increasing precipitation, enabling the trees to recover to the pre-drought growth levels. In regions with low precipitation(255 mm), the plantation forests were more sensitive to extreme droughts, struggling to recover to previous growth levels, necessitating conditional artificial irrigation. In regions with medium precipitation(400 mm), the growth of P. orientalis was significantly limited by drought stress and exhibited some recovery ability after extreme droughts, therefore warranting management through rainwater harvesting and conservation measures. Conversely, in regions with high precipitation(517 mm), the impacts of extreme droughts on P. orientalis plantation forests were relatively minor. This study underscored the need for targeted strategies tailored to different precipitation conditions rather than a "one-size-fits-all" approach to utilize precipitation resources effectively and maximize the ecological benefits of plantation forests. The findings will help maintain the stability of plantation forests and improve their ecosystem service functions in arid and semi-arid areas.
基金supported by the Rural Revitalization Tea Industry Technical Service Project of Fujian Agriculture and Forestry University(Grant No.11899170145)the“Double firstclass”scientific and technological innovation capacity and enhancement cultivation plan of Fujian Agriculture and Forestry University(Grant No.KSYLP004)+4 种基金6.18 Tea Industry Technology Branch of Collaborative Innovation Institute(Grant No.K1520001A)Fujian Agriculture and Forestry University Construction Project for Technological Innovation and Service System of Tea Industry Chain(Grant No.K1520005A01)Tea Industry Branch of Collaborative Innovation Institute of Fujian Agriculture and Forestry University(Grant No.K1521015A)Science and Technology Innovation Special Fund Project of Fujian Agriculture and Forestry University(Grant No.KFb22020XA)the Special Fund for Science and Technology Innovation of Fujian Zhang Tianfu Tea Development Foundation(Grant No.FJZTF01).
文摘Drought stress is a serious natural challenge for tea plants that significantly affects tea yield and quality.miR171s play critical roles in plant stress responses,however,their role in drought stress tolerance in tea plants(Camellia sinensis)is poorly understood.This study experimentally verified the expression patterns of csn-miR171b-3p_2 and its target,scarecrow-like(SCL).We found that csn-miR171b-3p_2 could target and regulate CsSCL6-4 to play an important role in the defense against drought stress in tea plants.CsSCL6-4 is located in the nucleus and is selfactivated in vivo.In addition,we obtained 819 putative binding regions of CsSCL6-4 using DNA affinity purification sequencing analysis,which were assigned to 786 different genes,four of which were drought-resistant genes(CsPrx,CsSDR,CsFAD7,and CsCER1).Yeast one-hybrid and dual-luciferase reporter assays revealed that CsSCL6-4 directly promoted the expression of these four drought resistance genes by binding motifs 1/2/3 in their promoter regions.Both overexpression and suppression of CsSCL6-4 proved that CsSCL6-4 participated in the defense against drought stress in tea plants by regulating the expression of CsPrx,CsSDR,CsFAD7,and CsCER1.In addition,suppression of csn-miR171b-3p_2 expression significantly increased the expression of CsSCL6-4 and activated CsSCL6-4-bound gene transcription under drought stress.Therefore,the csn-miR171b-3p_2-CsSCL6-4 module participates in tea plant resistance to drought stress by promoting the expression of drought resistance genes.Our results revealed the function of csn-miR171b-3p_2 in tea plants and provided new insights into the mechanism of tea plant resistance to drought stress.
基金supported by the National Natural Science Foundation of China(Grant Nos.32102311 and 32102338)the China Postdoctoral Science Foundation(Grant No.2021M690129).
文摘Drought stress significantly impedes apple growth,development,and yield,leading to substantial economic losses within the global apple industry.Malus prunifolia(Mp),a commonly utilized apple rootstock,has shown promise in augmenting cultivated apple resistance to abiotic stress.Although Alfin-like(ALs)proteins have demonstrated pivotal roles in dicotyledonous plants'response to abiotic stresses,knowledge about AL genes in apple rootstocks is limited,and their functions remain largely elusive.In this study,we identified and characterized 10 MpAL gene members in the apple rootstock genome,confirming their localization within the nucleus.Our investigation revealed the significant regulation of MpALs'expression under drought and abscisic acid(ABA)stresses in M.prunifolia.In this study,one of the members,MpAL1,was selected for further exploration in Arabidopsis and apple to explore its potential function in response to drought and ABA stresses.The results showed that overexpression-MpAL1 transgenic apple calli grew significantly better than WT and MpAL1-RNAi lines,which regulates the accumulation of H_(2)O_(2)and O_(2).-levels.Additionally,transgenic Arabidopsis plants overexpressing MpAL1 exhibited positively regulating antioxidant enzymes activities under stress treatments.Further study showed that silencing MpAL1 in apple plants showed obvious chlorosis in leaves,and accumulation of reactive oxygen species under drought stress.Moreover,our detailed analysis established that MpAL1 regulates several drought and ABA-responsive genes,exerting an influence on their expression in transgenic apple.Collectively,our findings identify MpAL1 as a positive regulator that increases drought stress in apple,shedding light on its potential significance in bolstering drought resistance in this fruit crop.
基金supported by the National Key Research and Development Project of China(2025YFE0103300)the National Natural Science Foundation of China(W2412135)+2 种基金the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2024D01A143,2025D01B165)the China Postdoctoral Science Foundation(GZC20250226)the S&T Innovation and Development Project of Information Institution of Ministry of Emergency Management,China(2024506).
文摘Tajikistan,a mountainous country and a vital water tower for Central Asia,is becoming increasingly vulnerable to snow drought under climate change,threatening its snow-and glacier-fed streamflow.Yet,the impacts of snow drought on the regional hydrology remain insufficiently understood.In this study,we integrated multisource data,including the Fifth Generation European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis for Land Applications(ERA5-Land)data and hydrological station data,to systematically assess the snow drought patterns and their impacts on streamflow during 1950–2023.We identified snow drought events based on precipitation and snow fraction anomalies relative to climatological means and classified them into warm snow drought,dry snow drought,and warm&dry snow drought.The results revealed that snow drought was a recurrent phenomenon,occurring in 51.70%of the years during the study period,with warm&dry snow drought accounting for 21.90%of the total events.Both the frequency and severity exhibited pronounced spatial variability,largely governed by the elevation and snowfall fraction.Specifically,the frequency of warm snow drought was negatively correlated with the snowfall fraction,decreasing on average by 0.20 per unit increase in snowfall fraction,whereas the frequency of dry snow drought was positively correlated,increasing by 0.07 per unit increase.The streamflow analysis results demonstrated that snow drought typically reduced the warm-season discharge by 5.00%–18.00%in certain rivers,thereby exacerbating the water stress during the dry season.The results of this study advance our understanding by explicitly linking the types of snow drought to hydrological responses in Central Asia’s high mountains,providing a scientific basis for climate adaptation and sustainable water resource management in Tajikistan.
文摘As part of my master’s programme in resource use and environmental science at China Agricultural University,I had the privilege of joining a study trip to the Shiyang River Basin and its surrounding areas from 17 to 21 July 2025.This trip to Gansu Province was organised under the China-Africa Joint Centre for Agricultural Demonstration and Training in Arid Regions programme,an initiative aligned with President Xi Jinping’s call for deeper China-Africa cooperation.
基金supported by the National 973 Program(Grant No.2008CB425704)the National Natural Science Foundation of China(Grant No.40975049)
文摘According to the "jacking-up" theory, which relates the cause of earthquakes to outer core convection ascension bodies, the crust will gradually recover after an earthquake. In such cases, the crust is stretched, the underground temperature is reduced, precipitation decreases, and drought occurs. In this paper, precipitation is compared with ground temperature and seismic data to determine the spatial and temporal relationship between earthquakes and subsequent droughts. Our objective is to develop a new method of drought prediction. With a few exceptions in location, the analysis of the first drought to occur after the Ms 〉 7 earthquakes in China's Mainland and the adjacent areas since 1950 shows that droughts tended to occur in regions near earthquake epicenters and in the eastern regions of the epicenters at the same latitude within six months after the earthquakes. In addition, and the differences between the starting time of the earthquakes and the droughts nearly share the same probability of 0 to 6 months. After careful analysis of 34 Ms 〉 6.5 earthquakes occurring in western China from 1980 to 2011, we determined that a second drought tends to occur approximately six months following the first drought, indicating a quasi-half-year period. Moreover, the duration of the quasi-half-year fluctuation increases with the magnitude of earthquake, at approximately 2.5 years for Ms 6.5 earthquake and approximately 5 years for Ms 8 earthquake.
基金supported by the National Natural Science Foundation of China(Grant No.41171220)the Program for Changjiang Scholars and Innovative Research Team in University of the Ministry of Education of China(Grant No.IRT13062)+2 种基金the Programme of Introducing Talents of Discipline to Universities(the 111 Project,Grant No.B08048)the Jiangsu Provincial Collaborative Innovation Center for World Water Valley and Water Ecological Civilizationthe National Cooperative Innovation Center for Water Safety and Hydro-Science
文摘Based on the monthly precipitation and air temperature from 1960 to 1989 in the Luanhe River Basin, the standardized precipitation evapotranspiration index (SPEI) and standardized precipitation index (SPI) at three- and six-month time scales and the self-calibrating Palmer drought severity index (sc-PDSI) were calculated to evaluate droughts in the study area. Temporal variations of the drought severity from 1960 to 1989 were analyzed and compared based on the results of different drought indices, and some typical drought events were identified. Spatial distributions of the drought severity according to the indices were also plotted and investigated. The results reveal the following: the performances of different drought indices are closely associated with the drought duration and the dominant factors of droughts; the SPEI is more accurate than the SPI when both evaporation and precipitation play important roles in drought events; the drought severity shown by the sc-PDSI is generally milder than the actual drought severity from 1960 to 1989; and the evolution of the droughts is usually delayed according to the scPDSI. This study provides valuable references for building drought early warning and mitigation systems in the Luanhe River Basin.
基金funded by the Ministry of Science and Technology of China (Grant No. 2011BAK12B02)the National Natural Science Foundation of China (Grant No. 41190084)+2 种基金the National Key Technology R&D Program (Grant No 2012 BAK10B04)the Non-Profit Industry Financial Program of MWR (Grant No. 201301058)the Changjiang River Scientific Research Institute of Sciences Innovation Team Project (Grant No. CKSF2012052/TB)
文摘This paper describes a study on the combined impacts of antecedent earthquakes and droughts on disastrous debris flows.This is a novel attempt in quantifying such impacts using the effective peak acceleration(EPA)(to represent earthquakes) and standardized precipitation index(SPI)(to represent droughts).The study is based on the analysis of 116 disastrous debris flow events occurred in China's Mainland in the last 100 years covering a wide spectrum of climate types and landforms.It has been found that the combined impacts from earthquakes and droughts on disastrous debris flows do exist and vary from low to very high according to different climate conditions and terrains.The impacts from earthquakes increase with the increased terrain relief,and the impacts from droughts are strongest in semi-humid climate condition(with reduced impacts in humid and semi-arid /arid climate conditions).Hypothetical explanations on the study discoveries have been proposed.This study reveals the possible reasons for the disastrous debris flow distributions around the world and has significant implications in paleo-climate-seismicanalysis and disastrous debris flow risk management.
文摘The most important climatological feature of the South Asian region is the occurrence of monsoons. With increasing concerns about climate change, the need to understand the nature and variability of such climatic conditions and to evaluate possible future changes becomes increasingly important. This paper deals with long-term above and below normal monsoon precipitation causing prolong meteorological droughts and floods in India. Five regions across India comprising variable climates were selected for the study. Apart from long-term trends for individual regions, long-term trends were also calculated for the Indian region as a whole. The results show that intra-region variability for monsoon precipitation is large and there are increasing numbers of meteorological summer droughts. Meteorological monsoon floods were found to have negative long-term trends everywhere except in the peninsular Indian region. The results overall suggest generic conclusions concerning the region-wide long-term trend of severity of monsoon droughts and floods in India and their spatial variability.
基金supported by the National Key Technologies R&D Program of China (2011BAD32B01)the Ph D Programs Foundation of Ministry of Education of China (20100101110035)
文摘The normalized difference vegetation index (NDVI) has proven to be typically employed to assess terrestrial vegetation conditions. However, one limitation of NDVI for drought monitoring is the apparent time lag between rainfall deficit and NDVI response. To better understand this relationship, time series NDVI (2000-2010) during the growing season in Sichuan Province and Chongqing City were analyzed. The vegetation condition index (VCI) was used to construct a new drought index, time-integrated vegetation condition index (TIVCI), and was then compared with meteorological drought indices-standardized precipitation index (SPI), a multiple-time scale meteorological-drought index based on precipitation, to examine the sensitivity on droughts. Our research findings indicate the followings: (1) farmland NDVI sensitivity to precipitation in study area has a time lag of 16-24 d, and it maximally responds to the temperature with a lag of about 16 d. (2) We applied the approach to Sichuan Province and Chongqing City for extreme drought monitoring in 2006 and 2003, and the results show that the monitoring results from TIVCI are closer to the published China agricultural statistical data than VCI. Compared to VCI, the best results from TIVCI3 were found with the relative errors of -4.5 and 6.36% in 2006 for drought affected area and drought disaster area respectively, and 5.11 and -5.95% in 2003. (3) Compared to VCI, TIVCI has better correlation with the SPI, which indicates the lag and cumulative effects of precipitation on vegetation. Our finding proved that TIVCI is an effective indicator of drought detection when the time lag effects between NDVI and climate factors are taken into consideration.
基金Under the auspices of National Natural Science Foundation(No.50879028)Open Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering of Nanjing Hydraulic Research institute(No.2009491311)+1 种基金Open Research Fund Program of State key Laboratory of Hydroscience and Engineering,Tsinghua University(No.sklhse-2010-A-02)Application Foundation Items of Science and Technology Department of Jilin Province(No.2011-05013)
文摘The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricted by atmospheric circulation, and basin-wide law is restricted by underlying surface. The commensurability method was used to identify the almost period law, the wave method was applied to deducing the random law, and the precursor method was applied in order to forecast runoff magnitude for the current year. These three methods can be used to assess each other and to forecast runoff. The system can also be applied to forecasting wet years, normal years and dry years for a particular year as well as forecasting years when floods with similar characteristics of previous floods, can be expected. Based on hydrological climate data of Baishan (1933-2009) and Nierji (1886-2009) in the Songhua River Basin, the forecasting results for 2010 show that it was a wet year in the Baishan Reservoir, similar to the year of 1995; it was a secondary dry year in the Nierji Reservoir, similar to the year of 1980. The actual water inflow into the Baishan Reservoir was 1.178 × 10 10 m 3 in 2010, which was markedly higher than average inflows, ranking as the second highest in history since records began. The actual water inflow at the Nierji station in 2010 was 9.96 × 10 9 m 3 , which was lower than the average over a period of many years. These results indicate a preliminary conclusion that the methods proposed in this paper have been proved to be reasonable and reliable, which will encourage the application of the chief reporter release system for each basin. This system was also used to forecast inflows for 2011, indicating a secondary wet year for the Baishan Reservoir in 2011, similar to that experienced in 1991. A secondary wet year was also forecast for the Nierji station in 2011, similar to that experienced during 1983. According to the nature of influencing factors, mechanisms and forecasting methods and the service objects, mid-to long-term hydrological forecasting can be divided into two classes:mid-to long-term runoff forecasting, and severe floods and droughts forecasting. The former can be applied to quantitative forecasting of runoff, which has important applications for water release schedules. The latter, i.e., qualitative disaster forecasting, is important for flood control and drought relief. Practical methods for forecasting severe droughts and floods are discussed in this paper.
基金National Foundation for Outstanding Young Scientists (40825008)National Natural Science Foundation of China (40975020)Models and Technical Composites for Comprehensive Improvement of Ecological and Environmental Conditions in the Basin of Qinghai Lake (2007BAC30B05-4)
文摘With the precipitation data of 113 stations in East China during the last 50 years,the characteristics of the precipitation,including Precipitation Concentration Degree (PCD) and Precipitation Concentration Period (PCP) and their tendencies,are analyzed.The results show that the PCD in the northern part of the region is markedly higher than that in the southern part,but the PCP in the south is much earlier than that in the north by about one and a half months,which displays significant regional differences in precipitation.With the global warming,precipitation over East China shows an increasing tendency,but PCD displays a trend that is neither increasing nor decreasing.At the same time,the PCP is later than before,which can be mainly found in Jiangxi and southern Henan provinces.As a result,there are strong associations between the precipitation,PCD and PCP,which can be shown in the years with more precipitation,stronger PCD and later-than-usual PCP.In a word,the abnormal distribution of precipitation,PCP,and PCD over East China results in more extreme events of precipitation and more droughts and floods.
基金supported by the National Natural Science Foundation of China(Nos.32220103010,32192431,31722013)the National Key R&D Program of China(Nos.2023YFF1304201,2020YFA0608100)+1 种基金the Major Program of Institute of Applied EcologyChinese Academy of Sciences(No.IAEMP202201)。
文摘Extreme droughts are anticipated to have detrimental impacts on forest ecosystems,especially in water-limited regions,due to the influence of climate change.However,considerable uncertainty remains regarding the patterns in species-specific responses to extreme droughts.Here,we conducted a study integrating dendrochronology and remote sensing methods to investigate the mosaic-distributed maple-oak(native)natural forests and poplar plantations(introduced)in the Horqin Sandy Land,Northeast China.We assessed the impacts of extreme droughts on tree performances by measuring interannual variations in radial growth and vegetation index.The results showed that precipitation and self-calibrated palmer drought severity index(scPDSI)are the major factors influencing tree-ring width index(RWI)and normalized difference vegetation index(NDVI).The severe droughts between 2000 and 2004 resulted in reduced RWI in the three studied tree species as well as led to NDVI reductions in both the maple-oak natural forests and the poplar plantations.The RWI reached the nadir during the2000-2004 severe droughts and remained at low levels two years after the severe drought,creating a legacy effect.In contrast to the lack of significant correlation between RWI and scPDSI,NDVI exhibited a significant positive correlation with scPDSI indicating the greater sensitivity of canopy performance to droughts than radial growth.Furthermore,interspecific differences in RWI and NDVI responses were observed,with the fast-growing poplar species experiencing a more significant RWI decrease and more negative NDVI anomaly during severe droughts than native species,highlighting the species-specific trade-offs between drought resilience and growth rate.This study emphasizes the importance of combining tree-level radial growth with landscape-scale canopy remote sensing to understand forest resilience and response.Our study improves our understanding of forest responses to extreme drought and highlights species differences in climate responses,offering crucial insights for optimizing species selection in sustainable afforestation and forest management in water-limited regions under the influence of climate change.
基金supported by Ministry of Science and Technology of China (Grant No. 2018YFA0606501)National Natural Science Foundation of China (Grant No. 42075037)+1 种基金Key Laboratory Open Research Program of Xinjiang Science and Technology Department (Grant No. 2022D04009)the National Key Scientific and Technological Infrastructure project “Earth System Numerical Simulation Facility” (EarthLab)。
文摘Both the attribution of historical change and future projections of droughts rely heavily on climate modeling. However,reasonable drought simulations have remained a challenge, and the related performances of the current state-of-the-art Coupled Model Intercomparison Project phase 6(CMIP6) models remain unknown. Here, both the strengths and weaknesses of CMIP6 models in simulating droughts and corresponding hydrothermal conditions in drylands are assessed.While the general patterns of simulated meteorological elements in drylands resemble the observations, the annual precipitation is overestimated by ~33%(with a model spread of 2.3%–77.2%), along with an underestimation of potential evapotranspiration(PET) by ~32%(17.5%–47.2%). The water deficit condition, measured by the difference between precipitation and PET, is 50%(29.1%–71.7%) weaker than observations. The CMIP6 models show weaknesses in capturing the climate mean drought characteristics in drylands, particularly with the occurrence and duration largely underestimated in the hyperarid Afro-Asian areas. Nonetheless, the drought-associated meteorological anomalies, including reduced precipitation, warmer temperatures, higher evaporative demand, and increased water deficit conditions, are reasonably reproduced. The simulated magnitude of precipitation(water deficit) associated with dryland droughts is overestimated by 28%(24%) compared to observations. The observed increasing trends in drought fractional area,occurrence, and corresponding meteorological anomalies during 1980–2014 are reasonably reproduced. Still, the increase in drought characteristics, associated precipitation and water deficit are obviously underestimated after the late 1990s,especially for mild and moderate droughts, indicative of a weaker response of dryland drought changes to global warming in CMIP6 models. Our results suggest that it is imperative to employ bias correction approaches in drought-related studies over drylands by using CMIP6 outputs.
基金the financial support received from the U.S. Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA), USA (Grant No.2017-67003-26057) via an interagency partnership between USDA-NIFAthe National Science Foundation (NSF) on the research program Innovations at the Nexus of Food, Energy and Water Systemsfunded by the Ministry of Education, Government of India through the Scheme for Promotion of Academic and Research Collaboration (SPARC) project grant (SPARC/2018-2019/P1080/SL)。
文摘Climate change is expected to have long-term impacts on drought and wildfire risks in Oregon as summers continue to become warmer and drier. This paper investigates the projected changes in drought characteristics and drought propagation in the Umatilla River Basin in northeastern Oregon for mid-century(2030–2059) and late-century(2070–2099) climate scenarios. Drought characteristics for projected climates were determined using downscaled CMIP5 climate datasets from ten climate models and Soil and Water Assessment Tool to simulate effects on hydrologic processes. Short-term(three months) drought characteristics(frequency, duration, and severity) were analyzed using four drought indices, including the Standardized Precipitation Index(SPI-3), Standardized Precipitation-Evapotranspiration Index(SPEI-3), Standardized Streamflow Index(SSI-3), and the Standardized Soil Moisture Index(SSMI-3). Results indicate that short-term meteorological droughts are projected to become more prevalent, with up to a 20% increase in the frequency of SPI-3drought events. Short-term hydrological droughts are projected to become more frequent(average increase of 11% in frequency of SSI-3 drought events), more severe, and longer in duration(average increase of 8% for short-term droughts).Similarly, short-term agricultural droughts are projected to become more frequent(average increase of 28% in frequency of SSMI-3 drought events) but slightly shorter in duration(average decrease of 4%) in the future. Historically, drought propagation time from meteorological to hydrological drought is shorter than from meteorological to agricultural drought in most sub-basins. For the projected climate scenarios, the decrease in drought propagation time will likely stress the timing and capacity of water supply in the basin for irrigation and other uses.
基金supported by project GYHY201106050the National"973"Program of China under Grant No.2011CB403404,and Project No.2009Y002
文摘To comprehensively investigate characteristics of summer droughts and floods in the Yangtze River valley, a meteorological and hydrological coupling index (MHCI) was developed using meteorological and hydro- logical data. The results indicate that: (1) in representing drought/flood information for the Yangtze River valley, the MHCI can reflect composite features of precipitation and hydrological observations; (2) compre- hensive analysis of the interannual phase difference of the precipitation and hydrological indices is important to recognize and predict annual drought/flood events along the valley; the hydrological index contributes more strongly to nonlinear and continuity features that indicate transition from long-term drought to flood conditions; (3) time series of the MHCI from 1960-2009 are very effective and sensitive in reflecting annual drought/flood characteristics, i.e. there is more rainfall or typical flooding in the valley when the MHCI is positive, and vice versa; and (4) verification of the MHCI indicates that there is significant correlation between precipitation and hydrologic responses in the valley during summer; the correlation coefficient was found to reach 0.82, exceeding the 0.001 significance level.