Automatic and robust matching of multi-modal images can be challenging owing to the nonlinear intensity differences caused by radiometric variations among these images.To address this problem,a novel dense feature des...Automatic and robust matching of multi-modal images can be challenging owing to the nonlinear intensity differences caused by radiometric variations among these images.To address this problem,a novel dense feature descriptor and improved similarity measure are proposed for enhancing the matching performance.The proposed descriptor is built on a voting scheme of structure tensor that can effectively capture the geometric structural properties of images.It is not only illumination and contrast invariant but also robust against the degradation caused by significant noise.Further,the similarity measure is improved to adapt to the reversal of orientation caused by the intensity inversion between multi-modal images.The proposed dense feature descriptor and improved similarity measure enable the development of a robust and practical templatematching algorithm for multi-modal images.We verify the proposed algorithm with a broad range of multi-modal images including optical,infrared,Synthetic Aperture Radar(SAR),digital surface model,and map data.The experimental results confirm its superiority to the state-of-the-art methods.展开更多
Automatic Digital Orthophoto Map(DOM)generation plays an important role in many downstream works such as land use and cover detection,urban planning,and disaster assessment.Existing DOM generation methods can generate...Automatic Digital Orthophoto Map(DOM)generation plays an important role in many downstream works such as land use and cover detection,urban planning,and disaster assessment.Existing DOM generation methods can generate promising results but always need ground object filtered DEM generation before otho-rectification;this can consume much time and produce building facade contained results.To address this problem,a pixel-by-pixel digital differential rectification-based automatic DOM generation method is proposed in this paper.Firstly,3D point clouds with texture are generated by dense image matching based on an optical flow field for a stereo pair of images,respectively.Then,the grayscale of the digital differential rectification image is extracted directly from the point clouds element by element according to the nearest neighbor method for matched points.Subsequently,the elevation is repaired grid-by-grid using the multi-layer Locally Refined B-spline(LR-B)interpolation method with triangular mesh constraint for the point clouds void area,and the grayscale is obtained by the indirect scheme of digital differential rectification to generate the pixel-by-pixel digital differentially rectified image of a single image slice.Finally,a seamline network is automatically searched using a disparity map optimization algorithm,and DOM is smartly mosaicked.The qualitative and quantitative experimental results on three datasets were produced and evaluated,which confirmed the feasibility of the proposed method,and the DOM accuracy can reach 1 Ground Sample Distance(GSD)level.The comparison experiment with the state-of-the-art commercial softwares showed that the proposed method generated DOM has a better visual effect on building boundaries and roof completeness with comparable accuracy and computational efficiency.展开更多
The automatic feature extracting and matching for large amount of linear pushbroom imagery with higher and higher resolution is urgent and challenging in three dimensional reconstructions, remote sensing and mapping. ...The automatic feature extracting and matching for large amount of linear pushbroom imagery with higher and higher resolution is urgent and challenging in three dimensional reconstructions, remote sensing and mapping. Affine & scale-invariant heterogeneous pyramid feature is proposed in this paper, along with the new scale-invariant analysis method, the detecting of the key points, the affine & scale-invariant descriptor, the steering method of the matching, and the quasi-dense matching algorithm based on the extensive epipolar geometry. The automatic matching is devised for the linear pushbroom imagery. The whole process is executed on lunar images of the highest resolution of ~7 m/pixel(or ~1 m/pixel in the lower orbits) from the Chinese Chang'e 2 satellite, it runs robustly at present, and resulting in large amounts of well-distributed-correspondences with accuracy of 0.3 pixels and excellent reliability, which gives great support for the further exploration both on the Moon and the Earth.展开更多
High-resolution sub-meter satellite data play an increasingly crucial role in the 3D real-scene China construction initiative.Current research on 3D reconstruction using high-resolution satellite data primarily focuse...High-resolution sub-meter satellite data play an increasingly crucial role in the 3D real-scene China construction initiative.Current research on 3D reconstruction using high-resolution satellite data primarily focuses on two approaches:Multi-stereo fusion and multi-view matching.While algorithms based on these two methodologies for multi-view image 3D reconstruction have reached relative maturity,no systematic comparison has been conducted specifically on satellite data to evaluate the relative merits of multi-stereo fusion versus multi-view matching methods.This paper conducts a comparative analysis of the practical accuracy of both approaches using high-resolution satellite datasets from diverse geographical regions.To ensure fairness in accuracy comparison,both methodologies employ non-local dense matching for cost optimization.Results demonstrate that the multi-stereo fusion method outperforms multi-view matching in all evaluation metrics,exhibiting approximately 1.2%higher average matching accuracy and 10.7%superior elevation precision in the experimental datasets.Therefore,for 3D modeling applications using satellite data,we recommend adopting the multi-stereo fusion approach for digital surface model(DSM)product generation.展开更多
基金supported by the National Natural Science Foundations of China(No.61802423)the Natural Science Foundation of Hunan Province,China(No.2019JJ50739)。
文摘Automatic and robust matching of multi-modal images can be challenging owing to the nonlinear intensity differences caused by radiometric variations among these images.To address this problem,a novel dense feature descriptor and improved similarity measure are proposed for enhancing the matching performance.The proposed descriptor is built on a voting scheme of structure tensor that can effectively capture the geometric structural properties of images.It is not only illumination and contrast invariant but also robust against the degradation caused by significant noise.Further,the similarity measure is improved to adapt to the reversal of orientation caused by the intensity inversion between multi-modal images.The proposed dense feature descriptor and improved similarity measure enable the development of a robust and practical templatematching algorithm for multi-modal images.We verify the proposed algorithm with a broad range of multi-modal images including optical,infrared,Synthetic Aperture Radar(SAR),digital surface model,and map data.The experimental results confirm its superiority to the state-of-the-art methods.
基金supported by the National Natural Science Foundation of China[Grant No.41771479]the National High-Resolution Earth Observation System(the Civil Part)[Grant No.50-H31D01-0508-13/15]the Japan Society for the Promotion of Science[Grant No.22H03573].
文摘Automatic Digital Orthophoto Map(DOM)generation plays an important role in many downstream works such as land use and cover detection,urban planning,and disaster assessment.Existing DOM generation methods can generate promising results but always need ground object filtered DEM generation before otho-rectification;this can consume much time and produce building facade contained results.To address this problem,a pixel-by-pixel digital differential rectification-based automatic DOM generation method is proposed in this paper.Firstly,3D point clouds with texture are generated by dense image matching based on an optical flow field for a stereo pair of images,respectively.Then,the grayscale of the digital differential rectification image is extracted directly from the point clouds element by element according to the nearest neighbor method for matched points.Subsequently,the elevation is repaired grid-by-grid using the multi-layer Locally Refined B-spline(LR-B)interpolation method with triangular mesh constraint for the point clouds void area,and the grayscale is obtained by the indirect scheme of digital differential rectification to generate the pixel-by-pixel digital differentially rectified image of a single image slice.Finally,a seamline network is automatically searched using a disparity map optimization algorithm,and DOM is smartly mosaicked.The qualitative and quantitative experimental results on three datasets were produced and evaluated,which confirmed the feasibility of the proposed method,and the DOM accuracy can reach 1 Ground Sample Distance(GSD)level.The comparison experiment with the state-of-the-art commercial softwares showed that the proposed method generated DOM has a better visual effect on building boundaries and roof completeness with comparable accuracy and computational efficiency.
基金supported by the National Defense Science and Technology Product of China (No. 20060826)
文摘The automatic feature extracting and matching for large amount of linear pushbroom imagery with higher and higher resolution is urgent and challenging in three dimensional reconstructions, remote sensing and mapping. Affine & scale-invariant heterogeneous pyramid feature is proposed in this paper, along with the new scale-invariant analysis method, the detecting of the key points, the affine & scale-invariant descriptor, the steering method of the matching, and the quasi-dense matching algorithm based on the extensive epipolar geometry. The automatic matching is devised for the linear pushbroom imagery. The whole process is executed on lunar images of the highest resolution of ~7 m/pixel(or ~1 m/pixel in the lower orbits) from the Chinese Chang'e 2 satellite, it runs robustly at present, and resulting in large amounts of well-distributed-correspondences with accuracy of 0.3 pixels and excellent reliability, which gives great support for the further exploration both on the Moon and the Earth.
文摘High-resolution sub-meter satellite data play an increasingly crucial role in the 3D real-scene China construction initiative.Current research on 3D reconstruction using high-resolution satellite data primarily focuses on two approaches:Multi-stereo fusion and multi-view matching.While algorithms based on these two methodologies for multi-view image 3D reconstruction have reached relative maturity,no systematic comparison has been conducted specifically on satellite data to evaluate the relative merits of multi-stereo fusion versus multi-view matching methods.This paper conducts a comparative analysis of the practical accuracy of both approaches using high-resolution satellite datasets from diverse geographical regions.To ensure fairness in accuracy comparison,both methodologies employ non-local dense matching for cost optimization.Results demonstrate that the multi-stereo fusion method outperforms multi-view matching in all evaluation metrics,exhibiting approximately 1.2%higher average matching accuracy and 10.7%superior elevation precision in the experimental datasets.Therefore,for 3D modeling applications using satellite data,we recommend adopting the multi-stereo fusion approach for digital surface model(DSM)product generation.