期刊文献+
共找到5,570篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-target neural circuit reconstruction and enhancement in spinal cord injury 被引量:1
1
作者 Lingyun Cao Siyun Chen +2 位作者 Shuping Wang Ya Zheng Dongsheng Xu 《Neural Regeneration Research》 2026年第3期957-971,共15页
After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the tim... After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the timing of interventions,combined with the limitations of current methods.To address these challenges,various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.Notably,neuromodulation has garnered considerable attention for its potential to enhance nerve regeneration,provide neuroprotection,restore neurons,and regulate the neural reorganization of circuits within the cerebral cortex and corticospinal tract.To improve the effectiveness of these interventions,the implementation of multitarget early interventional neuromodulation strategies,such as electrical and magnetic stimulation,is recommended to enhance functional recovery across different phases of nerve injury.This review concisely outlines the challenges encountered following spinal cord injury,synthesizes existing neurostimulation techniques while emphasizing neuroprotection,repair,and regeneration of impaired connections,and advocates for multi-targeted,task-oriented,and timely interventions. 展开更多
关键词 multi-targets nerve root magnetic stimulation neural circuit NEUROMODULATION peripheral nerve stimulation RECONSTRUCTION spinal cord injury task-oriented training TIMING transcranial magnetic stimulation
暂未订购
Current development and future prospects of multi-target assignment problem:A bibliometric analysis review
2
作者 Shuangxi Liu Zehuai Lin +1 位作者 Wei Huang Binbin Yan 《Defence Technology(防务技术)》 2025年第1期44-59,共16页
The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively stu... The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively studied across various domains such as land,sea,air,space,and electronics,the MTA problem has led to the emergence of numerous models and algorithms.To delve deeper into this field,this paper starts by conducting a bibliometric analysis on 463 Scopus database papers using CiteSpace software.The analysis includes examining keyword clustering,co-occurrence,and burst,with visual representations of the results.Following this,the paper provides an overview of current classification and modeling techniques for addressing the MTA problem,distinguishing between static multi-target assignment(SMTA)and dynamic multi-target assignment(DMTA).Subsequently,existing solution algorithms for the MTA problem are reviewed,generally falling into three categories:exact algorithms,heuristic algorithms,and machine learning algorithms.Finally,a development framework is proposed based on the"HIGH"model(high-speed,integrated,great,harmonious)to guide future research and intelligent weapon system development concerning the MTA problem.This framework emphasizes application scenarios,modeling mechanisms,solution algorithms,and system efficiency to offer a roadmap for future exploration in this area. 展开更多
关键词 multi-target assignment Offensive and defensive confrontation Cooperative operation Modeling mechanism Solution algorithm CiteSpace analysis
在线阅读 下载PDF
A fast-aware multi-target response prediction approach and its application in aeronautical engineering
3
作者 Minzhao ZHANG Junliang DING Bin LI 《Chinese Journal of Aeronautics》 2025年第5期443-457,共15页
Response prediction is a fundamental yet challenging task in aeronautical engineering,requiring an accurate selection of sensor positions correlated with the target responses to achieve precise predictions. Unfortunat... Response prediction is a fundamental yet challenging task in aeronautical engineering,requiring an accurate selection of sensor positions correlated with the target responses to achieve precise predictions. Unfortunately, in large-scale structures, the rigorous selection of reliable sensor candidates for multi-target responses remains largely unexplored. In this paper, we propose a flexible and generalized framework for selecting the most relevant sensors to the multi-target response and predicting the target response, referred to as the Fast-aware Multi-Target Response Prediction(FMTRP) approach in the spirit of divide-and-conquer. Specifically, first, a multi-task learning module is designed to predict multi-point response tasks at the same time. Simultaneously, we meticulously devise adaptive mechanisms to facilitate loss-term reweighting and encourage prioritization of challenging tasks in multiple prediction tasks. Second, to ensure ease of interpretation,we introduce a hybrid penalty to select sensors at the group-sparsity, individual-sparsity and element-sparsity levels. Finally, due to the substantial number of candidate sensors posing a significant computational burden, we develop a more efficient search strategy and support computation to make the proposed approach applicable in practice, leading to substantial runtime improvements. Extensive experiments on aircraft standard model response datasets and large airliner test flight datasets validate the effectiveness of the proposed approach in identifying sensor locations and simultaneously predicting responses at multiple points. Compared to state-of-the-art methods,the proposed approach achieves an accuracy of over 99% in sinusoidal excitation and exhibits the shortest runtime(3.514 s). 展开更多
关键词 multi-target response prediction Sensor placement Feature selection Dynamic task prioritization Fast implementation
原文传递
Low-complexity multi-target localization via multi-BS sensing
4
作者 Yinxiao Zhuo Zhaocheng Wang 《Digital Communications and Networks》 2025年第4期1140-1148,共9页
Integrated Sensing and Communication(ISAC)is envisioned as a promising technology for Sixth-Generation(6G)wireless communications,which enables simultaneous high-rate communication and high-precision target localizati... Integrated Sensing and Communication(ISAC)is envisioned as a promising technology for Sixth-Generation(6G)wireless communications,which enables simultaneous high-rate communication and high-precision target localization.Compared to independent sensing and communication modules,dual-function ISAC could leverage the strengths of both communication and sensing in order to achieve cooperative gains.When considering the communication core network,ISAC system facilitates multiple communication devices to collaborate for networked sensing.This paper investigates such kind of cooperative ISAC systems with distributed transmitters and receivers to support non-connected and multi-target localization.Specifically,we introduce a Time of Arrival(TOA)based multi-target localization scheme,which leverages the bi-static range measurements between the transmitter,target,and receiver channels in order to achieve elliptical localization.To obtain the low-complexity localization,a two-stage search-refine localization methodology is proposed.In the first stage,we propose a Successive Greedy Grid-Search(SGGS)algorithm and a Successive-Cancellation-List Grid-Search(SCLGS)algorithm to address the Measurement-to-Target Association(MTA)problem with relatively low computational complexity.In the second stage,a linear approximation refinement algorithm is derived to facilitate high-precision localization.Simulation results are presented to validate the effectiveness and superiority of our proposed multi-target localization method. 展开更多
关键词 Integrated sensing and communication multi-target localization Measurement-to-target association problem Bi-static range measurement Low complexity
在线阅读 下载PDF
Research on Rotating Machinery Fault Diagnosis Based on Improved Multi-target Domain Adversarial Network 被引量:1
5
作者 Haitao Wang Xiang Liu 《Instrumentation》 2024年第1期38-50,共13页
Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery... Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery based on single source and multi-target domain adversarial network model(WDMACN)and Gram Angle Product field(GAPF)was proposed.Firstly,the original one-dimensional vibration signal is preprocessed using GAPF to generate the image data including all time series.Secondly,the residual network is used to extract data features,and the features of the target domain without labels are pseudo-labeled,and the transferable features among the feature extractors are shared through the depth parameter,and the feature extractors of the multi-target domain are updated anatomically to generate the features that the discriminator cannot distinguish.The modelt through adversarial domain adaptation,thus achieving fault classification.Finally,a large number of validations were carried out on the bearing data set of Case Western Reserve University(CWRU)and the gear data.The results show that the proposed method can greatly improve the diagnostic efficiency of the model,and has good noise resistance and generalization. 展开更多
关键词 multi-target domain domain-adversarial neural networks transfer learning rotating machinery fault diagnosis
原文传递
Performance evaluation for multi-target tracking with temporal dimension specifics
6
作者 Zhenzhen SU Hongbing JI +1 位作者 Cong TIAN Yongquan ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期446-458,共13页
With the great development of Multi-Target Tracking(MTT)technologies,many MTT algorithms have been proposed with their own advantages and disadvantages.Due to the fact that requirements to MTT algorithms vary from the... With the great development of Multi-Target Tracking(MTT)technologies,many MTT algorithms have been proposed with their own advantages and disadvantages.Due to the fact that requirements to MTT algorithms vary from the application scenarios,performance evaluation is significant to select an appropriate MTT algorithm for the specific application scenario.In this paper,we propose a performance evaluation method on the sets of trajectories with temporal dimension specifics to compare the estimated trajectories with the true trajectories.The proposed method evaluates the estimate results of an MTT algorithm in terms of tracking accuracy,continuity and clarity.Furthermore,its computation is based on a multi-dimensional assignment problem,which is formulated as a computable form using linear programming.To enhance the influence of recent estimated states of the trajectories in the evaluation,an attention function is used to reweight the trajectory errors at different time steps.Finally,simulation results show that the proposed performance evaluation method is able to evaluate many aspects of the MTT algorithms.These evaluations are worthy for selecting suitable MTT algorithms in different application scenarios. 展开更多
关键词 multi-target tracking Temporal dimension specifics Performance evaluation Random finite sets Linear programming
原文传递
Investigation multi-target synergistic mechanism of Choerospondias axillaris in the treat of cerebral ischemia based on systems pharmacology and experimental verification
7
作者 Yang Ma Min-Chun Chen +2 位作者 Zuo-Yan Zhang Kang-Kang Yan Yi Ding 《Natural Therapy Advances》 CAS 2024年第3期37-47,共11页
Background:Choerospondias axillaris(CA)is a traditional Mongolian medicine that has been proven to have a good therapeutic effect on cerebrovascular disease.Cerebral Ischemia(CI)is a severe and life-threatening cerebr... Background:Choerospondias axillaris(CA)is a traditional Mongolian medicine that has been proven to have a good therapeutic effect on cerebrovascular disease.Cerebral Ischemia(CI)is a severe and life-threatening cerebrovascular disease.However,the specific mechanism of action of CA in the treatment of CI is still unclear.Methods:In this study,the related targets and pathways of CA in the treatment of CI were first predicted by system pharmacology and then verified by relevant experiments.Results:The results showed that 12 active ingredients and 208 targets were selected.Further validation through protein-protein interaction(PPI)network analysis and active ingredients-target-pathway(A-T-P)network analysis has confirmed the pivotal roles of the main bioactive constituents,including quercetin,kaempferol,naringin,β-sitosterol,and gallic acid.These components exert their anti-ischemic effects by modulating key targets such as IL6,TNF,MAPK3,and CASP3,thereby regulating the PI3K-Akt,HIF-1,and MAPK signaling pathways,which are integral to processes like inflammation,apoptosis,and oxidative stress.More importantly,through experimental verification,this study confirmed our prediction that CAE significantly reduced neurological function scores,infarct volume,and the percentage of apoptosis neurons.Conclusion:This indicates that CA acts on CI through multi-target synergistic mechanism,and this study provides theoretical basis for the clinical application of CA. 展开更多
关键词 systems pharmacology Choerospondias axillaris cerebral ischemia multi-target synergistic mechanism middle cerebral artery occlusion
暂未订购
Radar-Based Multi-Target Localization and Vital Sign Monitoring
8
作者 Yuping Shi Qinwei Li +1 位作者 Hang Wu Ming Yu 《Journal of Computer and Communications》 2024年第11期263-278,共16页
The frequency-modulated continuous wave (FMCW) radar, known for its high range resolution, has garnered significant attention in the field of non-contact vital sign monitoring. However, accurately locating multiple ta... The frequency-modulated continuous wave (FMCW) radar, known for its high range resolution, has garnered significant attention in the field of non-contact vital sign monitoring. However, accurately locating multiple targets and separating their vital sign signals remains a challenging research topic. This paper proposes a scene-differentiated method for multi-target localization and vital sign monitoring. The approach identifies the relative positions of multiple targets using Range FFT and determines the directions of targets via the multiple signal classification (MUSIC) algorithm. Phase signals within the range bins corresponding to the targets are separated using bandpass filtering. If multiple targets reside in the same range bin, the variational mode decomposition (VMD) algorithm is employed to decompose their breathing or heartbeat signals. Experimental results demonstrate that the proposed method accurately localizes targets. When multiple targets occupy the same range bin, the mean absolute error (MAE) for respiratory signals is 3 bpm, and the MAE for heartbeat signals is 5 bpm. 展开更多
关键词 Frequency-Modulated Continuous Wave (FMCW) Radar multi-target Multiple Signal Classification (MUSIC) Variational Mode Decomposition (VMD)
在线阅读 下载PDF
MULTI-FIGHTER COORDINATED MULTI-TARGET ATTACK SYSTEM 被引量:7
9
作者 耿延洛 姜长生 李伟浩 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第1期18-23,共6页
A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the ... A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the neutral network, the decision algorithm is derived and the whole coordinated decision system is simulated. Secondly an algorithm for missile-attacking area is described and its calculational result is obtained under initial conditions. Then the attacking of missile is realized by the proportion guidance. Finally, a multi-target attack system. The system includes airfight decision, estimation of missile attack area and calculation of missile attack procedure. A digital simulation demonstrates that the airfight decision algorithm is correct. The methods have important reference values for the study of fire control system of the fourth generation fighter. 展开更多
关键词 multi-target attack coordinated airfight decision missile attack area priority fire control
在线阅读 下载PDF
An Empirical Comparison on Multi-Target Regression Learning
10
作者 Xuefeng Xi Victor S.Sheng +2 位作者 Binqi Sun Lei Wang Fuyuan Hu 《Computers, Materials & Continua》 SCIE EI 2018年第8期185-198,共14页
Multi-target regression is concerned with the simultaneous prediction of multiple continuous target variables based on the same set of input variables.It has received relatively small attention from the Machine Learni... Multi-target regression is concerned with the simultaneous prediction of multiple continuous target variables based on the same set of input variables.It has received relatively small attention from the Machine Learning community.However,multi-target regression exists in many real-world applications.In this paper we conduct extensive experiments to investigate the performance of three representative multi-target regression learning algorithms(i.e.Multi-Target Stacking(MTS),Random Linear Target Combination(RLTC),and Multi-Objective Random Forest(MORF)),comparing the baseline single-target learning.Our experimental results show that all three multi-target regression learning algorithms do improve the performance of the single-target learning.Among them,MTS performs the best,followed by RLTC,followed by MORF.However,the single-target learning sometimes still performs very well,even the best.This analysis sheds the light on multi-target regression learning and indicates that the single-target learning is a competitive baseline for multi-target regression learning on multi-target domains. 展开更多
关键词 multi-target regression multi-label classification multi-target stacking
在线阅读 下载PDF
Cardinality compensation method based on information-weighted consensus filter using data clustering for multi-target tracking 被引量:4
11
作者 Sunyoung KIM Changho KANG Changook PARK 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第9期2164-2173,共10页
In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hy... In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hypothesis Density(CPHD) filter. Although the joint propagation of the intensity and the cardinality distribution in the CPHD filter process allows for more reliable estimation of the cardinality(target number) than the PHD filter, tracking loss may occur when noise and clutter are high in the measurements in a practical situation. For that reason, the cardinality compensation process is included in the CPHD filter, which is based on information fusion step using estimated cardinality obtained from the CPHD filter and measured cardinality obtained through data clustering. Here, the ICF is used for information fusion. To verify the performance of the proposed method, simulations were carried out and it was confirmed that the tracking performance of the multi-target was improved because the cardinality was estimated more accurately as compared to the existing techniques. 展开更多
关键词 CARDINALITY compensation Cardinalized probability HYPOTHESIS density FILTER Data clustering Information-weighted consensus FILTER multi-target tracking
原文传递
FGAs-Based Data Association Algorithm for Multi-sensor Multi-target Tracking 被引量:4
12
作者 朱力立 张焕春 经亚枝 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2003年第3期177-181,共5页
A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-bes... A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-best S-D assignment. In the dynamic part of dataassociation, the results of the m-best S-D assignment are then used in turn, with a Kalman filterstate estimator, in a multi-population FGA-based dynamic 2D assignment algorithm to estimate thestates of the moving targets over time. Such an assignment-based data association algorithm isdemonstrated on a simulated passive sensor track formation and maintenance problem. The simulationresults show its feasibility in multi-sensor multi-target tracking. Moreover, algorithm developmentand real-time problems are briefly discussed. 展开更多
关键词 multi-target tracking data association FGA assignment problem kalmanfilter
在线阅读 下载PDF
Identification of multi-target anti-cancer agents from TCM formula by in silico prediction and in vitro validation 被引量:6
13
作者 ZHANG Bao-Yue ZHENG Yi-Fu +5 位作者 ZHAO Jun KANG De WANG Zhe XU Lv-Jie LIU Ai-Lin DU Guan-Hua 《Chinese Journal of Natural Medicines》 SCIE CAS CSCD 2022年第5期332-351,共20页
Cancer is a complex disease associated with multiple gene mutations and malignant phenotypes,and multi-target drugs provide a promising therapy idea for the treatment of cancer.Natural products with abundant chemical ... Cancer is a complex disease associated with multiple gene mutations and malignant phenotypes,and multi-target drugs provide a promising therapy idea for the treatment of cancer.Natural products with abundant chemical structure types and rich pharmacological characteristics could be ideal sources for screening multi-target antineoplastic drugs.In this paper,50 tumor-related targets were collected by searching the Therapeutic Target Database and Thomson Reuters Integrity database,and a multi-target anti-cancer prediction system based on mt-QSAR models was constructed by using naïve Bayesian and recursive partitioning algorithm for the first time.Through the multi-target anti-cancer prediction system,some dominant fragments that act on multiple tumor-related targets were analyzed,which could be helpful in designing multi-target anti-cancer drugs.Anti-cancer traditional Chinese medicine(TCM)and its natural products were collected to form a TCM formula-based natural products library,and the potential targets of the natural products in the library were predicted by multi-target anti-cancer prediction system.As a result,alkaloids,flavonoids and terpenoids were predicted to act on multiple tumor-related targets.The predicted targets of some representative compounds were verified according to literature review and most of the selected natural compounds were found to exert certain anti-cancer activity in vitro biological experiments.In conclusion,the multi-target anti-cancer prediction system is very effective and reliable,and it could be further used for elucidating the functional mechanism of anti-cancer TCM formula and screening for multi-target anti-cancer drugs.The anti-cancer natural compounds found in this paper will lay important information for further study. 展开更多
关键词 Cancer multi-target mt-QSAR model Nave Bayesian Recursive partitioning TCM formulae
原文传递
Dynamic cluster member selection method for multi-target tracking in wireless sensor network 被引量:8
14
作者 蔡自兴 文莎 刘丽珏 《Journal of Central South University》 SCIE EI CAS 2014年第2期636-645,共10页
Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a s... Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a special cluster member(CM) node selection method is put forward in the scheme.An energy efficiency model was proposed under consideration of both energy consumption and remaining energy balance in the network.A tracking accuracy model based on area-sum principle was also presented through analyzing the localization accuracy of triangulation.Then,the two models mentioned above were combined to establish dynamic cluster member selection model for MTT where a comprehensive performance index function was designed to guide the CM node selection.This selection was fulfilled using genetic algorithm.Simulation results show that this method keeps both energy efficiency and tracking quality in optimal state,and also indicate the validity of genetic algorithm in implementing CM node selection. 展开更多
关键词 wireless sensor networks multi-target tracking collaborative task allocation dynamic cluster comprehensive performance index function
在线阅读 下载PDF
Multi-target Collaborative Combat Decision-Making by Improved Particle Swarm Optimizer 被引量:7
15
作者 Ding Yongfei Yang Liuqing +2 位作者 Hou Jianyong Jin Guting Zhen Ziyang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第1期181-187,共7页
A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is establishe... A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is established to describe air combat situation.Optimization function is used to find an optimal missile-target assignment.An improved particle swarm optimization algorithm is utilized to figure out the optimization function with less parameters,which is based on the adaptive random learning approach.According to the coordinated attack tactics,there are some adjustments to the assignment.Simulation example results show that it is an effective algorithm to handle with the decision-making problem of the missile-target assignment(MTA)in air combat. 展开更多
关键词 collaborative combat multi-target decision-making improved particle swarm optimization(IPSO)
在线阅读 下载PDF
Multi-target tracking algorithm based on PHD filter against multi-range-false-target jamming 被引量:12
16
作者 TIAN Chen PEI Yang +1 位作者 HOU Peng ZHAO Qian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期859-870,共12页
Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) met... Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) methods suffer from high computational complexity and limited usage in the presence of MRFT jamming.In order to solve the above problems, an efficient and adaptable probability hypothesis density(PHD) filter is proposed. Based on the gating strategy, the obtained measurements are firstly classified into the generalized newborn target and the existing target measurements. The two categories of measurements are independently used in the decomposed form of the PHD filter. Meanwhile,an amplitude feature is used to suppress the dense clutter. In addition, an MRFT jamming suppression algorithm is introduced to the filter. Target amplitude information and phase quantization information are jointly used to deal with MRFT jamming and the clutter by modifying the particle weights of the generalized newborn targets. Simulations demonstrate the proposed algorithm can obtain superior correct discrimination rate of MRFT, and high-accuracy tracking performance with high computational efficiency in the presence of MRFT jamming in the dense clutter. 展开更多
关键词 multi-range-false-target(MRFT)jamming multi-target tracking(MTT) probability hypothesis density(PHD) target amplitude feature gating strategy
在线阅读 下载PDF
Hybrid hierarchical trajectory planning for a fixed-wing UCAV performing air-to-surface multi-target attack 被引量:5
17
作者 Yu Zhang Jing Chen Lincheng Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第4期536-552,共17页
This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-gu... This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-guided bombs. First, this problem is formulated as a variant of the traveling salesman problem (TSP), called the dynamic-constrained TSP with neighborhoods (DCT- SPN). Then, a hierarchical hybrid approach, which partitions the planning algorithm into a roadmap planning layer and an optimal control layer, is proposed to solve the DCTSPN. In the roadmap planning layer, a novel algorithm based on an updatable proba- bilistic roadmap (PRM) is presented, which operates by randomly sampling a finite set of vehicle states from continuous state space in order to reduce the complicated trajectory planning problem to planning on a finite directed graph. In the optimal control layer, a collision-free state-to-state trajectory planner based on the Gauss pseudospectral method is developed, which can generate both dynamically feasible and optimal flight trajectories. The entire process of solving a DCTSPN consists of two phases. First, in the offline preprocessing phase, the algorithm constructs a PRM, and then converts the original problem into a standard asymmet- ric TSP (ATSP). Second, in the online querying phase, the costs of directed edges in PRM are updated first, and a fast heuristic searching algorithm is then used to solve the ATSP. Numerical experiments indicate that the algorithm proposed in this paper can generate both feasible and near-optimal solutions quickly for online purposes. 展开更多
关键词 hierarchical trajectory planning air-to-surface multi-target attack (A/SMTA) traveling salesman problem (TSP) proba-bilistic roadmap Gauss pseudospectral method unmanned com-bat aerial vehicle (UCAV).
在线阅读 下载PDF
Sensing Matrix Optimization for Multi-Target Localization Using Compressed Sensing in Wireless Sensor Network 被引量:4
18
作者 Xinhua Jiang Ning Li +2 位作者 Yan Guo Jie Liu Cong Wang 《China Communications》 SCIE CSCD 2022年第3期230-244,共15页
In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we p... In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we propose a sensing matrix optimization method in this paper,which considers the optimization under the guidance of the t%-averaged mutual coherence.First,we study sensing matrix optimization and model it as a constrained combinatorial optimization problem.Second,the t%-averaged mutual coherence is adopted as the optimality index to evaluate the quality of different sensing matrixes,where the threshold t is derived through the K-means clustering.With the settled optimality index,a hybrid metaheuristic algorithm named Genetic Algorithm-Tabu Local Search(GA-TLS)is proposed to address the combinatorial optimization problem to obtain the final optimized sensing matrix.Extensive simulation results reveal that the CS localization approaches using different recovery algorithms benefit from the proposed sensing matrix optimization method,with much less localization error compared to the traditional sensing matrix optimization methods. 展开更多
关键词 compressed sensing hybrid metaheuristic K-means clustering multi-target localization t%-averaged mutual coherence sensing matrix optimization
在线阅读 下载PDF
An Iterative Pose Estimation Algorithm Based on Epipolar Geometry With Application to Multi-Target Tracking 被引量:3
19
作者 Jacob H.White Randal W.Beard 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第4期942-953,共12页
This paper introduces a new algorithm for estimating the relative pose of a moving camera using consecutive frames of a video sequence. State-of-the-art algorithms for calculating the relative pose between two images ... This paper introduces a new algorithm for estimating the relative pose of a moving camera using consecutive frames of a video sequence. State-of-the-art algorithms for calculating the relative pose between two images use matching features to estimate the essential matrix. The essential matrix is then decomposed into the relative rotation and normalized translation between frames. To be robust to noise and feature match outliers, these methods generate a large number of essential matrix hypotheses from randomly selected minimal subsets of feature pairs, and then score these hypotheses on all feature pairs. Alternatively, the algorithm introduced in this paper calculates relative pose hypotheses by directly optimizing the rotation and normalized translation between frames, rather than calculating the essential matrix and then performing the decomposition. The resulting algorithm improves computation time by an order of magnitude. If an inertial measurement unit(IMU) is available, it is used to seed the optimizer, and in addition, we reuse the best hypothesis at each iteration to seed the optimizer thereby reducing the number of relative pose hypotheses that must be generated and scored. These advantages greatly speed up performance and enable the algorithm to run in real-time on low cost embedded hardware. We show application of our algorithm to visual multi-target tracking(MTT) in the presence of parallax and demonstrate its real-time performance on a 640 × 480 video sequence captured on a UAV. Video results are available at https://youtu.be/Hh K-p2 h XNn U. 展开更多
关键词 Aerial robotics epipolar geometry multi-target tracking pose estimation unmanned aircraft systems vision-based flight
在线阅读 下载PDF
Online multi-target intelligent tracking using a deep long-short term memory network 被引量:3
20
作者 Yongquan ZHANG Zhenyun SHI +1 位作者 Hongbing JI Zhenzhen SU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期313-329,共17页
Multi-target tracking is facing the difficulties of modeling uncertain motion and observation noise.Traditional tracking algorithms are limited by specific models and priors that may mismatch a real-world scenario.In ... Multi-target tracking is facing the difficulties of modeling uncertain motion and observation noise.Traditional tracking algorithms are limited by specific models and priors that may mismatch a real-world scenario.In this paper,considering the model-free purpose,we present an online Multi-Target Intelligent Tracking(MTIT)algorithm based on a Deep Long-Short Term Memory(DLSTM)network for complex tracking requirements,named the MTIT-DLSTM algorithm.Firstly,to distinguish trajectories and concatenate the tracking task in a time sequence,we define a target tuple set that is the labeled Random Finite Set(RFS).Then,prediction and update blocks based on the DLSTM network are constructed to predict and estimate the state of targets,respectively.Further,the prediction block can learn the movement trend from the historical state sequence,while the update block can capture the noise characteristic from the historical measurement sequence.Finally,a data association scheme based on Hungarian algorithm and the heuristic track management strategy are employed to assign measurements to targets and adapt births and deaths.Experimental results manifest that,compared with the existing tracking algorithms,our proposed MTIT-DLSTM algorithm can improve effectively the accuracy and robustness in estimating the state of targets appearing at random positions,and be applied to linear and nonlinear multi-target tracking scenarios. 展开更多
关键词 Data association Deep long-short term memory network Historical sequence multi-target tracking Target tuple set Track management
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部