期刊文献+
共找到11,680篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-Scale PIIFD for Registration of Multi-Source Remote Sensing Images 被引量:3
1
作者 Chenzhong Gao Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2021年第2期113-124,共12页
This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based regi... This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based registration algorithm is implemented.The key technologies include image scale-space for implementing multi-scale properties,Harris corner detection for keypoints extraction,and partial intensity invariant feature descriptor(PIIFD)for keypoints description.Eventually,a multi-scale Harris-PIIFD image registration algorithm framework is proposed.The experimental results of fifteen sets of representative real data show that the algorithm has excellent,stable performance in multi-source remote sensing image registration,and can achieve accurate spatial alignment,which has strong practical application value and certain generalization ability. 展开更多
关键词 image registration multi-source remote sensing SCALE-SPACE Harris corner partial intensity invariant feature descriptor(PIIFD)
在线阅读 下载PDF
Accuracy Analysis on the Automatic Registration of Multi-Source Remote Sensing Images Based on the Software of ERDAS Imagine 被引量:1
2
作者 Debao Yuan Ximin Cui +2 位作者 Yahui Qiu Xueyun Gu Li Zhang 《Advances in Remote Sensing》 2013年第2期140-148,共9页
The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has ... The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has been embedded into the ERDAS IMAGINE software of version 9.0 and above. The registration accuracies of the module verified for the remote sensing images obtained from different platforms or their different spatial resolution. Four tested registration experiments are discussed in this article to analyze the accuracy differences based on the remote sensing data which have different spatial resolution. The impact factors inducing the differences of registration accuracy are also analyzed. 展开更多
关键词 multi-source remote sensing images Automatic REGISTRATION image Autosync REGISTRATION ACCURACY
在线阅读 下载PDF
A global multimodal flood event dataset with heterogeneous text and multi-source remote sensing images
3
作者 Zhixin Zhang Yan Ma Peng Liu 《Big Earth Data》 2025年第3期362-388,共27页
With the increasing frequency of floods,in-depth flood event analyses are essential for effective disaster relief and prevention.Satellite-based flood event datasets have become the primary data source for flood event... With the increasing frequency of floods,in-depth flood event analyses are essential for effective disaster relief and prevention.Satellite-based flood event datasets have become the primary data source for flood event analyses instead of limited disaster maps due to their enhanced availability.Nevertheless,despite the vast amount of available remote sensing images,existing flood event datasets continue to pose significant challenges in flood event analyses due to the uneven geographical distribution of data,the scarcity of time series data,and the limited availability of flood-related semantic information.There has been a surge in acceptance of deep learning models for flood event analyses,but some existing flood datasets do not align well with model training,and distinguishing flooded areas has proven difficult with limited data modalities and semantic information.Moreover,efficient retrieval and pre-screening of flood-related imagery from vast satellite data impose notable obstacles,particularly within large-scale analyses.To address these issues,we propose a Multimodal Flood Event Dataset(MFED)for deep-learning-based flood event analyses and data retrieval.It consists of 18 years of multi-source remote sensing imagery and heterogeneous textual information covering flood-prone areas worldwide.Incorporating optical and radar imagery can exploit the correlation and complementarity between distinct image modalities to capture the pixel features in flood imagery.It is worth noting that text modality data,including auxiliary hydrological information extracted from the Global Flood Database and text information refined from online news records,can also offer a semantic supplement to the images for flood event retrieval and analysis.To verify the applicability of the MFED in deep learning models,we carried out experiments with different models using a single modality and different combinations of modalities,which fully verified the effectiveness of the dataset.Furthermore,we also verify the efficiency of the MFED in comparative experiments with existing multimodal datasets and diverse neural network structures. 展开更多
关键词 Flood event multimodal dataset deep learning multi-source remote sensing data internet data
原文传递
Wetland Vegetation Species Classification Using Optical and SAR Remote Sensing Images: A Case Study of Chongming Island, Shanghai, China
4
作者 DENG Yaozi SHI Runhe +3 位作者 ZHANG Chao WANG Xiaoyang LIU Chaoshun GAO Wei 《Chinese Geographical Science》 2025年第3期510-527,共18页
Mudflat vegetation plays a crucial role in the ecological function of wetland environment,and obtaining its fine spatial distri-bution is of great significance for wetland protection and management.Remote sensing tech... Mudflat vegetation plays a crucial role in the ecological function of wetland environment,and obtaining its fine spatial distri-bution is of great significance for wetland protection and management.Remote sensing techniques can realize the rapid extraction of wetland vegetation over a large area.However,the imaging of optical sensors is easily restricted by weather conditions,and the backs-cattered information reflected by Synthetic Aperture Radar(SAR)images is easily disturbed by many factors.Although both data sources have been applied in wetland vegetation classification,there is a lack of comparative study on how the selection of data sources affects the classification effect.This study takes the vegetation of the tidal flat wetland in Chongming Island,Shanghai,China,in 2019,as the research subject.A total of 22 optical feature parameters and 11 SAR feature parameters were extracted from the optical data source(Sentinel-2)and SAR data source(Sentinel-1),respectively.The performance of optical and SAR data and their feature paramet-ers in wetland vegetation classification was quantitatively compared and analyzed by different feature combinations.Furthermore,by simulating the scenario of missing optical images,the impact of optical image missing on vegetation classification accuracy and the compensatory effect of integrating SAR data were revealed.Results show that:1)under the same classification algorithm,the Overall Accuracy(OA)of the combined use of optical and SAR images was the highest,reaching 95.50%.The OA of using only optical images was slightly lower,while using only SAR images yields the lowest accuracy,but still achieved 86.48%.2)Compared to using the spec-tral reflectance of optical data and the backscattering coefficient of SAR data directly,the constructed optical and SAR feature paramet-ers contributed to improving classification accuracy.The inclusion of optical(vegetation index,spatial texture,and phenology features)and SAR feature parameters(SAR index and SAR texture features)in the classification algorithm resulted in an OA improvement of 4.56%and 9.47%,respectively.SAR backscatter,SAR index,optical phenological features,and vegetation index were identified as the top-ranking important features.3)When the optical data were missing continuously for six months,the OA dropped to a minimum of 41.56%.However,when combined with SAR data,the OA could be improved to 71.62%.This indicates that the incorporation of SAR features can effectively compensate for the loss of accuracy caused by optical image missing,especially in regions with long-term cloud cover. 展开更多
关键词 optical images Synthetic Aperture Radar(SAR) multi-source remote sensing vegetation classification tidal flat wetland Chongming Island Shanghai China
在线阅读 下载PDF
Land Cover Classification for Remote Sensing Images Based on MCM-Net
5
作者 Peilong SHI Shuxin YIN 《Agricultural Biotechnology》 2025年第5期38-41,共4页
A novel CNN-Mamba hybrid architecture was proposed to address intra-class variance and inter-class similarity in remote sensing imagery.The framework integrates:(1)parallel CNN and visual state space(VSS)encoders,(2)m... A novel CNN-Mamba hybrid architecture was proposed to address intra-class variance and inter-class similarity in remote sensing imagery.The framework integrates:(1)parallel CNN and visual state space(VSS)encoders,(2)multi-scale cross-attention feature fusion,and(3)a boundary-constrained decoder.This design overcomes CNN s limited receptive fields and ViT s quadratic complexity while efficiently capturing both local features and global dependencies.Evaluations on LoveDA and ISPRS Vaihingen datasets demonstrate superior segmentation accuracy and boundary preservation compared to existing approaches,with the dual-branch structure maintaining computational efficiency throughout the process. 展开更多
关键词 Semantic segmentation remote sensing images CNN Mamba
在线阅读 下载PDF
Improved YOLOv8s Detection Algorithm for Remote Sensing Images
6
作者 Lunming Qin Wenquan Mei +2 位作者 Haoyang Cui Houqin Bian Xi Wang 《Journal of Beijing Institute of Technology》 2025年第3期278-289,共12页
In response to challenges posed by complex backgrounds,diverse target angles,and numerous small targets in remote sensing images,alongside the issue of high resource consumption hindering model deployment,we propose a... In response to challenges posed by complex backgrounds,diverse target angles,and numerous small targets in remote sensing images,alongside the issue of high resource consumption hindering model deployment,we propose an enhanced,lightweight you only look once version 8 small(YOLOv8s)detection algorithm.Regarding network improvements,we first replace tradi-tional horizontal boxes with rotated boxes for target detection,effectively addressing difficulties in feature extraction caused by varying target angles.Second,we design a module integrating convolu-tional neural networks(CNN)and Transformer components to replace specific C2f modules in the backbone network,thereby expanding the model’s receptive field and enhancing feature extraction in complex backgrounds.Finally,we introduce a feature calibration structure to mitigate potential feature mismatches during feature fusion.For model compression,we employ a lightweight channel pruning technique based on localized mean average precision(LMAP)to eliminate redundancies in the enhanced model.Although this approach results in some loss of detection accuracy,it effec-tively reduces the number of parameters,computational load,and model size.Additionally,we employ channel-level knowledge distillation to recover accuracy in the pruned model,further enhancing detection performance.Experimental results indicate that the enhanced algorithm achieves a 6.1%increase in mAP50 compared to YOLOv8s,while simultaneously reducing parame-ters,computational load,and model size by 57.7%,28.8%,and 52.3%,respectively. 展开更多
关键词 YOLOv8s remote sensing image target detection model pruning knowledge distillation
在线阅读 下载PDF
Coupling the Power of YOLOv9 with Transformer for Small Object Detection in Remote-Sensing Images
7
作者 Mohammad Barr 《Computer Modeling in Engineering & Sciences》 2025年第4期593-616,共24页
Recent years have seen a surge in interest in object detection on remote sensing images for applications such as surveillance andmanagement.However,challenges like small object detection,scale variation,and the presen... Recent years have seen a surge in interest in object detection on remote sensing images for applications such as surveillance andmanagement.However,challenges like small object detection,scale variation,and the presence of closely packed objects in these images hinder accurate detection.Additionally,the motion blur effect further complicates the identification of such objects.To address these issues,we propose enhanced YOLOv9 with a transformer head(YOLOv9-TH).The model introduces an additional prediction head for detecting objects of varying sizes and swaps the original prediction heads for transformer heads to leverage self-attention mechanisms.We further improve YOLOv9-TH using several strategies,including data augmentation,multi-scale testing,multi-model integration,and the introduction of an additional classifier.The cross-stage partial(CSP)method and the ghost convolution hierarchical graph(GCHG)are combined to improve detection accuracy by better utilizing feature maps,widening the receptive field,and precisely extracting multi-scale objects.Additionally,we incorporate the E-SimAM attention mechanism to address low-resolution feature loss.Extensive experiments on the VisDrone2021 and DIOR datasets demonstrate the effectiveness of YOLOv9-TH,showing good improvement in mAP compared to the best existing methods.The YOLOv9-TH-e achieved 54.2% of mAP50 on the VisDrone2021 dataset and 92.3% of mAP on the DIOR dataset.The results confirmthemodel’s robustness and suitability for real-world applications,particularly for small object detection in remote sensing images. 展开更多
关键词 remote sensing images YOLOv9-TH multi-scale object detection transformer heads VisDrone2021 dataset
在线阅读 下载PDF
FPCNet-based change detection for remote sensing images
8
作者 LI Jiying WANG Qi SHI Hongping 《Journal of Measurement Science and Instrumentation》 2025年第3期371-383,共13页
The objective of this study is to address semantic misalignment and insufficient accuracy in edge detail and discrimination detection,which are common issues in deep learning-based change detection methods relying on ... The objective of this study is to address semantic misalignment and insufficient accuracy in edge detail and discrimination detection,which are common issues in deep learning-based change detection methods relying on encoding and decoding frameworks.In response to this,we propose a model called FlowDual-PixelClsObjectMec(FPCNet),which innovatively incorporates dual flow alignment technology in the decoding stage to rectify semantic discrepancies through streamlined feature correction fusion.Furthermore,the model employs an object-level similarity measurement coupled with pixel-level classification in the PixelClsObjectMec(PCOM)module during the final discrimination stage,significantly enhancing edge detail detection and overall accuracy.Experimental evaluations on the change detection dataset(CDD)and building CDD demonstrate superior performance,with F1 scores of 95.1%and 92.8%,respectively.Our findings indicate that the FPCNet outperforms the existing algorithms in stability,robustness,and other key metrics. 展开更多
关键词 remote sensing image change detection semantic misalignment dual flow alignment deep supervised discrimination
在线阅读 下载PDF
Multi-source Remote Sensing Image Registration Based on Contourlet Transform and Multiple Feature Fusion 被引量:6
9
作者 Huan Liu Gen-Fu Xiao +1 位作者 Yun-Lan Tan Chun-Juan Ouyang 《International Journal of Automation and computing》 EI CSCD 2019年第5期575-588,共14页
Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi... Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration. 展开更多
关键词 Feature fusion multi-scale circle Gaussian combined invariant MOMENT multi-direction GRAY level CO-OCCURRENCE matrix multi-source remote sensing image registration CONTOURLET transform
原文传递
Monitoring coal fires in Datong coalfield using multi-source remote sensing data 被引量:16
10
作者 汪云甲 田丰 +2 位作者 黄翌 王坚 魏长婧 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3421-3428,共8页
Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in th... Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in the Majiliang mining area.The thermal field distributions of this area in 2000,2002,2006,2007,and 2009 were obtained using Landsat TM/ETM.The changes in the distribution were then analyzed to approximate the locations of the coal fires.Through UAV imagery employed at a very high resolution(0.2 m),the texture information,linear features,and brightness of the ground fissures in the coal fire area were determined.All these data were combined to build a knowledge model of determining fissures and were used to support underground coal fire detection.An infrared thermal imager was used to map the thermal field distribution of areas where coal fire is serious.Results were analyzed to identify the hot spot trend and the depth of the burning point. 展开更多
关键词 LANDSAT unmanned aerial vehicle infrared thermal imager coal fire Datong coalfield remote sensing
在线阅读 下载PDF
Forest Resources Management Information System for Forest Farms Based on Remote Sensing Images and Web GIS 被引量:2
11
作者 魏海林 黄璜 《Agricultural Science & Technology》 CAS 2015年第4期832-835,共4页
This study was to estabIish the forest resources management information system for forest farms based on the B/S structural WebGIS with trial forest farm of Hunan Academy of Forestry as the research field, forest reso... This study was to estabIish the forest resources management information system for forest farms based on the B/S structural WebGIS with trial forest farm of Hunan Academy of Forestry as the research field, forest resources field survey da-ta, ETM+ remote sensing data and basic geographical information data as research material through the extraction of forest resource data in the forest farm, require-ment analysis on the system function and the estabIishment of required software and hardware environment, with the alm to realize the management, query, editing, analysis, statistics and other functions of forest resources information to manage the forest resources. 展开更多
关键词 WEBGIS remote sensing image WEBGIS Forest resource Management infor-matlon system
在线阅读 下载PDF
Enhanced single-neuronal dynamical system in self-feedback Hopfield network for encrypting urban remote sensing image
12
作者 ZHANG Jingquan 《Global Geology》 2025年第4期240-250,共11页
The large-scale acquisition and widespread application of remote sensing image data have led to increasingly severe challenges in information security and privacy protection during transmission and storage.Urban remot... The large-scale acquisition and widespread application of remote sensing image data have led to increasingly severe challenges in information security and privacy protection during transmission and storage.Urban remote sensing image,characterized by complex content and well-defined structures,are particularly vulnerable to malicious attacks and information leakage.To address this issue,the author proposes an encryption method based on the enhanced single-neuron dynamical system(ESNDS).ESNDS generates highquality pseudo-random sequences with complex dynamics and intense sensitivity to initial conditions,which drive a structure of multi-stage cipher comprising permutation,ring-wise diffusion,and mask perturbation.Using representative GF-2 Panchromatic and Multispectral Scanner(PMS)urban scenes,the author conducts systematic evaluations in terms of inter-pixel correlation,information entropy,histogram uniformity,and number of pixel change rate(NPCR)/unified average changing intensity(UACI).The results demonstrate that the proposed scheme effectively resists statistical analysis,differential attacks,and known-plaintext attacks while maintaining competitive computational efficiency for high-resolution urban image.In addition,the cipher is lightweight and hardware-friendly,integrates readily with on-board and ground processing,and thus offers tangible engineering utility for real-time,large-volume remote-sensing data protection. 展开更多
关键词 remote sensing image image encryption Hopfield neural network SELF-FEEDBACK
在线阅读 下载PDF
Multi-Dimensional Weight Regulation Network for Remote Sensing Image Dehazing
13
作者 Donghui Zhao Bo Mo 《Journal of Beijing Institute of Technology》 2025年第1期71-90,共20页
This paper introduces a lightweight remote sensing image dehazing network called multidimensional weight regulation network(MDWR-Net), which addresses the high computational cost of existing methods. Previous works, o... This paper introduces a lightweight remote sensing image dehazing network called multidimensional weight regulation network(MDWR-Net), which addresses the high computational cost of existing methods. Previous works, often based on the encoder-decoder structure and utilizing multiple upsampling and downsampling layers, are computationally expensive. To improve efficiency, the paper proposes two modules: the efficient spatial resolution recovery module(ESRR) for upsampling and the efficient depth information augmentation module(EDIA) for downsampling.These modules not only reduce model complexity but also enhance performance. Additionally, the partial feature weight learning module(PFWL) is introduced to reduce the computational burden by applying weight learning across partial dimensions, rather than using full-channel convolution.To overcome the limitations of convolutional neural networks(CNN)-based networks, the haze distribution index transformer(HDIT) is integrated into the decoder. We also propose the physicalbased non-adjacent feature fusion module(PNFF), which leverages the atmospheric scattering model to improve generalization of our MDWR-Net. The MDWR-Net achieves superior dehazing performance with a computational cost of just 2.98×10^(9) multiply-accumulate operations(MACs),which is less than one-tenth of previous methods. Experimental results validate its effectiveness in balancing performance and computational efficiency. 展开更多
关键词 image dehazing remote sensing image network lightweight
在线阅读 下载PDF
Remote Sensing Image Information Granulation Transformer for Semantic Segmentation
14
作者 Haoyang Tang Kai Zeng 《Computers, Materials & Continua》 2025年第7期1485-1506,共22页
Semantic segmentation provides important technical support for Land cover/land use(LCLU)research.By calculating the cosine similarity between feature vectors,transformer-based models can effectively capture the global... Semantic segmentation provides important technical support for Land cover/land use(LCLU)research.By calculating the cosine similarity between feature vectors,transformer-based models can effectively capture the global information of high-resolution remote sensing images.However,the diversity of detailed and edge features within the same class of ground objects in high-resolution remote sensing images leads to a dispersed embedding distribution.The dispersed feature distribution enlarges feature vector angles and reduces cosine similarity,weakening the attention mechanism’s ability to identify the same class of ground objects.To address this challenge,remote sensing image information granulation transformer for semantic segmentation is proposed.The model employs adaptive granulation to extract common semantic features among objects of the same class,constructing an information granule to replace the detailed feature representation of these objects.Then,the Laplacian operator of the information granule is applied to extract the edge features of the object as represented by the information granule.In the experiments,the proposed model was validated on the Beijing Land-Use(BLU),Gaofen Image Dataset(GID),and Potsdam Dataset(PD).In particular,the model achieves 88.81%for mOA,82.64%for mF1,and 71.50%for mIoU metrics on the GID dataset.Experimental results show that the model effectively handles high-resolution remote sensing images.Our code is available at https://github.com/sjmp525/RSIGT(accessed on 16 April 2025). 展开更多
关键词 Land-cover/land-use high-resolution remote sensing images TRANSFORMER adaptive granulation
在线阅读 下载PDF
Remote sensing image semantic segmentation algorithm based on improved DeepLabv3+
15
作者 SONG Xirui GE Hongwei LI Ting 《Journal of Measurement Science and Instrumentation》 2025年第2期205-215,共11页
The convolutional neural network(CNN)method based on DeepLabv3+has some problems in the semantic segmentation task of high-resolution remote sensing images,such as fixed receiving field size of feature extraction,lack... The convolutional neural network(CNN)method based on DeepLabv3+has some problems in the semantic segmentation task of high-resolution remote sensing images,such as fixed receiving field size of feature extraction,lack of semantic information,high decoder magnification,and insufficient detail retention ability.A hierarchical feature fusion network(HFFNet)was proposed.Firstly,a combination of transformer and CNN architectures was employed for feature extraction from images of varying resolutions.The extracted features were processed independently.Subsequently,the features from the transformer and CNN were fused under the guidance of features from different sources.This fusion process assisted in restoring information more comprehensively during the decoding stage.Furthermore,a spatial channel attention module was designed in the final stage of decoding to refine features and reduce the semantic gap between shallow CNN features and deep decoder features.The experimental results showed that HFFNet had superior performance on UAVid,LoveDA,Potsdam,and Vaihingen datasets,and its cross-linking index was better than DeepLabv3+and other competing methods,showing strong generalization ability. 展开更多
关键词 semantic segmentation high-resolution remote sensing image deep learning transformer model attention mechanism feature fusion ENCODER DECODER
在线阅读 下载PDF
Security analysis and secured access design for networks of image remote sensing
16
作者 Juan Zhao Haibo Dai +3 位作者 Xiaolong Xu Hao Yan Zheng Zhang Chunguo Li 《Digital Communications and Networks》 2025年第1期136-144,共9页
The secured access is studied in this paper for the network of the image remote sensing.Each sensor in this network encounters the information security when uploading information of the images wirelessly from the sens... The secured access is studied in this paper for the network of the image remote sensing.Each sensor in this network encounters the information security when uploading information of the images wirelessly from the sensor to the central collection point.In order to enhance the sensing quality for the remote uploading,the passive reflection surface technique is employed.If one eavesdropper that exists nearby this sensor is keeping on accessing the same networks,he may receive the same image from this sensor.Our goal in this paper is to improve the SNR of legitimate collection unit while cut down the SNR of the eavesdropper as much as possible by adaptively adjust the uploading power from this sensor to enhance the security of the remote sensing images.In order to achieve this goal,the secured energy efficiency performance is theoretically analyzed with respect to the number of the passive reflection elements by calculating the instantaneous performance over the channel fading coefficients.Based on this theoretical result,the secured access is formulated as a mathematical optimization problem by adjusting the sensor uploading power as the unknown variables with the objective of the energy efficiency maximization while satisfying any required maximum data rate of the eavesdropper sensor.Finally,the analytical expression is theoretically derived for the optimum uploading power.Numerical simulations verify the design approach. 展开更多
关键词 image remote sensing Secured access Energy efficiency sensor transmit power Secured access design
在线阅读 下载PDF
Ship detection and classification from optical remote sensing images: A survey 被引量:15
17
作者 Bo LI Xiaoyang XIE +1 位作者 Xingxing WEI Wenting TANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第3期145-163,共19页
Considering the important applications in the military and the civilian domain, ship detection and classification based on optical remote sensing images raise considerable attention in the sea surface remote sensing f... Considering the important applications in the military and the civilian domain, ship detection and classification based on optical remote sensing images raise considerable attention in the sea surface remote sensing filed. This article collects the methods of ship detection and classification for practically testing in optical remote sensing images, and provides their corresponding feature extraction strategies and statistical data. Basic feature extraction strategies and algorithms are analyzed associated with their performance and application in ship detection and classification.Furthermore, publicly available datasets that can be applied as the benchmarks to verify the effectiveness and the objectiveness of ship detection and classification methods are summarized in this paper. Based on the analysis, the remaining problems and future development trends are provided for ship detection and classification methods based on optical remote sensing images. 展开更多
关键词 Optical remote sensing Satellite image Sea target detection Ship classification Ship detection
原文传递
Land cover classification from remote sensing images based on multi-scale fully convolutional network 被引量:17
18
作者 Rui Li Shunyi Zheng +2 位作者 Chenxi Duan Libo Wang Ce Zhang 《Geo-Spatial Information Science》 SCIE EI CSCD 2022年第2期278-294,共17页
Although the Convolutional Neural Network(CNN)has shown great potential for land cover classification,the frequently used single-scale convolution kernel limits the scope of informa-tion extraction.Therefore,we propos... Although the Convolutional Neural Network(CNN)has shown great potential for land cover classification,the frequently used single-scale convolution kernel limits the scope of informa-tion extraction.Therefore,we propose a Multi-Scale Fully Convolutional Network(MSFCN)with a multi-scale convolutional kernel as well as a Channel Attention Block(CAB)and a Global Pooling Module(GPM)in this paper to exploit discriminative representations from two-dimensional(2D)satellite images.Meanwhile,to explore the ability of the proposed MSFCN for spatio-temporal images,we expand our MSFCN to three-dimension using three-dimensional(3D)CNN,capable of harnessing each land cover category’s time series interac-tion from the reshaped spatio-temporal remote sensing images.To verify the effectiveness of the proposed MSFCN,we conduct experiments on two spatial datasets and two spatio-temporal datasets.The proposed MSFCN achieves 60.366%on the WHDLD dataset and 75.127%on the GID dataset in terms of mIoU index while the figures for two spatio-temporal datasets are 87.753%and 77.156%.Extensive comparative experiments and abla-tion studies demonstrate the effectiveness of the proposed MSFCN. 展开更多
关键词 Spatio-temporal remote sensing images Multi-Scale Fully Convolutional Network land cover classification
原文传递
Effective distributed convolutional neural network architecture for remote sensing images target classification with a pre-training approach 被引量:3
19
作者 LI Binquan HU Xiaohui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期238-244,共7页
How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classif... How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks. 展开更多
关键词 convolutional NEURAL network (CNN) DISTRIBUTED architecture remote sensing images (RSIs) TARGET classification pre-training
在线阅读 下载PDF
Scale Issues of Wetland Classification and Mapping Using Remote Sensing Images: A Case of Honghe National Nature Reserve in Sanjiang Plain, Northeast China 被引量:5
20
作者 GONG Huili JIAO Cuicui +1 位作者 ZHOU Demin LI Na 《Chinese Geographical Science》 SCIE CSCD 2011年第2期230-240,共11页
Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional meth... Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional methods because of the low accessibility of wetlands, hence remote sensing data have become one of the primary data sources in wetland research. This paper presents a case study conducted at the core area of Honghe National Nature Reserve in the Sanjiang Plain, Northeast China. In this study, three images generated by airship, from Thematic Mapper and from SPOT 5 were selected to produce wetland maps at three different wetland landscape levels. After assessing classification accuracies of the three maps, we compared the different wetland mapping results of 11 plant communities to the airship image, 6 plant ecotypes to the TM image and 9 landscape classifications to the SPOT 5 image. We discussed the different characteristics of the hierarchical ecosystem classifications based on the spatial scales of the different images. The results indicate that spatial scales of remote sensing data have an important link to the hierarchies of wetland plant ecosystems displayed on the wetland landscape maps. The richness of wetland landscape information derived from an image closely relates to its spatial resolution. This study can enrich the ecological classification methods and mapping techniques dealing with the spatial scales of different remote sensing images. With a better understanding of classification accuracies in mapping wetlands by using different scales of remote sensing data, we can make an appropriate approach for dealing with the scale issue of remote sensing images. 展开更多
关键词 wetland classification remote sensing image spatial resolution SCALE mapping wetland
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部