期刊文献+
共找到326篇文章
< 1 2 17 >
每页显示 20 50 100
MMH-FE:AMulti-Precision and Multi-Sourced Heterogeneous Privacy-Preserving Neural Network Training Based on Functional Encryption
1
作者 Hao Li Kuan Shao +2 位作者 Xin Wang Mufeng Wang Zhenyong Zhang 《Computers, Materials & Continua》 2025年第3期5387-5405,共19页
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.P... Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach. 展开更多
关键词 Functional encryption multi-sourced heterogeneous data privacy preservation neural networks
在线阅读 下载PDF
Utilizing Multi-source Data Fusion to Identify the Layout Patterns of the Catering Industry and Urban Spatial Structure in Shanghai,China
2
作者 TIAN Chuang LUAN Weixin 《Chinese Geographical Science》 2025年第5期1045-1058,共14页
Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electron... Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electronic reviews and consumer data sourced from third-party restaurant platforms collected in 2021.By performing weighted processing on two-dimensional point-of-interest(POI)data,clustering hotspots of high-dimensional restaurant data were identified.A hierarchical network of restaurant hotspots was constructed following the Central Place Theory(CPT)framework,while the Geo-Informatic Tupu method was employed to resolve the challenges posed by network deformation in multi-scale processes.These findings suggest the necessity of enhancing the spatial balance of Shanghai’s urban centers by moderately increasing the number and service capacity of suburban centers at the urban periphery.Such measures would contribute to a more optimized urban structure and facilitate the outward dispersion of comfort-oriented facilities such as the restaurant industry.At a finer spatial scale,the distribution of restaurant hotspots demonstrates a polycentric and symmetric spatial pattern,with a developmental trend radiating outward along the city’s ring roads.This trend can be attributed to the efforts of restaurants to establish connections with other urban functional spaces,leading to the reconfiguration of urban spaces,expansion of restaurant-dedicated land use,and the reorganization of associated commercial activities.The results validate the existence of a polycentric urban structure in Shanghai but also highlight the instability of the restaurant hotspot network during cross-scale transitions. 展开更多
关键词 multi-source data fusion urban spatial structure MULTI-CENTER catering industry Shanghai China
在线阅读 下载PDF
Evaluation of Bird-watching Spatial Suitability Under Multi-source Data Fusion: A Case Study of Beijing Ming Tombs Forest Farm
3
作者 YANG Xin YUE Wenyu +1 位作者 HE Yuhao MA Xin 《Journal of Landscape Research》 2025年第3期59-64,共6页
Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from... Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development. 展开更多
关键词 multi-source data fusion GIS heat map Kernel density analysis bird-watching spot planning Habitat suitability
在线阅读 下载PDF
Predicting Ship Propeller Speed with Multi-Source Data Fusion and Physics-Informed LightGBM:A Novel Correction Framework
4
作者 Min Chen Yingchao Gou Feiyang Ren 《Journal of Data Analysis and Information Processing》 2025年第4期425-439,共15页
Accurate prediction of main-engine rotational speed(RPM)is pivotal for en-ergy-efficient ship operation and compliance with emerging carbon-intensity regulations.Existing approaches either rely on computationally inte... Accurate prediction of main-engine rotational speed(RPM)is pivotal for en-ergy-efficient ship operation and compliance with emerging carbon-intensity regulations.Existing approaches either rely on computationally intensive phys-ics-based models or data-driven methods that neglect hydrodynamic con-straints and suffer from label noise in mandatory reporting data.We propose a physics-informed LightGBM framework that fuses high-resolution AIS tra-jectories,meteorological re-analyses and EU MRV logs through a temporally anchored,multi-source alignment protocol.A dual LightGBM ensemble(L1/L2)predicts RPM under laden and ballast conditions.Validation on a Panamax tanker(366 days)yields−1.52 rpm(−3%)error;ballast accuracy surpasses laden by 1.7%. 展开更多
关键词 Ship RPM Prediction Physics-Informed LightGBM multi-source data fusion
在线阅读 下载PDF
Class-Imbalanced Machinery Fault Diagnosis using Heterogeneous Data Fusion Support Tensor Machine
5
作者 Zhishan Min Minghui Shao +1 位作者 Haidong Shao Bin Liu 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第1期11-21,共11页
The monitoring signals of bearings from single-source sensor often contain limited information for characterizing various working condition,which may lead to instability and uncertainty of the class-imbalanced intelli... The monitoring signals of bearings from single-source sensor often contain limited information for characterizing various working condition,which may lead to instability and uncertainty of the class-imbalanced intelligent fault diagnosis.On the other hand,the vectorization of multi-source sensor signals may not only generate high-dimensional vectors,leading to increasing computational complexity and overfitting problems,but also lose the structural information and the coupling information.This paper proposes a new method for class-imbalanced fault diagnosis of bearing using support tensor machine(STM)driven by heterogeneous data fusion.The collected sound and vibration signals of bearings are successively decomposed into multiple frequency band components to extract various time-domain and frequency-domain statistical parameters.A third-order hetero-geneous feature tensor is designed based on multisensors,frequency band components,and statistical parameters.STM-based intelligent model is constructed to preserve the structural information of the third-order heterogeneous feature tensor for bearing fault diagnosis.A series of comparative experiments verify the advantages of the proposed method. 展开更多
关键词 class-imbalanced fault diagnosis feature tensor heterogeneous data fusion support tensor machine
在线阅读 下载PDF
Multi-source heterogeneous data access management framework and key technologies for electric power Internet of Things 被引量:1
6
作者 Pengtian Guo Kai Xiao +1 位作者 Xiaohui Wang Daoxing Li 《Global Energy Interconnection》 EI CSCD 2024年第1期94-105,共12页
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall... The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT. 展开更多
关键词 Power Internet of Things Object model High concurrency access Zero trust mechanism multi-source heterogeneous data
在线阅读 下载PDF
Evaluating Urban Housing Contradictions Through Multisource Data Fusion:a Case Study of Spatiotemporal Mismatch Analysis in Shenzhen with the HCEWI Model
7
作者 JIANG Aiyi CHEN Guanzhou CAO Jinzhou 《Journal of Geodesy and Geoinformation Science》 2025年第3期1-16,共16页
The rapid urbanization and structural imbalances in Chinese megacities have exacerbated the housing supplydemand mismatch,creating an urgent need for fine-scale diagnostic tools.This study addresses this critical gap ... The rapid urbanization and structural imbalances in Chinese megacities have exacerbated the housing supplydemand mismatch,creating an urgent need for fine-scale diagnostic tools.This study addresses this critical gap by developing the Housing Contradiction Evaluation Weighted Index(HCEWI)model,making three key contributions to high-resolution housing monitoring.First,we establish a tripartite theoretical framework integrating dynamic population pressure(PPI),housing supply potential(HSI),and functional diversity(HHI).The PPI innovatively combines mobile signaling data with principal component analysis to capture real-time commuting patterns,while the HSI introduces a novel dual-criteria system based on Local Climate Zones(LCZ),weighted by building density and residential function ratio.Second,we develop a spatiotemporal coupling architecture featuring an entropy-weighted dynamic integration mechanism with self-correcting modules,demonstrating robust performance against data noise.Third,our 25-month longitudinal analysis in Shenzhen reveals significant findings,including persistent bipolar clustering patterns,contrasting volatility between peripheral and core areas,and seasonal policy responsiveness.Methodologically,we advance urban diagnostics through 500-meter grid monthly monitoring and process-oriented temporal operators that reveal“tentacle-like”spatial restructuring along transit corridors.Our findings provide a replicable framework for precision housing governance and demonstrate the transformative potential of mobile signaling data in implementing China’s“city-specific policy”approach.We further propose targeted intervention strategies,including balance regulation for high-contradiction zones,Transit-Oriented Development(TOD)activation for low-contradiction clusters,and dynamic land conversion mechanisms for transitional areas. 展开更多
关键词 index terms-housing contradiction assessment multi-source data fusion spatiotemporal heterogeneity job-housing spatial mismatch high-resolution urban diagnostics
在线阅读 下载PDF
Dynamic UAV data fusion and deep learning for improved maize phenological-stage tracking
8
作者 Ziheng Feng Jiliang Zhao +8 位作者 Liunan Suo Heguang Sun Huiling Long Hao Yang Xiaoyu Song Haikuan Feng Bo Xu Guijun Yang Chunjiang Zhao 《The Crop Journal》 2025年第3期961-974,共14页
Near real-time maize phenology monitoring is crucial for field management,cropping system adjustments,and yield estimation.Most phenological monitoring methods are post-seasonal and heavily rely on high-frequency time... Near real-time maize phenology monitoring is crucial for field management,cropping system adjustments,and yield estimation.Most phenological monitoring methods are post-seasonal and heavily rely on high-frequency time-series data.These methods are not applicable on the unmanned aerial vehicle(UAV)platform due to the high cost of acquiring time-series UAV images and the shortage of UAV-based phenological monitoring methods.To address these challenges,we employed the Synthetic Minority Oversampling Technique(SMOTE)for sample augmentation,aiming to resolve the small sample modelling problem.Moreover,we utilized enhanced"separation"and"compactness"feature selection methods to identify input features from multiple data sources.In this process,we incorporated dynamic multi-source data fusion strategies,involving Vegetation index(VI),Color index(CI),and Texture features(TF).A two-stage neural network that combines Convolutional Neural Network(CNN)and Long Short-Term Memory Network(LSTM)is proposed to identify maize phenological stages(including sowing,seedling,jointing,trumpet,tasseling,maturity,and harvesting)on UAV platforms.The results indicate that the dataset generated by SMOTE closely resembles the measured dataset.Among dynamic data fusion strategies,the VI-TF combination proves to be most effective,with CI-TF and VI-CI combinations following behind.Notably,as more data sources are integrated,the model's demand for input features experiences a significant decline.In particular,the CNN-LSTM model,based on the fusion of three data sources,exhibited remarkable reliability when validating the three datasets.For Dataset 1(Beijing Xiaotangshan,2023:Data from 12 UAV Flight Missions),the model achieved an overall accuracy(OA)of 86.53%.Additionally,its precision(Pre),recall(Rec),F1 score(F1),false acceptance rate(FAR),and false rejection rate(FRR)were 0.89,0.89,0.87,0.11,and 0.11,respectively.The model also showed strong generalizability in Dataset 2(Beijing Xiaotangshan,2023:Data from 6 UAV Flight Missions)and Dataset 3(Beijing Xiaotangshan,2022:Data from 4 UAV Flight Missions),with OAs of 89.4%and 85%,respectively.Meanwhile,the model has a low demand for input featu res,requiring only 54.55%(99 of all featu res).The findings of this study not only offer novel insights into near real-time crop phenology monitoring,but also provide technical support for agricultural field management and cropping system adaptation. 展开更多
关键词 Near real-time Maize phenology Deep learning UAV multi-source data fusion
在线阅读 下载PDF
Multi-scale intelligent fusion and dynamic validation for high-resolution seismic data processing in drilling
9
作者 YUAN Sanyi XU Yanwu +2 位作者 XIE Renjun CHEN Shuai YUAN Junliang 《Petroleum Exploration and Development》 2025年第3期680-691,共12页
During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resol... During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resolution seismic data processing technologies and methods tailored for drilling scenarios.The high-resolution processing of seismic data is divided into three stages:pre-drilling processing,post-drilling correction,and while-drilling updating.By integrating seismic data from different stages,spatial ranges,and frequencies,together with information from drilled wells and while-drilling data,and applying artificial intelligence modeling techniques,a progressive high-resolution processing technology of seismic data based on multi-source information fusion is developed,which performs simple and efficient seismic information updates during drilling.Case studies show that,with the gradual integration of multi-source information,the resolution and accuracy of seismic data are significantly improved,and thin-bed weak reflections are more clearly imaged.The updated seismic information while-drilling demonstrates high value in predicting geological bodies ahead of the drill bit.Validation using logging,mud logging,and drilling engineering data ensures the fidelity of the processing results of high-resolution seismic data.This provides clearer and more accurate stratigraphic information for drilling operations,enhancing both drilling safety and efficiency. 展开更多
关键词 high-resolution seismic data processing while-drilling update while-drilling logging multi-source information fusion thin-bed weak reflection artificial intelligence modeling
在线阅读 下载PDF
Research on Data Fusion of Adaptive Weighted Multi-Source Sensor 被引量:4
10
作者 Donghui Li Cong Shen +5 位作者 Xiaopeng Dai Xinghui Zhu Jian Luo Xueting Li Haiwen Chen Zhiyao Liang 《Computers, Materials & Continua》 SCIE EI 2019年第9期1217-1231,共15页
Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data mu... Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality. 展开更多
关键词 Adaptive weighting multi-source sensor data fusion loss of data processing grubbs elimination
在线阅读 下载PDF
A heuristic cabin-type component alignment method based on multi-source data fusion 被引量:1
11
作者 Hao YU Fuzhou DU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第8期2242-2256,共15页
In cabin-type component alignment, digital measurement technology is usually adopted to provide guidance for assembly. Depending on the system of measurement, the alignment process can be divided into measurement-assi... In cabin-type component alignment, digital measurement technology is usually adopted to provide guidance for assembly. Depending on the system of measurement, the alignment process can be divided into measurement-assisted assembly(MAA) and force-driven assembly. In MAA,relative pose between components is directly measured to guide assembly, while in force-driven assembly, only contact state can be recognized according to measured six-dimensional force and torque(6 D F/T) and the process is completed based on preset assembly strategy. Aiming to improve the efficiency of force-driven cabin-type component alignment, this paper proposed a heuristic alignment method based on multi-source data fusion. In this method, measured 6 D F/T, pose data and geometric information of components are fused to calculate the relative pose between components and guide the movement of pose adjustment platform. Among these data types, pose data and measured 6 D F/T are combined as data set. To collect the data sets needed for data fusion, dynamic gravity compensation method and hybrid motion control method are designed. Then the relative pose calculation method is elaborated, which transforms collected data sets into discrete geometric elements and calculates the relative poses based on the geometric information of components.Finally, experiments are conducted in simulation environment and the results show that the proposed alignment method is feasible and effective. 展开更多
关键词 Alignment strategy Force-driven assembly Heuristic alignment method multi-source data fusion Relative pose calculation
原文传递
Image Processing on Geological Data in Vector Format and Multi-Source Spatial Data Fusion
12
作者 Liu Xing Hu Guangdao Qiu Yubao Faculty of Earth Resources, China University of Geosciences, Wuhan 430074 《Journal of China University of Geosciences》 SCIE CSCD 2003年第3期278-282,共5页
The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper... The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly. 展开更多
关键词 geological data GIS-based vector data conversion image processing multi-source data fusion
在线阅读 下载PDF
Recent trends of machine learning applied to multi-source data of medicinal plants 被引量:3
13
作者 Yanying Zhang Yuanzhong Wang 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第12期1388-1407,共20页
In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese... In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese medicine during corona virus disease 2019(COVID-19)pandemic has attracted extensive attention globally.Medicinal plants have,therefore,become increasingly popular among the public.However,with increasing demand for and profit with medicinal plants,commercial fraudulent events such as adulteration or counterfeits sometimes occur,which poses a serious threat to the clinical outcomes and interests of consumers.With rapid advances in artificial intelligence,machine learning can be used to mine information on various medicinal plants to establish an ideal resource database.We herein present a review that mainly introduces common machine learning algorithms and discusses their application in multi-source data analysis of medicinal plants.The combination of machine learning algorithms and multi-source data analysis facilitates a comprehensive analysis and aids in the effective evaluation of the quality of medicinal plants.The findings of this review provide new possibilities for promoting the development and utilization of medicinal plants. 展开更多
关键词 Machine learning Medicinal plant multi-source data data fusion Application
在线阅读 下载PDF
IoT Empowered Early Warning of Transmission Line Galloping Based on Integrated Optical Fiber Sensing and Weather Forecast Time Series Data 被引量:1
14
作者 Zhe Li Yun Liang +1 位作者 Jinyu Wang Yang Gao 《Computers, Materials & Continua》 SCIE EI 2025年第1期1171-1192,共22页
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran... Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios. 展开更多
关键词 Optical fiber sensing multi-source data fusion early warning of galloping time series data IOT adaptive weighted learning irregular time series perception closed-loop attention mechanism
在线阅读 下载PDF
Generation of daily snow depth from multi-source satellite images and in situ observations
15
作者 CAO Guangzhen HOU Peng +1 位作者 ZHENG Zhaojun TANG Shihao 《Journal of Geographical Sciences》 SCIE CSCD 2015年第10期1235-1246,共12页
Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with ... Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with SD measurements from in situ observations and passive microwave remote sensing of Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and snow cover measurements of the Interactive Multisensor Snow and Ice Mapping System (IMS). AMSR-E SD at 25 km spatial resolution was retrieved from AMSR-E products of snow density and snow water equivalent and then corrected using the SD from in situ observations and IMS snow cover. Corrected AMSR-E SD images were then resampled to act as "virtual" in situ observations to combine with the real in situ observations to interpolate at 4 km spatial resolution SD using the Cressman method. Finally, daily SD data generation for several regions of China demonstrated that the method is well suited to the generation of higher spatial resolution SD data in regions with a lower Digital Elevation Model (DEM) but not so well suited to regions at high altitude and with an undulating terrain, such as the Tibetan Plateau. Analysis of the longer time period SD data generation for January between 2003 and 2010 in northern Xinjiang also demonstrated the feasibility of the method. 展开更多
关键词 data fusion daily snow depth multi-source satellite images passive microwave remote sensing IMS in situ observations
原文传递
Threat Modeling and Application Research Based on Multi-Source Attack and Defense Knowledge
16
作者 Shuqin Zhang Xinyu Su +2 位作者 Peiyu Shi Tianhui Du Yunfei Han 《Computers, Materials & Continua》 SCIE EI 2023年第10期349-377,共29页
Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to u... Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to understand the condition and trend of a cyberattack and respond promptly.To address these challenges,we propose a novel approach that consists of three steps.First,we construct the attack and defense analysis of the cybersecurity ontology(ADACO)model by integrating multiple cybersecurity databases.Second,we develop the threat evolution prediction algorithm(TEPA),which can automatically detect threats at device nodes,correlate and map multisource threat information,and dynamically infer the threat evolution process.TEPA leverages knowledge graphs to represent comprehensive threat scenarios and achieves better performance in simulated experiments by combining structural and textual features of entities.Third,we design the intelligent defense decision algorithm(IDDA),which can provide intelligent recommendations for security personnel regarding the most suitable defense techniques.IDDA outperforms the baseline methods in the comparative experiment. 展开更多
关键词 multi-source data fusion threat modeling threat propagation path knowledge graph intelligent defense decision-making
在线阅读 下载PDF
Hierarchical Optimization Method for Federated Learning with Feature Alignment and Decision Fusion
17
作者 Ke Li Xiaofeng Wang Hu Wang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1391-1407,共17页
In the realm of data privacy protection,federated learning aims to collaboratively train a global model.However,heterogeneous data between clients presents challenges,often resulting in slow convergence and inadequate... In the realm of data privacy protection,federated learning aims to collaboratively train a global model.However,heterogeneous data between clients presents challenges,often resulting in slow convergence and inadequate accuracy of the global model.Utilizing shared feature representations alongside customized classifiers for individual clients emerges as a promising personalized solution.Nonetheless,previous research has frequently neglected the integration of global knowledge into local representation learning and the synergy between global and local classifiers,thereby limiting model performance.To tackle these issues,this study proposes a hierarchical optimization method for federated learning with feature alignment and the fusion of classification decisions(FedFCD).FedFCD regularizes the relationship between global and local feature representations to achieve alignment and incorporates decision information from the global classifier,facilitating the late fusion of decision outputs from both global and local classifiers.Additionally,FedFCD employs a hierarchical optimization strategy to flexibly optimize model parameters.Through experiments on the Fashion-MNIST,CIFAR-10 and CIFAR-100 datasets,we demonstrate the effectiveness and superiority of FedFCD.For instance,on the CIFAR-100 dataset,FedFCD exhibited a significant improvement in average test accuracy by 6.83%compared to four outstanding personalized federated learning approaches.Furthermore,extended experiments confirm the robustness of FedFCD across various hyperparameter values. 展开更多
关键词 Federated learning data heterogeneity feature alignment decision fusion hierarchical optimization
在线阅读 下载PDF
Dual-environment feature fusion-based method for estimating building-scale population distributions
18
作者 Guangyu Liu Rui Li +4 位作者 Jing Xia Zhaohui Liu Jing Cai Huayi Wu Mingjun Peng 《Geo-Spatial Information Science》 CSCD 2024年第6期1943-1958,共16页
Information on the population distribution at the building scale can help governments make supplemental decisions to address complex urban management issues.However,the discontinuity and strong spatial heterogeneity o... Information on the population distribution at the building scale can help governments make supplemental decisions to address complex urban management issues.However,the discontinuity and strong spatial heterogeneity of research units at the building scale make it challenging to fuse multi-source geographic data,which causes significant errors in population estimation.To address this problem,this study proposes a method for population estimation at the building scale based on Dual-Environment Feature Fusion(DEFF).The dual environments of buildings were constructed by splitting the physical boundaries and extracting features suitable for the dual-environment scale from multi-source geographic data to describe the complex environmental features of buildings.Meanwhile,Data Quality Weighting based Technique for Order of Preference by Similarity to Ideal Solution(DQW-TOPSIS)method was proposed to assign appropriate weights to the features of the external environment for better feature fusion.Finally,a regression model was established using dual-environment features for building-scale population estimation.The experimental areas chosen for this study were Jianghan and Wuchang Districts,both located in Wuhan City,China.The estimated results of the DEFF were compared with those of the ablation experiments,as well as three publicly accessible population datasets,specifically LandScan,WorldPop,and GHS-POP,at the community scale.The evaluation results showed that DEFF had an R2 of approximately 0.8,Mean Absolute Error(MAE)of approximately 1200,Root Mean Square Error(RMSE)of approximately 1700,and both Mean Absolute Percentage Error(MAPE)and Symmetric Mean Absolute Percentage Error(SMAPE)of approximately 26%,indicating an improved performance and verifying the validity of the proposed method for fine-scale population estimation. 展开更多
关键词 Building scale multi-source data fusion estimation of population distribution dual environment data Quality Weighting based Technique for Order of Preference by Similarity to Ideal Solution(DQW-TOPSIS)
原文传递
基于多传感器数据融合的互异网络轴承故障诊断方法 被引量:2
19
作者 赵小强 李森 《计算机工程与应用》 北大核心 2025年第5期323-333,共11页
为了解决单传感器单一分支网络的输入容易受到外界干扰以及在不同域信号转换过程中丢失特征信息,导致故障诊断效果不佳的问题,提出了基于多传感器数据融合的互异网络轴承故障诊断方法。设计了数据预处理模块,以数据级的融合方式实现来... 为了解决单传感器单一分支网络的输入容易受到外界干扰以及在不同域信号转换过程中丢失特征信息,导致故障诊断效果不佳的问题,提出了基于多传感器数据融合的互异网络轴承故障诊断方法。设计了数据预处理模块,以数据级的融合方式实现来自多传感器的多角度故障特征互补,充分考虑了轴承设备多传感器之间的相关性。同时,将经过快速傅里叶变换(FFT)和频率切片小波变换(FSWT)处理后的信号融合为多域信号作为模型的输入,以多域信号独立作为模型输入的形式确保不同域信号在转换过程中关键的特征信息不会丢失。该方法针对不同的域信号设计了相对应的互异网络结构对多传感器数据高维非线性空间中的低维特征关键提取,这也为设备维修人员提供了更加可靠方便的维修手段。当其中一个分支网络的输入受到外界干扰时,另外两个分支网络会起到纠错的作用,不仅增强了网络的容错能力,同时也会增加网络的特征互补能力。利用记忆单元将特征视为不同的时间步,以此建立不同故障特征之间的依赖关系。为了防止模型陷入局部最优,使用适配于所提模型的学习率余弦退火算法优化模型训练。在两个轴承数据集上进行实验,结果表明,该方法拥有好的故障诊断效果和泛化能力,可以满足基于多传感器数据融合的轴承故障诊断任务。 展开更多
关键词 滚动轴承 故障诊断 多传感器 互异网络 数据融合 特征互补
在线阅读 下载PDF
基于分类估计的异质数据融合M_(split)模型 被引量:1
20
作者 陶叶青 束明聪 陈浩 《淮阴师范学院学报(自然科学版)》 2025年第1期45-51,共7页
从分类估计的角度研究异质数据融合理论,建立一种不依赖于随机模型的融合方法.该理论首先基于M_(split)估计对观测数据进行分类估计,然后根据分类估计结果,应用中位函数计算不同参数估值的中误差,最后通过定义尺度因子与相对权比函数构... 从分类估计的角度研究异质数据融合理论,建立一种不依赖于随机模型的融合方法.该理论首先基于M_(split)估计对观测数据进行分类估计,然后根据分类估计结果,应用中位函数计算不同参数估值的中误差,最后通过定义尺度因子与相对权比函数构建融合模型,实现异质数据的有效融合.通过两类不同精度量级的观测数据组成的控制测量实例对该方法进行验证,结果表明,该方法易于实现,得到的参数估值稳定. 展开更多
关键词 异质数据融合 分类估计 M_(split)估计 尺度因子 融合模型
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部