Face detection is applied to many tasks such as auto focus control, surveillance, user interface, and face recognition. Processing speed and detection accuracy of the face detection have been improved continuously. Th...Face detection is applied to many tasks such as auto focus control, surveillance, user interface, and face recognition. Processing speed and detection accuracy of the face detection have been improved continuously. This paper describes a novel method of fast face detection with multi-scale window search free from image resizing. We adopt statistics of gradient images (SGI) as image features and append an overlapping cell array to improve detection accuracy. The SGI feature is scale invariant and insensitive to small difference of pixel value. These characteristics enable the multi-scale window search without image resizing. Experimental results show that processing speed of our method is 3.66 times faster than a conventional method, adopting HOG features combined to an SVM classifier, without accuracy degradation.展开更多
With the expansion of the application scope of social computing problems,many path problems in real life have evolved from pure path optimization problems to social computing problems that take into account various so...With the expansion of the application scope of social computing problems,many path problems in real life have evolved from pure path optimization problems to social computing problems that take into account various social attributes,cultures,and the emotional needs of customers.The actual soft time window vehicle routing problem,speeding up the response of customer needs,improving distribution efficiency,and reducing operating costs is the focus of current social computing problems.Therefore,designing fast and effective algorithms to solve this problem has certain theoretical and practical significance.In this paper,considering the time delay problem of customer demand,the compensation problem is given,and the mathematical model of vehicle path problem with soft time window is given.This paper proposes a hybrid tabu search(TS)&scatter search(SS)algorithm for vehicle routing problem with soft time windows(VRPSTW),which mainly embeds the TS dynamic tabu mechanism into the SS algorithm framework.TS uses the scattering of SS to avoid the dependence on the quality of the initial solution,and SS uses the climbing ability of TS improves the ability of optimizing,so that the quality of search for the optimal solution can be significantly improved.The hybrid algorithm is still based on the basic framework of SS.In particular,TS is mainly used for solution improvement and combination to generate new solutions.In the solution process,both the quality and the dispersion of the solution are considered.A simulation experiments verify the influence of the number of vehicles and maximum value of tabu length on solution,parameters’control over the degree of convergence,and the influence of the number of diverse solutions on algorithm performance.Based on the determined parameters,simulation experiment is carried out in this paper to further prove the algorithm feasibility and effectiveness.The results of this paper provide further ideas for solving vehicle routing problems with time windows and improving the efficiency of vehicle routing problems and have strong applicability.展开更多
The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic ...The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic customer demands.These uncertainties make traditional deterministic models inadequate,often leading to suboptimal or infeasible solutions.To address these challenges,this work proposes an adaptive hybrid metaheuristic that integrates Genetic Algorithms(GA)with Local Search(LS),while incorporating stochastic uncertainty modeling through probabilistic travel times.The proposed algorithm dynamically adjusts parameters—such as mutation rate and local search probability—based on real-time search performance.This adaptivity enhances the algorithm’s ability to balance exploration and exploitation during the optimization process.Travel time uncertainties are modeled using Gaussian noise,and solution robustness is evaluated through scenario-based simulations.We test our method on a set of benchmark problems from Solomon’s instance suite,comparing its performance under deterministic and stochastic conditions.Results show that the proposed hybrid approach achieves up to a 9%reduction in expected total travel time and a 40% reduction in time window violations compared to baseline methods,including classical GA and non-adaptive hybrids.Additionally,the algorithm demonstrates strong robustness,with lower solution variance across uncertainty scenarios,and converges faster than competing approaches.These findings highlight the method’s suitability for practical logistics applications such as last-mile delivery and real-time transportation planning,where uncertainty and service-level constraints are critical.The flexibility and effectiveness of the proposed framework make it a promising candidate for deployment in dynamic,uncertainty-aware supply chain environments.展开更多
Windows CE是一种典型的嵌入式系统,由于其配置的硬件资源的瓶颈,内存资源比一般的PC相对紧张。所以在安装Windows CE的设备下显示大像素图像文件比在一般的PC(Windows2000系统)上更加困难。介绍在Windows CE环境下如何利用分块显示法,...Windows CE是一种典型的嵌入式系统,由于其配置的硬件资源的瓶颈,内存资源比一般的PC相对紧张。所以在安装Windows CE的设备下显示大像素图像文件比在一般的PC(Windows2000系统)上更加困难。介绍在Windows CE环境下如何利用分块显示法,对大像素图像进行分块显示。提出首先在PC机上利用网格分块法将一幅大像素图像文件BMP,JPEG图像文件分割压缩成多块像素量小的BMP,JPEG图像文件,对每个小图像文件进行编号,存放到Windows CE PDA上;然后在Windows CE PDA上利用网格检索的方法进行检索所需要的像素块的索引号;最后利用多线程的方法在显示区分块显示,实现大像素图像在Windows CE下的显示。展开更多
A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely no...A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely not all jobs can be scheduled within specified scheduling horizons due to the limited machine capacity. The objective is thus to maximize the overall profits of processed jobs while respecting machine constraints. A first-in- first-out heuristic is applied to find an initial solution, and then a large neighborhood search procedure is employed to relax and re- optimize cumbersome solutions. A machine learning mechanism is also introduced to converge on the most efficient neighborhoods for the problem. Extensive computational results are presented based on data from an application involving the daily observation scheduling of a fleet of earth observing satellites. The method rapidly solves most problem instances to optimal or near optimal and shows a robust performance in sensitive analysis.展开更多
To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,...To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.展开更多
Our research focuses on the development of two cooperative approaches for resolution of the multi-item capacitated lot-sizing problems with time windows and setup times (MICLSP-TW-ST). In this paper we combine variabl...Our research focuses on the development of two cooperative approaches for resolution of the multi-item capacitated lot-sizing problems with time windows and setup times (MICLSP-TW-ST). In this paper we combine variable neighborhood search and accurate mixed integer programming (VNS-MIP) to solve MICLSP-TW-ST. It concerns so a particularly important and difficult problem in production planning. This problem is NP-hard in the strong sense. Moreover, it is very difficult to solve with an exact method;it is for that reason we have made use of the approximate methods. We improved the variable neighborhood search (VNS) algorithm, which is efficient for solving hard combinatorial optimization problems. This problem can be viewed as an optimization problem with mixed variables (binary variables and real variables). The new VNS algorithm was tested against 540 benchmark problems. The performance of most of our approaches was satisfactory and performed better than the algorithms already proposed in the literature.展开更多
The main objective of this paper is to propose a two-phase solution algorithm for solving the Inventory Routing Problem with Time Windows (IRPTW), which has not been excessively researched in the literature. The sol...The main objective of this paper is to propose a two-phase solution algorithm for solving the Inventory Routing Problem with Time Windows (IRPTW), which has not been excessively researched in the literature. The solution approach is based on (a) a simple simulation for the planning phase (Phase I) and (b) the Variable Neighborhood Search Algorithm (VNS) for the routing phase (Phase II). Testing instances are established to investigate algorithmic performance, and the computational results are then reported. The computational study underscores the importance of integrating the inventory and vehicle routing decisions. Graphical presentation formats are provided to convey meaningful insights into the problem.展开更多
文摘Face detection is applied to many tasks such as auto focus control, surveillance, user interface, and face recognition. Processing speed and detection accuracy of the face detection have been improved continuously. This paper describes a novel method of fast face detection with multi-scale window search free from image resizing. We adopt statistics of gradient images (SGI) as image features and append an overlapping cell array to improve detection accuracy. The SGI feature is scale invariant and insensitive to small difference of pixel value. These characteristics enable the multi-scale window search without image resizing. Experimental results show that processing speed of our method is 3.66 times faster than a conventional method, adopting HOG features combined to an SVM classifier, without accuracy degradation.
基金This work was supported by the National Natural Science Foundation of China(61772196,61472136)the Hunan Provincial Focus Social Science Fund(2016ZDB006)Thanks to Professor Weijin Jiang for his guidance and suggestions on this research.Funding Statement。
文摘With the expansion of the application scope of social computing problems,many path problems in real life have evolved from pure path optimization problems to social computing problems that take into account various social attributes,cultures,and the emotional needs of customers.The actual soft time window vehicle routing problem,speeding up the response of customer needs,improving distribution efficiency,and reducing operating costs is the focus of current social computing problems.Therefore,designing fast and effective algorithms to solve this problem has certain theoretical and practical significance.In this paper,considering the time delay problem of customer demand,the compensation problem is given,and the mathematical model of vehicle path problem with soft time window is given.This paper proposes a hybrid tabu search(TS)&scatter search(SS)algorithm for vehicle routing problem with soft time windows(VRPSTW),which mainly embeds the TS dynamic tabu mechanism into the SS algorithm framework.TS uses the scattering of SS to avoid the dependence on the quality of the initial solution,and SS uses the climbing ability of TS improves the ability of optimizing,so that the quality of search for the optimal solution can be significantly improved.The hybrid algorithm is still based on the basic framework of SS.In particular,TS is mainly used for solution improvement and combination to generate new solutions.In the solution process,both the quality and the dispersion of the solution are considered.A simulation experiments verify the influence of the number of vehicles and maximum value of tabu length on solution,parameters’control over the degree of convergence,and the influence of the number of diverse solutions on algorithm performance.Based on the determined parameters,simulation experiment is carried out in this paper to further prove the algorithm feasibility and effectiveness.The results of this paper provide further ideas for solving vehicle routing problems with time windows and improving the efficiency of vehicle routing problems and have strong applicability.
文摘The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic customer demands.These uncertainties make traditional deterministic models inadequate,often leading to suboptimal or infeasible solutions.To address these challenges,this work proposes an adaptive hybrid metaheuristic that integrates Genetic Algorithms(GA)with Local Search(LS),while incorporating stochastic uncertainty modeling through probabilistic travel times.The proposed algorithm dynamically adjusts parameters—such as mutation rate and local search probability—based on real-time search performance.This adaptivity enhances the algorithm’s ability to balance exploration and exploitation during the optimization process.Travel time uncertainties are modeled using Gaussian noise,and solution robustness is evaluated through scenario-based simulations.We test our method on a set of benchmark problems from Solomon’s instance suite,comparing its performance under deterministic and stochastic conditions.Results show that the proposed hybrid approach achieves up to a 9%reduction in expected total travel time and a 40% reduction in time window violations compared to baseline methods,including classical GA and non-adaptive hybrids.Additionally,the algorithm demonstrates strong robustness,with lower solution variance across uncertainty scenarios,and converges faster than competing approaches.These findings highlight the method’s suitability for practical logistics applications such as last-mile delivery and real-time transportation planning,where uncertainty and service-level constraints are critical.The flexibility and effectiveness of the proposed framework make it a promising candidate for deployment in dynamic,uncertainty-aware supply chain environments.
文摘Windows CE是一种典型的嵌入式系统,由于其配置的硬件资源的瓶颈,内存资源比一般的PC相对紧张。所以在安装Windows CE的设备下显示大像素图像文件比在一般的PC(Windows2000系统)上更加困难。介绍在Windows CE环境下如何利用分块显示法,对大像素图像进行分块显示。提出首先在PC机上利用网格分块法将一幅大像素图像文件BMP,JPEG图像文件分割压缩成多块像素量小的BMP,JPEG图像文件,对每个小图像文件进行编号,存放到Windows CE PDA上;然后在Windows CE PDA上利用网格检索的方法进行检索所需要的像素块的索引号;最后利用多线程的方法在显示区分块显示,实现大像素图像在Windows CE下的显示。
基金supported by the National Natural Science Foundation of China (7060103570801062)
文摘A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely not all jobs can be scheduled within specified scheduling horizons due to the limited machine capacity. The objective is thus to maximize the overall profits of processed jobs while respecting machine constraints. A first-in- first-out heuristic is applied to find an initial solution, and then a large neighborhood search procedure is employed to relax and re- optimize cumbersome solutions. A machine learning mechanism is also introduced to converge on the most efficient neighborhoods for the problem. Extensive computational results are presented based on data from an application involving the daily observation scheduling of a fleet of earth observing satellites. The method rapidly solves most problem instances to optimal or near optimal and shows a robust performance in sensitive analysis.
基金supported by Natural Science Foundation Project of Gansu Provincial Science and Technology Department(No.1506RJZA084)Gansu Provincial Education Department Scientific Research Fund Grant Project(No.1204-13).
文摘To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.
文摘Our research focuses on the development of two cooperative approaches for resolution of the multi-item capacitated lot-sizing problems with time windows and setup times (MICLSP-TW-ST). In this paper we combine variable neighborhood search and accurate mixed integer programming (VNS-MIP) to solve MICLSP-TW-ST. It concerns so a particularly important and difficult problem in production planning. This problem is NP-hard in the strong sense. Moreover, it is very difficult to solve with an exact method;it is for that reason we have made use of the approximate methods. We improved the variable neighborhood search (VNS) algorithm, which is efficient for solving hard combinatorial optimization problems. This problem can be viewed as an optimization problem with mixed variables (binary variables and real variables). The new VNS algorithm was tested against 540 benchmark problems. The performance of most of our approaches was satisfactory and performed better than the algorithms already proposed in the literature.
文摘The main objective of this paper is to propose a two-phase solution algorithm for solving the Inventory Routing Problem with Time Windows (IRPTW), which has not been excessively researched in the literature. The solution approach is based on (a) a simple simulation for the planning phase (Phase I) and (b) the Variable Neighborhood Search Algorithm (VNS) for the routing phase (Phase II). Testing instances are established to investigate algorithmic performance, and the computational results are then reported. The computational study underscores the importance of integrating the inventory and vehicle routing decisions. Graphical presentation formats are provided to convey meaningful insights into the problem.