期刊文献+
共找到30,031篇文章
< 1 2 250 >
每页显示 20 50 100
Feature Extraction by Multi-Scale Principal Component Analysis and Classification in Spectral Domain 被引量:2
1
作者 Shengkun Xie Anna T. Lawnizak +1 位作者 Pietro Lio Sridhar Krishnan 《Engineering(科研)》 2013年第10期268-271,共4页
Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (... Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals. 展开更多
关键词 multi-scale principal component analysis Discrete WAVELET TRANSFORM FEATURE Extraction Signal CLASSIFICATION Empirical CLASSIFICATION
在线阅读 下载PDF
Prediction of joint roughness coefficient via hybrid machine learning model combined with principal components analysis 被引量:1
2
作者 Shijie Xie Hang Lin +2 位作者 Tianxing Ma Kang Peng Zhen Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2291-2306,共16页
Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC... Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC is a nonlinear system with a lot of overlapping information.In this paper,a dataset of eight roughness statistical parameters covering 112 digital joints is established.Then,the principal component analysis method is introduced to extract the significant information,which solves the information overlap problem of roughness characterization.Based on the two principal components of extracted features,the white shark optimizer algorithm was introduced to optimize the extreme gradient boosting model,and a new machine learning(ML)prediction model was established.The prediction accuracy of the new model and the other 17 models was measured using statistical metrics.The results show that the prediction result of the new model is more consistent with the real JRC value,with higher recognition accuracy and generalization ability. 展开更多
关键词 Rock discontinuities Joint roughness coefficient(JRC) Roughness characterization principal components analysis(PCA) Machine learning
在线阅读 下载PDF
Influencing factor of the characterization and restoration of phase aberrations resulting from atmospheric turbulence based on Principal Component Analysis
3
作者 WANG Jiang-pu-zhen WANG Zhi-qiang +2 位作者 ZHANG Jing-hui QIAO Chun-hong FAN Cheng-yu 《中国光学(中英文)》 北大核心 2025年第4期899-907,共9页
Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high com... Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high computational complexity and insufficient capture of high-frequency phase aberration components,so we proposed a Principal-Component-Analysis-based method for representing phase aberrations.This paper discusses the factors influencing the accuracy of restoration,mainly including the sample space size and the sampling interval of D/r_(0),on the basis of characterizing phase aberrations by Principal Components(PCs).The experimental results show that a larger D/r_(0)sampling interval can ensure the generalization ability and robustness of the principal components in the case of a limited amount of original data,which can help to achieve high-precision deployment of the model in practical applications quickly.In the environment with relatively strong turbulence in the test set of D/r_(0)=24,the use of 34 terms of PCs can improve the corrected Strehl ratio(SR)from 0.007 to 0.1585,while the Strehl ratio of the light spot after restoration using 34 terms of ZPs is only 0.0215,demonstrating almost no correction effect.The results indicate that PCs can serve as a better alternative in representing and restoring the characteristics of atmospheric turbulence induced phase aberrations.These findings pave the way to use PCs of phase aberrations with fewer terms than traditional ZPs to achieve data dimensionality reduction,and offer a reference to accelerate and stabilize the model and deep learning based adaptive optics correction. 展开更多
关键词 phase aberration atmospheric turbulence principal component analysis Zernike polynomials
在线阅读 下载PDF
Assessment of Spatial Water Quality Variations in Shallow Wells Using Principal Component Analysis in Half London Ward, Tanzania
4
作者 Matungwa William Zacharia Katambara 《Journal of Water Resource and Protection》 2025年第2期108-143,共36页
Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Wa... Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Ward, Tunduma Town, Tanzania, using Principal Component Analysis (PCA) to identify the primary factors influencing groundwater contamination. Monthly samples were collected over 12 months and analysed for physical, chemical, and biological parameters. The PCA revealed between four and six principal components (PCs) for each well, explaining between 84.61% and 92.55% of the total variance in water quality data. In WW1, five PCs captured 87.53% of the variability, with PC1 (33.05%) dominated by pH, EC, TDS, and microbial contamination, suggesting significant influences from surface runoff and pit latrines. In WW2, six PCs explained 92.55% of the variance, with PC1 (36.17%) highlighting the effects of salinity, TDS, and agricultural runoff. WW3 had four PCs explaining 84.61% of the variance, with PC1 (39.63%) showing high contributions from pH, hardness, and salinity, indicating geological influences and contamination from human activities. Similarly, in WW4, six PCs explained 90.83% of the variance, where PC1 (43.53%) revealed contamination from pit latrines and fertilizers. WW5 also had six PCs, accounting for 92.51% of the variance, with PC1 (42.73%) indicating significant contamination from agricultural runoff and pit latrines. The study concludes that groundwater quality in Half-London Ward is primarily affected by a combination of surface runoff, pit latrine contamination, agricultural inputs, and geological factors. The presence of microbial contaminants and elevated nitrate and phosphate levels underscores the need for improved sanitation and sustainable agricultural practices. Recommendations include strengthening sanitation infrastructure, promoting responsible farming techniques, and implementing regular groundwater monitoring to safeguard water resources and public health in the region. 展开更多
关键词 Groundwater Contamination principal component analysis (PCA) Shallow Well Water Quality Anthropogenic Pollution Hydrogeological Processes
在线阅读 下载PDF
Refining GNSS-based water storage estimation:Improved hydrological signal extraction using principal component analysis
5
作者 Jiaxiang Tian Yulong Zhong +4 位作者 Yingchun Shen Kaijun Yang Hongbing Bai Fan Lei Changqing Wang 《Geodesy and Geodynamics》 2025年第5期591-603,共13页
The Global Navigation Satellite System(GNSS)is vital for monitoring terrestrial water storage(TWS).However,effectively extracting hydrological load deformation from GNSS observations poses a significant challenge.This... The Global Navigation Satellite System(GNSS)is vital for monitoring terrestrial water storage(TWS).However,effectively extracting hydrological load deformation from GNSS observations poses a significant challenge.This study proposes a novel strategy;the seasonal hydrological load signals are removed from the raw data,and the remaining signals use principal component analysis(PCA).Simulation results from Yunnan Province demonstrate that the spatial distribution of the root mean square error(RMSE)is improved by approximately 15% compared with traditional PCA extraction from raw data.From January 2013 to December 2022,TWS was inverted from 24 GNSS stations in Yunnan Province.The spatial distribution and time series of TWS inverted from GNSS align well with those TWS inferred from the Gravity Recovery and Climate Experiment(GRACE),GRACE Follow-On(GFO),and the Global Land Data Assimilation System(GLDAS)land surface model.However,the amplitude of the GNSS-inverted TWS is slightly higher.Since GNSS ground stations are more sensitive to hydrological load signals,they show correlations with precipitation data that are 8.6%and 6.0%higher than those of GRACE and GLDAS,respectively.In the power spectral density analysis of GRACE/GFO,GLDAS,and GNSS,the signal strength of GNSS is much higher than that of GRACE/GFO and GLDAS in the June and February cycles.These findings suggest that the new data extraction strategy can capture higher frequency hydrological signals in TWS,and GNSS observations can help address limitations in GRACE/GFO observations.This study demonstrates the potential of GNSS TWS in capturing higher-frequency hydrological signals and climate extremes application. 展开更多
关键词 Hydrography GNSS Green's function principal component analysis Yunnan Province
原文传递
Inter-hemispheric couplings in the middle atmosphere exhibited by principal component analysis of the SD-WACCM-X simulations
6
作者 Sheng-Yang Gu YuBo Zeng +3 位作者 Jin Hu YuSong Qin Liang Tang YuXuan Liu 《Earth and Planetary Physics》 2025年第4期925-937,共13页
This study employs Principal Component Analysis(PCA)and 13 years of SD-WACCM-X model data(2007-2019)to investigate the characteristics and mechanisms of Inter-hemispheric Coupling(IHC)triggered by sudden stratospheric... This study employs Principal Component Analysis(PCA)and 13 years of SD-WACCM-X model data(2007-2019)to investigate the characteristics and mechanisms of Inter-hemispheric Coupling(IHC)triggered by sudden stratospheric warming(SSW)events.IHC in both hemispheres leads to a cold anomaly in the equatorial stratosphere,a warm anomaly in the equatorial mesosphere,and increased temperatures in the mesosphere and lower thermosphere(MLT)region of the summer hemisphere.However,the IHC features during boreal winter period are significantly weaker than during the austral winter period,primarily due to weaker stationary planetary wave activity in the Southern Hemisphere(SH).During the austral winter period,IHC results in a warm anomaly in the polar mesosphere of the SH,which does not occur in the NH during boreal winter period.This study also examines the possible influence of quasi-two-day waves(QTDWs)on IHC.We found that the largest temperature anomaly in the summer polar MLT region is associated with a large wind instability area,and a well-developed critical layer structure of QTDW in January.In contrast,during July,despite favorable conditions for QTDW propagation in the Northern Hemisphere,weaker IHC response is observed,suggesting that IHC features and the relationship with QTDWs during July would be more complex than during January. 展开更多
关键词 inter-hemispheric coupling principal component analysis middle atmosphere quasi-two-day waves
在线阅读 下载PDF
Separation of rotating and stationary sound sources based on robust principal component analysis
7
作者 Fangli NING Weizhe ZHENG +1 位作者 Hongjie HOU Yang WANG 《Chinese Journal of Aeronautics》 2025年第8期217-230,共14页
Traditional beamforming techniques may not accurately locate sources in scenarios with both stationary and rotating sound sources.The existence of rotating sound sources can cause blurring in the stationary beamformin... Traditional beamforming techniques may not accurately locate sources in scenarios with both stationary and rotating sound sources.The existence of rotating sound sources can cause blurring in the stationary beamforming map.Current algorithms for separating different moving sound sources have limited effectiveness,leading to significant residual noise,especially when the rotating source is strong enough to mask stationary sources completely.To overcome these challenges,a novel solution utilizing a virtual rotating array in the modal domain combined with robust principal component analysis is proposed to separate sound sources with different rotational speeds.This approach,named Robust Principal Component Analysis in the Modal domain(RPCA-M),investigates the performance of convex nuclear norm and non-convex Schatten-p norm to distinguish stationary and rotating sources.By comparing the errors in Cross-Spectral Matrix(CSM)recovery and acoustic imaging across different algorithms,the effectiveness of RPCA-M in separating stationary and moving sound sources is demonstrated.Importantly,this method effectively separates sound sources,even when there are significant variations in their amplitudes at different rotation speeds. 展开更多
关键词 BEAMFORMING Cross-spectral matrix Virtual rotating array Robust principal component analysis Separation of sources
原文传递
Phase transition extracted by principal component analysis in the disordered Moore–Read state
8
作者 Na Jiang Shuaixin Fu +1 位作者 Zhengzhi Ma Lian Wang 《Chinese Physics B》 2025年第4期552-558,共7页
We study the influence of disorder on the Moore–Read state by principal component analysis(PCA),which is one of the ground state candidates for the 5/2 fractional Hall state.By using PCA,the topological features of t... We study the influence of disorder on the Moore–Read state by principal component analysis(PCA),which is one of the ground state candidates for the 5/2 fractional Hall state.By using PCA,the topological features of the ground state wave functions with different disorder strengths can be distilled.As the disorder strength increases,the Moore–Read state will be destroyed.We explore the phase transition by analyzing the overlaps between the random sample wave functions and the topologically distilled state.The cross-point between the amplitudes of the principal component and its counterpart is the phase transition point.Additionally,the origin of the second component comes from the excited states,which is different from the Laughlin state. 展开更多
关键词 fractional quantum Hall phase transition principal component analysis
原文传递
Using deep neural networks coupled with principal component analysis for ore production forecasting at open-pit mines 被引量:1
9
作者 Chengkai Fan Na Zhang +1 位作者 Bei Jiang Wei Victor Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期727-740,共14页
Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe... Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines. 展开更多
关键词 Oil sands production Open-pit mining Deep learning principal component analysis(PCA) Artificial neural network Mining engineering
在线阅读 下载PDF
A Modified Principal Component Analysis Method for Honeycomb Sandwich Panel Debonding Recognition Based on Distributed Optical Fiber Sensing Signals 被引量:1
10
作者 Shuai Chen Yinwei Ma +5 位作者 Zhongshu Wang Zongmei Xu Song Zhang Jianle Li Hao Xu Zhanjun Wu 《Structural Durability & Health Monitoring》 EI 2024年第2期125-141,共17页
The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scatt... The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state. 展开更多
关键词 Structural health monitoring distributed opticalfiber sensor damage identification honeycomb sandwich panel principal component analysis
在线阅读 下载PDF
Melt Index Prediction by Neural Soft-Sensor Based on Multi-Scale Analysis and Principal Component Analysis 被引量:11
11
作者 施健 刘兴高 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第6期849-852,共4页
Prediction of melt index (MI), the most important parameter in determining the product's grade and quality control of polypropylene produced in practical industrial processes, is studied. A novel soft-sensor model ... Prediction of melt index (MI), the most important parameter in determining the product's grade and quality control of polypropylene produced in practical industrial processes, is studied. A novel soft-sensor model with principal component analysis (PCA), radial basis function (RBF) networks, and multi-scale analysis (MSA) is proposed to infer the MI of manufactured products from real process variables, where PCA is carried out to select the most relevant process features and to eliminate the correlations of the input variables, MSA is introduced to a^quire much more information and to reduce the uncertainty of the system, and RBF networks are used to characterize the nonlinearity of the process. The research results show that the proposed method provides promising prediction reliability and accuracy, and supposed to have extensive application prospects in propylene polymerization processes. 展开更多
关键词 propylene polymerization neural soft-sensor principal component analysis multi-scale analysis
在线阅读 下载PDF
Robust Principal Component Analysis Integrating Sparse and Low-Rank Priors 被引量:1
12
作者 Wei Zhai Fanlong Zhang 《Journal of Computer and Communications》 2024年第4期1-13,共13页
Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Anal... Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements. 展开更多
关键词 Robust principal component analysis Sparse Matrix Low-Rank Matrix Hyperspectral Image
在线阅读 下载PDF
Optimizing data aggregation and clustering in Internet of things networks using principal component analysis and Q-learning 被引量:1
13
作者 Abhishek Bajpai Harshita Verma Anita Yadav 《Data Science and Management》 2024年第3期189-196,共8页
The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations im... The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations imposed by inadequate resources,energy,and network scalability,this type of network relies heavily on data aggregation and clustering algorithms.Although various conventional studies have aimed to enhance the lifespan of a network through robust systems,they do not always provide optimal efficiency for real-time applications.This paper presents an approach based on state-of-the-art machine-learning methods.In this study,we employed a novel approach that combines an extended version of principal component analysis(PCA)and a reinforcement learning algorithm to achieve efficient clustering and data reduction.The primary objectives of this study are to enhance the service life of a network,reduce energy usage,and improve data aggregation efficiency.We evaluated the proposed methodology using data collected from sensors deployed in agricultural fields for crop monitoring.Our proposed approach(PQL)was compared to previous studies that utilized adaptive Q-learning(AQL)and regional energy-aware clustering(REAC).Our study outperformed in terms of both network longevity and energy consumption and established a fault-tolerant network. 展开更多
关键词 Wireless sensor network principal component analysis(PCA) Reinforcement learning Data aggregation
在线阅读 下载PDF
A Hybrid Optimization Approach of Single Point Incremental Sheet Forming of AISI 316L Stainless Steel Using Grey Relation Analysis Coupled with Principal Component Analysiss
14
作者 A Visagan P Ganesh 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期160-166,共7页
We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were use... We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response. 展开更多
关键词 single point incremental forming AISI 316L taguchi grey relation analysis principal component analysis surface roughness scanning electron microscopy
原文传递
Application of XGBoost and kernel principal component analysis to forecast oxygen content in ESR
15
作者 Yu-xiao Liu Yan-wu Dong +2 位作者 Zhou-hua Jiang Qi Wang Yu-shuo Li 《Journal of Iron and Steel Research International》 CSCD 2024年第12期2940-2952,共13页
A model combining kernel principal component analysis(KPCA)and Xtreme Gradient Boosting(XGBoost)was introduced for forecasting the final oxygen content of electroslag remelting.KPCA was employed to reduce the dimensio... A model combining kernel principal component analysis(KPCA)and Xtreme Gradient Boosting(XGBoost)was introduced for forecasting the final oxygen content of electroslag remelting.KPCA was employed to reduce the dimensionality of the factors influencing the endpoint oxygen content and to eliminate any existing correlations among these factors.The resulting principal components were then utilized as input variables for the XGBoost prediction model.The KPCA-XGBoost model was trained and proven using data obtained from companies.The model structure was adapted,and hyperparameters were optimized using grid search cross-validation.The model performance of the KPCA-XGBoost model is compared with five machine learning models,including the support vector regression model.The findings demonstrated that the KPCA-XGBoost model exhibited the highest level of prediction accuracy,indicating that the incorporation of KPCA significantly enhanced the regression prediction performance of the model.The accuracy of the KPCA-XGBoost model was 82.4%,97.1%,and 100%at errors of±1.5×10^(-6),±2.0×10^(-6),and±3×10^(-6)for oxygen content,respectively. 展开更多
关键词 Electroslag remelting Oxygen content Machine learning Kernel principal component analysis XGBoost
原文传递
Prediction of rock mass classification in tunnel boring machine tunneling using the principal component analysis (PCA)-gated recurrent unit (GRU) neural network
16
作者 Ke Man Liwen Wu +3 位作者 Xiaoli Liu Zhifei Song Kena Li Nawnit Kumar 《Deep Underground Science and Engineering》 2024年第4期413-425,共13页
Due to the complexity of underground engineering geology,the tunnel boring machine(TBM)usually shows poor adaptability to the surrounding rock mass,leading to machine jamming and geological hazards.For the TBM project... Due to the complexity of underground engineering geology,the tunnel boring machine(TBM)usually shows poor adaptability to the surrounding rock mass,leading to machine jamming and geological hazards.For the TBM project of Lanzhou Water Source Construction,this study proposed a neural network called PCA-GRU,which combines principal component analysis(PCA)with gated recurrent unit(GRU)to improve the accuracy of predicting rock mass classification in TBM tunneling.The input variables from the PCA dimension reduction of nine parameters in the sample data set were utilized for establishing the PCA-GRU model.Subsequently,in order to speed up the response time of surrounding rock mass classification predictions,the PCA-GRU model was optimized.Finally,the prediction results obtained by the PCA-GRU model were compared with those of four other models and further examined using random sampling analysis.As indicated by the results,the PCA-GRU model can predict the rock mass classification in TBM tunneling rapidly,requiring about 20 s to run.It performs better than the previous four models in predicting the rock mass classification,with accuracy A,macro precision MP,and macro recall MR being 0.9667,0.963,and 0.9763,respectively.In Class II,III,and IV rock mass prediction,the PCA-GRU model demonstrates better precision P and recall R owing to the dimension reduction technique.The random sampling analysis indicates that the PCA-GRU model shows stronger generalization,making it more appropriate in situations where the distribution of various rock mass classes and lithologies change in percentage. 展开更多
关键词 gated recurrent unit(GRU) prediction of rock mass classification principal component analysis(PCA) TBM tunneling
原文传递
Using Decision Tree Classification and Principal Component Analysis to Predict Ethnicity Based on Individual Characteristics: A Case Study of Assam and Bhutan Ethnicities
17
作者 Tianhui Zhang Xinyu Zhang +2 位作者 Xianchen Liu Zhen Guo Yuanhao Tian 《Journal of Software Engineering and Applications》 2024年第12期833-850,共18页
This study investigates the use of a decision tree classification model, combined with Principal Component Analysis (PCA), to distinguish between Assam and Bhutan ethnic groups based on specific anthropometric feature... This study investigates the use of a decision tree classification model, combined with Principal Component Analysis (PCA), to distinguish between Assam and Bhutan ethnic groups based on specific anthropometric features, including age, height, tail length, hair length, bang length, reach, and earlobe type. The dataset was reduced using PCA, which identified height, reach, and age as key features contributing to variance. However, while PCA effectively reduced dimensionality, it faced challenges in clearly distinguishing between the two ethnic groups, a limitation noted in previous research. In contrast, the decision tree model performed significantly better, establishing clear decision boundaries and achieving high classification accuracy. The decision tree consistently selected Height and Reach as the most important classifiers, a finding supported by existing studies on ethnic differences in Northeast India. The results highlight the strengths of combining PCA for dimensionality reduction with decision tree models for classification tasks. While PCA alone was insufficient for optimal class separation, its integration with decision trees improved both the model’s accuracy and interpretability. Future research could explore other machine learning models to enhance classification and examine a broader set of anthropometric features for more comprehensive ethnic group classification. 展开更多
关键词 Decision Tree Classification principal component analysis Anthropometric Features Dimensionality Reduction Machine Learning in Anthropology
在线阅读 下载PDF
Comparative Analysis of Differences among Northern,Jiangnan,and Lingnan Classical Private Gardens Using Principal Component Cluster Method
18
作者 Lijuan Sun Hui Wang 《Journal of Architectural Research and Development》 2024年第5期20-29,共10页
This paper investigates the design essence of Chinese classical private gardens,integrating their design elements and fundamental principles.It systematically analyzes the unique characteristics and differences among ... This paper investigates the design essence of Chinese classical private gardens,integrating their design elements and fundamental principles.It systematically analyzes the unique characteristics and differences among classical private gardens in the Northern,Jiangnan,and Lingnan regions.The study examines nine classical private gardens from Northern China,Jiangnan,and Lingnan by utilizing the advanced tool of principal component cluster analysis.Based on literature analysis and field research,273 variables were selected for principal component analysis,from which four components with higher contribution rates were chosen for further study.Subsequently,we employed clustering analysis techniques to compare the differences among the three types of gardens.The results reveal that the first principal component effectively highlights the differences between Jiangnan and Lingnan private gardens.The second principal component serves as the key to defining the types of Northern private gardens and distinguishing them from the other two types,and the third principal component indicates that Lingnan private gardens can be categorized into two distinct types as well. 展开更多
关键词 Classical gardens Private gardens DIFFERENCES principal component analysis Cluster analysis
在线阅读 下载PDF
Comparative assessment of the frying efficiency of standard and low linolenic rapeseed oils: Principal Component Analysis (PCA)
19
作者 Ming-Ming Hu Chuan-Qi Zhang Xin-Yu Wu 《Food and Health》 2024年第4期1-9,共9页
In this research,the performance of regular rapeseed oil(RSO)and modified low-linolenic rapeseed oil(LLRO)during frying was assessed using a frying procedure that commonly found in fast-food restaurants.Key physicoche... In this research,the performance of regular rapeseed oil(RSO)and modified low-linolenic rapeseed oil(LLRO)during frying was assessed using a frying procedure that commonly found in fast-food restaurants.Key physicochemical attributes of these oils were investigated.RSO and LLRO differed for initial linolenic acid(12.21%vs.2.59%),linoleic acid(19.15%vs.24.73%).After 6 successive days frying period of French fries,the ratio of linoleic acid to palmitic acid dropped by 54.49%in RSO,higher than that in LLRO(51.54%).The increment in total oxidation value for LLRO(40.46 unit)was observed to be significantly lower than those of RSO(42.58 unit).The changes in carbonyl group value and iodine value throughout the frying trial were also lower in LLRO compared to RSO.The formation rate in total polar compounds for LLRO was 1.08%per frying day,lower than that of RSO(1.31%).In addition,the formation in color component and degradation in tocopherols were proportional to the frying time for two frying oils.Besides,a longer induction period was also observed in LLRO(8.87 h)compared to RSO(7.68 h)after frying period.Overall,LLRO exhibited the better frying stability,which was confirmed by principal component analysis(PCA). 展开更多
关键词 FRYING rapeseed oil frying oil frying stability principal component analysis
在线阅读 下载PDF
Hydrogeochemical Processes in Basement Areas Using Principal Component in Burkina Faso (West African Sahel)
20
作者 Moussa Diagne Faye Vini Yves Bernadin Loyara +4 位作者 Amadou Keita Mamadou Diop Angelbert Chabi Biaou Mahamadou Koita Hamma Yacouba 《Journal of Environmental & Earth Sciences》 2025年第1期1-17,共17页
The basement aquifers in Burkina Faso are increasingly exposed to groundwater pollution,largely due to socio-economic activities and climatic fluctuations,particularly the reduction in rainfall.This pollution makes th... The basement aquifers in Burkina Faso are increasingly exposed to groundwater pollution,largely due to socio-economic activities and climatic fluctuations,particularly the reduction in rainfall.This pollution makes the management and understanding of these aquifers particularly complex.To elucidate the processes controlling this contamination,a methodological approach combining principal component analysis(PCA)and multivariate statistical techniques was adopted.The study analyzed sixteen physicochemical parameters from 58 water samples.The primary objective of this research is to assess groundwater quality and deepen the understanding of the key factors influencing the spatial variation of their chemical composition.The results obtained will contribute to better planning of preservation and sustainable management measures for water resources in Burkina Faso.The results show that three principal components explain 72%of the variance,identifying anthropogenic inputs,with two components affected by mineralization and one by pollution.The study reveals that the groundwater is aggressive and highly corrosive,with calcite saturation.Water-rock interactions appear to be the main mechanisms controlling the hydrochemistry of groundwater,with increasing concentrations of cations and anions as the water travels through percolation pathways.PCA also revealed that the residence time of the water and leaching due to human activities significantly influence water quality,primarily through mineralization processes.These results suggest that rock weathering,coupled with reduced rainfall,constitutes a major vulnerability for aquifer recharge. 展开更多
关键词 GROUNDWATER HYDROGEOCHEMISTRY Spatial analysis principal component analysis
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部