期刊文献+
共找到247,657篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-scale feature fusion optical remote sensing target detection method 被引量:1
1
作者 BAI Liang DING Xuewen +1 位作者 LIU Ying CHANG Limei 《Optoelectronics Letters》 2025年第4期226-233,共8页
An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram... An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved. 展开更多
关键词 multi scale feature fusion optical remote sensing feature map improve target detection ability optical remote sensing imagesfirstlythe target detection feature fusionto enrich semantic information spatial information
原文传递
Lightweight Underwater Target Detection Using YOLOv8 with Multi-Scale Cross-Channel Attention
2
作者 Xueyan Ding Xiyu Chen +1 位作者 Jiaxin Wang Jianxin Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期713-727,共15页
Underwater target detection is extensively applied in domains such as underwater search and rescue,environmental monitoring,and marine resource surveys.It is crucial in enabling autonomous underwater robot operations ... Underwater target detection is extensively applied in domains such as underwater search and rescue,environmental monitoring,and marine resource surveys.It is crucial in enabling autonomous underwater robot operations and promoting ocean exploration.Nevertheless,low imaging quality,harsh underwater environments,and obscured objects considerably increase the difficulty of detecting underwater targets,making it difficult for current detection methods to achieve optimal performance.In order to enhance underwater object perception and improve target detection precision,we propose a lightweight underwater target detection method using You Only Look Once(YOLO)v8 with multi-scale cross-channel attention(MSCCA),named YOLOv8-UOD.In the proposed multiscale cross-channel attention module,multi-scale attention(MSA)augments the variety of attentional perception by extracting information from innately diverse sensory fields.The cross-channel strategy utilizes RepVGGbased channel shuffling(RCS)and one-shot aggregation(OSA)to rearrange feature map channels according to specific rules.It aggregates all features only once in the final feature mapping,resulting in the extraction of more comprehensive and valuable feature information.The experimental results show that the proposed YOLOv8-UOD achieves a mAP50 of 95.67%and FLOPs of 23.8 G on the Underwater Robot Picking Contest 2017(URPC2017)dataset,outperforming other methods in terms of detection precision and computational cost-efficiency. 展开更多
关键词 Deep learning underwater target detection attention mechanism
在线阅读 下载PDF
Multi-Scale Feature Fusion Network for Accurate Detection of Cervical Abnormal Cells
3
作者 Chuanyun Xu Die Hu +3 位作者 Yang Zhang Shuaiye Huang Yisha Sun Gang Li 《Computers, Materials & Continua》 2025年第4期559-574,共16页
Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells an... Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells and the significant variations in cell size.Pathologists often refer to surrounding cells to identify abnormalities.To emulate this slide examination behavior,this study proposes a Multi-Scale Feature Fusion Network(MSFF-Net)for detecting cervical abnormal cells.MSFF-Net employs a Cross-Scale Pooling Model(CSPM)to effectively capture diverse features and contextual information,ranging from local details to the overall structure.Additionally,a Multi-Scale Fusion Attention(MSFA)module is introduced to mitigate the impact of cell size variations by adaptively fusing local and global information at different scales.To handle the complex environment of cervical cell images,such as cell adhesion and overlapping,the Inner-CIoU loss function is utilized to more precisely measure the overlap between bounding boxes,thereby improving detection accuracy in such scenarios.Experimental results on the Comparison detector dataset demonstrate that MSFF-Net achieves a mean average precision(mAP)of 63.2%,outperforming state-of-the-art methods while maintaining a relatively small number of parameters(26.8 M).This study highlights the effectiveness of multi-scale feature fusion in enhancing the detection of cervical abnormal cells,contributing to more accurate and efficient cervical cancer screening. 展开更多
关键词 Cervical abnormal cells image detection multi-scale feature fusion contextual information
在线阅读 下载PDF
Fake News Detection Based on Cross-Modal Ambiguity Computation and Multi-Scale Feature Fusion
4
作者 Jianxiang Cao Jinyang Wu +5 位作者 Wenqian Shang Chunhua Wang Kang Song Tong Yi Jiajun Cai Haibin Zhu 《Computers, Materials & Continua》 2025年第5期2659-2675,共17页
With the rapid growth of socialmedia,the spread of fake news has become a growing problem,misleading the public and causing significant harm.As social media content is often composed of both images and text,the use of... With the rapid growth of socialmedia,the spread of fake news has become a growing problem,misleading the public and causing significant harm.As social media content is often composed of both images and text,the use of multimodal approaches for fake news detection has gained significant attention.To solve the problems existing in previous multi-modal fake news detection algorithms,such as insufficient feature extraction and insufficient use of semantic relations between modes,this paper proposes the MFFFND-Co(Multimodal Feature Fusion Fake News Detection with Co-Attention Block)model.First,the model deeply explores the textual content,image content,and frequency domain features.Then,it employs a Co-Attention mechanism for cross-modal fusion.Additionally,a semantic consistency detectionmodule is designed to quantify semantic deviations,thereby enhancing the performance of fake news detection.Experimentally verified on two commonly used datasets,Twitter and Weibo,the model achieved F1 scores of 90.0% and 94.0%,respectively,significantly outperforming the pre-modified MFFFND(Multimodal Feature Fusion Fake News Detection with Attention Block)model and surpassing other baseline models.This improves the accuracy of detecting fake information in artificial intelligence detection and engineering software detection. 展开更多
关键词 Fake news detection MULTIMODAL cross-modal ambiguity computation multi-scale feature fusion
在线阅读 下载PDF
Optimized Convolutional Neural Networks with Multi-Scale Pyramid Feature Integration for Efficient Traffic Light Detection in Intelligent Transportation Systems
5
作者 Yahia Said Yahya Alassaf +2 位作者 Refka Ghodhbani Taoufik Saidani Olfa Ben Rhaiem 《Computers, Materials & Continua》 2025年第2期3005-3018,共14页
Transportation systems are experiencing a significant transformation due to the integration of advanced technologies, including artificial intelligence and machine learning. In the context of intelligent transportatio... Transportation systems are experiencing a significant transformation due to the integration of advanced technologies, including artificial intelligence and machine learning. In the context of intelligent transportation systems (ITS) and Advanced Driver Assistance Systems (ADAS), the development of efficient and reliable traffic light detection mechanisms is crucial for enhancing road safety and traffic management. This paper presents an optimized convolutional neural network (CNN) framework designed to detect traffic lights in real-time within complex urban environments. Leveraging multi-scale pyramid feature maps, the proposed model addresses key challenges such as the detection of small, occluded, and low-resolution traffic lights amidst complex backgrounds. The integration of dilated convolutions, Region of Interest (ROI) alignment, and Soft Non-Maximum Suppression (Soft-NMS) further improves detection accuracy and reduces false positives. By optimizing computational efficiency and parameter complexity, the framework is designed to operate seamlessly on embedded systems, ensuring robust performance in real-world applications. Extensive experiments using real-world datasets demonstrate that our model significantly outperforms existing methods, providing a scalable solution for ITS and ADAS applications. This research contributes to the advancement of Artificial Intelligence-driven (AI-driven) pattern recognition in transportation systems and offers a mathematical approach to improving efficiency and safety in logistics and transportation networks. 展开更多
关键词 Intelligent transportation systems(ITS) traffic light detection multi-scale pyramid feature maps advanced driver assistance systems(ADAS) real-time detection AI in transportation
在线阅读 下载PDF
Enhanced Multi-Scale Object Detection Algorithm for Foggy Traffic Scenarios
6
作者 Honglin Wang Zitong Shi Cheng Zhu 《Computers, Materials & Continua》 2025年第2期2451-2474,共24页
In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scal... In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scale object detection algorithm based on an improved YOLOv8 has been proposed. Firstly, a lightweight attention mechanism, Triplet Attention, is introduced to enhance the algorithm’s ability to extract multi-dimensional and multi-scale features, thereby improving the receptive capability of the feature maps. Secondly, the Diverse Branch Block (DBB) is integrated into the CSP Bottleneck with two Convolutions (C2F) module to strengthen the fusion of semantic information across different layers. Thirdly, a new decoupled detection head is proposed by redesigning the original network head based on the Diverse Branch Block module to improve detection accuracy and reduce missed and false detections. Finally, the Minimum Point Distance based Intersection-over-Union (MPDIoU) is used to replace the original YOLOv8 Complete Intersection-over-Union (CIoU) to accelerate the network’s training convergence. Comparative experiments and dehazing pre-processing tests were conducted on the RTTS and VOC-Fog datasets. Compared to the baseline YOLOv8 model, the improved algorithm achieved mean Average Precision (mAP) improvements of 4.6% and 3.8%, respectively. After defogging pre-processing, the mAP increased by 5.3% and 4.4%, respectively. The experimental results demonstrate that the improved algorithm exhibits high practicality and effectiveness in foggy traffic scenarios. 展开更多
关键词 Deep learning object detection foggy scenes traffic detection YOLOv8
在线阅读 下载PDF
MGD-YOLO:An Enhanced Road Defect Detection Algorithm Based on Multi-Scale Attention Feature Fusion
7
作者 Zhengji Li Fazhan Xiong +6 位作者 Boyun Huang Meihui Li Xi Xiao Yingrui Ji Jiacheng Xie Aokun Liang Hao Xu 《Computers, Materials & Continua》 2025年第9期5613-5635,共23页
Accurate and real-time road defect detection is essential for ensuring traffic safety and infrastructure maintenance.However,existing vision-based methods often struggle with small,sparse,and low-resolution defects un... Accurate and real-time road defect detection is essential for ensuring traffic safety and infrastructure maintenance.However,existing vision-based methods often struggle with small,sparse,and low-resolution defects under complex road conditions.To address these limitations,we propose Multi-Scale Guided Detection YOLO(MGD-YOLO),a novel lightweight and high-performance object detector built upon You Only Look Once Version 5(YOLOv5).The proposed model integrates three key components:(1)a Multi-Scale Dilated Attention(MSDA)module to enhance semantic feature extraction across varying receptive fields;(2)Depthwise Separable Convolution(DSC)to reduce computational cost and improve model generalization;and(3)a Visual Global Attention Upsampling(VGAU)module that leverages high-level contextual information to refine low-level features for precise localization.Extensive experiments on three public road defect benchmarks demonstrate that MGD-YOLO outperforms state-of-the-art models in both detection accuracy and efficiency.Notably,our model achieves 87.9%accuracy in crack detection,88.3%overall precision on TD-RD dataset,while maintaining fast inference speed and a compact architecture.These results highlight the potential of MGD-YOLO for deployment in real-time,resource-constrained scenarios,paving the way for practical and scalable intelligent road maintenance systems. 展开更多
关键词 YOLO road damage detection object detection computer vision deep learning
在线阅读 下载PDF
MSCM-Net:Rail Surface Defect Detection Based on a Multi-Scale Cross-Modal Network
8
作者 Xin Wen Xiao Zheng Yu He 《Computers, Materials & Continua》 2025年第3期4371-4388,共18页
Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation.However,existing detection methods often struggle with challenges such as com... Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation.However,existing detection methods often struggle with challenges such as complex defect morphology,texture similarity,and fuzzy edges,leading to poor accuracy and missed detections.In order to resolve these problems,we propose MSCM-Net(Multi-Scale Cross-Modal Network),a multiscale cross-modal framework focused on detecting rail surface defects.MSCM-Net introduces an attention mechanism to dynamically weight the fusion of RGB and depth maps,effectively capturing and enhancing features at different scales for each modality.To further enrich feature representation and improve edge detection in blurred areas,we propose a multi-scale void fusion module that integrates multi-scale feature information.To improve cross-modal feature fusion,we develop a cross-enhanced fusion module that transfers fused features between layers to incorporate interlayer information.We also introduce a multimodal feature integration module,which merges modality-specific features from separate decoders into a shared decoder,enhancing detection by leveraging richer complementary information.Finally,we validate MSCM-Net on the NEU RSDDS-AUG RGB-depth dataset,comparing it against 12 leading methods,and the results show that MSCM-Net achieves superior performance on all metrics. 展开更多
关键词 Surface defect detection multiscale framework cross-modal fusion edge detection
在线阅读 下载PDF
A Multi-Scale Attention-Based Pedestrian Detection Method for Roadways Using the YOLOv5 Framework
9
作者 Ruihan Wang Boling Liu Tingyu Liao 《Journal of Electronic Research and Application》 2025年第1期224-232,共9页
Due to multi-scale variations and occlusion problems,accurate traffic road pedestrian detection faces great challenges.This paper proposes an improved pedestrian detection method called Multi Scales Attention-YOLOv5x(... Due to multi-scale variations and occlusion problems,accurate traffic road pedestrian detection faces great challenges.This paper proposes an improved pedestrian detection method called Multi Scales Attention-YOLOv5x(MSA-YOLOv5x)based on the YOLOv5x framework.Firstly,by replacing the first convolutional operation of the backbone network with the Focus module,this method expands the number of image input channels to enhance feature expressiveness.Secondly,we construct C3_CBAM module instead of the original C3 module for better feature fusion.In this way,the learning process could achieve more multi-scale features and occluded pedestrian target features through channel attention and spatial attention.Additionally,a new feature pyramid detection layer and a new detection channel are embedded in the feature fusion part for enhancing multi-scale pedestrian detection accuracy.Compared with the baseline methods,experimental results on a public dataset demonstrate that the proposed method achieves optimal detection accuracy for traffic road pedestrian detection. 展开更多
关键词 YOLOv5 PEDESTRIAN detection FEATURE FUSION
在线阅读 下载PDF
Transmission Facility Detection with Feature-Attention Multi-Scale Robustness Network and Generative Adversarial Network
10
作者 Yunho Na Munsu Jeon +4 位作者 Seungmin Joo Junsoo Kim Ki-Yong Oh Min Ku Kim Joon-Young Park 《Computer Modeling in Engineering & Sciences》 2025年第7期1013-1044,共32页
This paper proposes an automated detection framework for transmission facilities using a featureattention multi-scale robustness network(FAMSR-Net)with high-fidelity virtual images.The proposed framework exhibits thre... This paper proposes an automated detection framework for transmission facilities using a featureattention multi-scale robustness network(FAMSR-Net)with high-fidelity virtual images.The proposed framework exhibits three key characteristics.First,virtual images of the transmission facilities generated using StyleGAN2-ADA are co-trained with real images.This enables the neural network to learn various features of transmission facilities to improve the detection performance.Second,the convolutional block attention module is deployed in FAMSR-Net to effectively extract features from images and construct multi-dimensional feature maps,enabling the neural network to perform precise object detection in various environments.Third,an effective bounding box optimization method called Scylla-IoU is deployed on FAMSR-Net,considering the intersection over union,center point distance,angle,and shape of the bounding box.This enables the detection of power facilities of various sizes accurately.Extensive experiments demonstrated that FAMSRNet outperforms other neural networks in detecting power facilities.FAMSR-Net also achieved the highest detection accuracy when virtual images of the transmission facilities were co-trained in the training phase.The proposed framework is effective for the scheduled operation and maintenance of transmission facilities because an optical camera is currently the most promising tool for unmanned aerial vehicles.This ultimately contributes to improved inspection efficiency,reduced maintenance risks,and more reliable power delivery across extensive transmission facilities. 展开更多
关键词 Object detection virtual image transmission facility convolutional block attention module Scylla-IoU
在线阅读 下载PDF
Face Forgery Detection via Multi-Scale Dual-Modality Mutual Enhancement Network
11
作者 Yuanqing Ding Hanming Zhai +3 位作者 Qiming Ma Liang Zhang Lei Shao Fanliang Bu 《Computers, Materials & Continua》 2025年第10期905-923,共19页
As the use of deepfake facial videos proliferate,the associated threats to social security and integrity cannot be overstated.Effective methods for detecting forged facial videos are thus urgently needed.While many de... As the use of deepfake facial videos proliferate,the associated threats to social security and integrity cannot be overstated.Effective methods for detecting forged facial videos are thus urgently needed.While many deep learning-based facial forgery detection approaches show promise,they often fail to delve deeply into the complex relationships between image features and forgery indicators,limiting their effectiveness to specific forgery techniques.To address this challenge,we propose a dual-branch collaborative deepfake detection network.The network processes video frame images as input,where a specialized noise extraction module initially extracts the noise feature maps.Subsequently,the original facial images and corresponding noise maps are directed into two parallel feature extraction branches to concurrently learn texture and noise forgery clues.An attention mechanism is employed between the two branches to facilitate mutual guidance and enhancement of texture and noise features across four different scales.This dual-modal feature integration enhances sensitivity to forgery artifacts and boosts generalization ability across various forgery techniques.Features from both branches are then effectively combined and processed through a multi-layer perception layer to distinguish between real and forged video.Experimental results on benchmark deepfake detection datasets demonstrate that our approach outperforms existing state-of-the-art methods in terms of detection performance,accuracy,and generalization ability. 展开更多
关键词 Face forgery detection dual branch network noise features attention mechanism multiple scale
在线阅读 下载PDF
YOLO-MFD:Remote Sensing Image Object Detection with Multi-Scale Fusion Dynamic Head
12
作者 Zhongyuan Zhang Wenqiu Zhu 《Computers, Materials & Continua》 SCIE EI 2024年第5期2547-2563,共17页
Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false... Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false detection rates when applying object recognition algorithms tailored for remote sensing imagery.Additionally,these complexities contribute to inaccuracies in target localization and hinder precise target categorization.This paper addresses these challenges by proposing a solution:The YOLO-MFD model(YOLO-MFD:Remote Sensing Image Object Detection withMulti-scale Fusion Dynamic Head).Before presenting our method,we delve into the prevalent issues faced in remote sensing imagery analysis.Specifically,we emphasize the struggles of existing object recognition algorithms in comprehensively capturing critical image features amidst varying scales and complex backgrounds.To resolve these issues,we introduce a novel approach.First,we propose the implementation of a lightweight multi-scale module called CEF.This module significantly improves the model’s ability to comprehensively capture important image features by merging multi-scale feature information.It effectively addresses the issues of missed detection and mistaken alarms that are common in remote sensing imagery.Second,an additional layer of small target detection heads is added,and a residual link is established with the higher-level feature extraction module in the backbone section.This allows the model to incorporate shallower information,significantly improving the accuracy of target localization in remotely sensed images.Finally,a dynamic head attentionmechanism is introduced.This allows themodel to exhibit greater flexibility and accuracy in recognizing shapes and targets of different sizes.Consequently,the precision of object detection is significantly improved.The trial results show that the YOLO-MFD model shows improvements of 6.3%,3.5%,and 2.5%over the original YOLOv8 model in Precision,map@0.5 and map@0.5:0.95,separately.These results illustrate the clear advantages of the method. 展开更多
关键词 Object detection YOLOv8 multi-scale attention mechanism dynamic detection head
在线阅读 下载PDF
MSC-YOLO:Improved YOLOv7 Based on Multi-Scale Spatial Context for Small Object Detection in UAV-View
13
作者 Xiangyan Tang Chengchun Ruan +2 位作者 Xiulai Li Binbin Li Cebin Fu 《Computers, Materials & Continua》 SCIE EI 2024年第4期983-1003,共21页
Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variati... Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variations inUAV flight altitude,differences in object scales,as well as factors like flight speed and motion blur.To enhancethe detection efficacy of small targets in drone aerial imagery,we propose an enhanced You Only Look Onceversion 7(YOLOv7)algorithm based on multi-scale spatial context.We build the MSC-YOLO model,whichincorporates an additional prediction head,denoted as P2,to improve adaptability for small objects.We replaceconventional downsampling with a Spatial-to-Depth Convolutional Combination(CSPDC)module to mitigatethe loss of intricate feature details related to small objects.Furthermore,we propose a Spatial Context Pyramidwith Multi-Scale Attention(SCPMA)module,which captures spatial and channel-dependent features of smalltargets acrossmultiple scales.This module enhances the perception of spatial contextual features and the utilizationof multiscale feature information.On the Visdrone2023 and UAVDT datasets,MSC-YOLO achieves remarkableresults,outperforming the baseline method YOLOv7 by 3.0%in terms ofmean average precision(mAP).The MSCYOLOalgorithm proposed in this paper has demonstrated satisfactory performance in detecting small targets inUAV aerial photography,providing strong support for practical applications. 展开更多
关键词 Small object detection YOLOv7 multi-scale attention spatial context
在线阅读 下载PDF
Unsupervised anomaly detection in shearers via autoencoder networks and multi-scale correlation matrix reconstruction 被引量:1
14
作者 Yang Song Weidong Wang +2 位作者 Yuxin Wu Yuhan Fan Xuan Zhao 《International Journal of Coal Science & Technology》 CSCD 2024年第6期54-64,共11页
As the main equipment of coal mining production,the anomaly detection of shearer is important to ensure production efficiency and coal mine safety.One key challenge lies in the limited or even absence of labeled monit... As the main equipment of coal mining production,the anomaly detection of shearer is important to ensure production efficiency and coal mine safety.One key challenge lies in the limited or even absence of labeled monitoring data for the equipment,coupled with the high costs associated with manual annotation.Another challenge stems from the complex structure of the mining machines,making it difficult to reflect the overall operational state through local anomaly detection.Consequently,the application of decoupled local anomaly detection for mining machines in practical production remains challenging.This paper presents an unsupervised learning-based method for detecting anomalies in shearer.The method includes a module for constructing a Multi-scale Correlation Matrix(MSCM)of mining machine operating conditions,as well as the CNN-ConvLSTM Autoencoder(C-CLA)network.The module for constructing an MSCM enhances the representation of interrelationships between various features of the equipment from different perspectives using multiple correlation analysis methods.The C-CLA network integrates convolutional and convolutional recurrent neural networks,with the convolutional structure extracting local spatial features and the ConvLSTM structure further capturing information from different time scales and feature scales,thereby enhancing the model’s perceptual capabilities towards changes in equipment status.Finally,shearer anomaly detection is achieved through the analysis of reconstructed residual matrices.The rationality and practicality of the proposed method have been validated on our dataset,and the model’s generalization capability has been verified through repeated experiments in similar scenarios.However,due to variations in the working environment of different mining faces and differences in equipment models,implementing detection on other mining faces often requires retraining the model with new data.Furthermore,we compared our method with other anomaly detection techniques,and our detection efficiency was superior by approximately 3%.This method effectively detects anomalies in the shearer. 展开更多
关键词 SHEARER Unsupervised learning Autoencoder networks Anomaly detection
在线阅读 下载PDF
Contour Detection Algorithm forαPhase Structure of TB6 Titanium Alloy fused with Multi-Scale Fretting Features
15
作者 Fei He Yan Dou +1 位作者 Xiaoying Zhang Lele Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期499-509,共11页
Aiming at the problems of inaccuracy in detecting theαphase contour of TB6 titanium alloy.By combining computer vision technology with human vision mechanisms,the spatial characteristics of theαphase can be simulate... Aiming at the problems of inaccuracy in detecting theαphase contour of TB6 titanium alloy.By combining computer vision technology with human vision mechanisms,the spatial characteristics of theαphase can be simulated to obtain the contour accurately.Therefore,an algorithm forαphase contour detection of TB6 titanium alloy fused with multi-scale fretting features is proposed.Firstly,through the response of the classical receptive field model based on fretting and the suppression of new non-classical receptive field model based on fretting,the information maps of theαphase contour of the TB6 titanium alloy at different scales are obtained;then the information map of the smallest scale contour is used as a benchmark,the neighborhood is constructed to judge the deviation of other scale contour information,and the corresponding weight value is calculated;finally,Gaussian function is used to weight and fuse the deviation information,and the contour detection result of TB6 titanium alloyαphase is obtained.In the Visual Studio 2013 environment,484 metallographic images with different temperatures,strain rates,and magnifications were tested.The results show that the performance evaluation F value of the proposed algorithm is 0.915,which can effectively improve the accuracy ofαphase contour detection of TB6 titanium alloy. 展开更多
关键词 TB6 titanium alloyαphase multi-scale fretting features Contour detection
在线阅读 下载PDF
A spatio-temporal multi-scale fusion algorithm for pine wood nematode disease tree detection
16
作者 Chao Li Keyi Li +3 位作者 Yu Ji Zekun Xu Juntao Gu Weipeng Jing 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第6期267-278,共12页
Pine wood nematode infection is a devastating disease.Unmanned aerial vehicle(UAV)remote sensing enables timely and precise monitoring.However,UAV aerial images are challenged by small target size and complex sur-face... Pine wood nematode infection is a devastating disease.Unmanned aerial vehicle(UAV)remote sensing enables timely and precise monitoring.However,UAV aerial images are challenged by small target size and complex sur-face backgrounds which hinder their effectiveness in moni-toring.To address these challenges,based on the analysis and optimization of UAV remote sensing images,this study developed a spatio-temporal multi-scale fusion algorithm for disease detection.The multi-head,self-attention mechanism is incorporated to address the issue of excessive features generated by complex surface backgrounds in UAV images.This enables adaptive feature control to suppress redundant information and boost the model’s feature extraction capa-bilities.The SPD-Conv module was introduced to address the problem of loss of small target feature information dur-ing feature extraction,enhancing the preservation of key features.Additionally,the gather-and-distribute mechanism was implemented to augment the model’s multi-scale feature fusion capacity,preventing the loss of local details during fusion and enriching small target feature information.This study established a dataset of pine wood nematode disease in the Huangshan area using DJI(DJ-Innovations)UAVs.The results show that the accuracy of the proposed model with spatio-temporal multi-scale fusion reached 78.5%,6.6%higher than that of the benchmark model.Building upon the timeliness and flexibility of UAV remote sensing,the pro-posed model effectively addressed the challenges of detect-ing small and medium-size targets in complex backgrounds,thereby enhancing the detection efficiency for pine wood nematode disease.This facilitates early preemptive preser-vation of diseased trees,augments the overall monitoring proficiency of pine wood nematode diseases,and supplies technical aid for proficient monitoring. 展开更多
关键词 Pine wood nematode disease UAV remote sensing Object detection Deep learning YOLOv8
在线阅读 下载PDF
Multi-scale cross-city community detection of urban agglomeration using signaling big data
17
作者 Wenbo Yu Zhenfeng Shao +3 位作者 Xiao Huang Deren Li Yewen Fan Xiaodi Xu 《Geo-Spatial Information Science》 CSCD 2024年第4期1348-1361,共14页
Many existing efforts have taken advantage of large-scale spatial-temporal data to partition cities via constructed human interaction networks.However,few studies focus on communities emerging between adjacent cities ... Many existing efforts have taken advantage of large-scale spatial-temporal data to partition cities via constructed human interaction networks.However,few studies focus on communities emerging between adjacent cities in big urban agglomerations,which we call“cross-city”communities.In this study,we introduce a novel framework to detect cross-city communities in urban agglomerations under different scales leveraging a large number of fine-grained mobile signaling data aiming to break the original administrative boundaries.Taking the Pearl River Delta(PRD)urban agglomeration in China as study area,we investigate the existence of potential communities at three scales,i.e.city-group level,city level and sub-city level.The partition results are expected to benefit transportation planning,urban zoning and administrative boundary re-delineation.The results from our study highlight the necessity of considering cross-city communities and their scale effects when examining urban spatial interactions. 展开更多
关键词 Cross-city communities community detection mobile big data human interaction network scale effect
原文传递
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
18
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/Al 6063/Al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
MARIE:One-Stage Object Detection Mechanism for Real-Time Identifying of Firearms 被引量:1
19
作者 Diana Abi-Nader Hassan Harb +4 位作者 Ali Jaber Ali Mansour Christophe Osswald Nour Mostafa Chamseddine Zaki 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期279-298,共20页
Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable... Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively. 展开更多
关键词 Firearm and gun detection single shot multi-box detector deep learning one-stage detector MobileNet INCEPTION convolutional neural network
在线阅读 下载PDF
Machine learning-assisted fluorescence visualization for sequential quantitative detection of aluminum and fluoride ions 被引量:2
20
作者 Qiang Zhang Xin Li +5 位作者 Long Yu Lingxiao Wang Zhiqing Wen Pengchen Su Zhenli Sun Suhua Wang 《Journal of Environmental Sciences》 2025年第3期68-78,共11页
The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approac... The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum(Al^(3+))and fluoride(F^(−))ions in aqueous solutions.The proposed method involves the synthesis of sulfur-functionalized carbon dots(C-dots)as fluorescence probes,with fluorescence enhancement upon interaction with Al^(3+)ions,achieving a detection limit of 4.2 nmol/L.Subsequently,in the presence of F^(−)ions,fluorescence is quenched,with a detection limit of 47.6 nmol/L.The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python,followed by data preprocessing.Subsequently,the fingerprint data is subjected to cluster analysis using the K-means model from machine learning,and the average Silhouette Coefficient indicates excellent model performance.Finally,a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions.The results demonstrate that the developed model excels in terms of accuracy and sensitivity.This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment,making it a valuable tool for safeguarding our ecosystems and public health. 展开更多
关键词 Machine learning Aluminum ion detection Fluorine ion detection Fluorescence probe K-means model
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部