期刊文献+
共找到21,294篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-Rotor UAVs for Meteorological Sensing: Status, Key Technologies, and Trends
1
作者 Tianhao Hou Hongyan Xing +1 位作者 Yanan Liu Jie Hao 《Instrumentation》 2025年第3期1-14,共14页
Traditional weather observation methods have limitations in detecting low-altitude,small-scale areas and sudden weather events.They often have insufficient coverage,slow response,or high costs.Multi-rotor unmanned aer... Traditional weather observation methods have limitations in detecting low-altitude,small-scale areas and sudden weather events.They often have insufficient coverage,slow response,or high costs.Multi-rotor unmanned aerial vehicles(UAVs),with their strong vertical take-off and landing ability,precise hovering,flexible movement,and ability to carry various small sensors,are gradually becoming key tools to fill these gaps and build three-dimensional weather observation networks.They show important value in medium-and small-scale weather monitoring and emergency weather support.This paper reviews the main sensors for multi-rotor weather drones,their operating modes,and key supporting technologies,summarizes the current state of technology,and provides references for future development. 展开更多
关键词 multi-rotor unmanned aerial vehicle meteorological detection meteorological payload
原文传递
Aerodynamic Effects Compensation on Multi-Rotor UAVs Based on a Neural Network Control Allocation Approach 被引量:4
2
作者 Sarah P.Madruga Augusto H.B.M.Tavares +2 位作者 Saulo O.D.Luiz Tiago P.do Nascimento Antonio Marcus N.Lima 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第2期295-312,共18页
This paper shows that the aerodynamic effects can be compensated in a quadrotor system by means of a control allocation approach using neural networks.Thus,the system performance can be improved by replacing the class... This paper shows that the aerodynamic effects can be compensated in a quadrotor system by means of a control allocation approach using neural networks.Thus,the system performance can be improved by replacing the classic allocation matrix,without using the aerodynamic inflow equations directly.The network training is performed offline,which requires low computational power.The target system is a Parrot MAMBO drone whose flight control is composed of PD-PID controllers followed by the proposed neural network control allocation algorithm.Such a quadrotor is particularly susceptible to the aerodynamics effects of interest to this work,because of its small size.We compared the mechanical torques commanded by the flight controller,i.e.,the control input,to those actually generated by the actuators and established at the aircraft.It was observed that the proposed neural network was able to closely match them,while the classic allocation matrix could not achieve that.The allocation error was also determined in both cases.Furthermore,the closed-loop performance also improved with the use of the proposed neural network control allocation,as well as the quality of the thrust and torque signals,in which we perceived a much less noisy behavior. 展开更多
关键词 Aerodynamics effects control allocation minidrone multi-rotor uav neural networks
在线阅读 下载PDF
A New Fusion Chemical Reaction Optimization Algorithm Based on Random Molecules for Multi-Rotor UAV Path Planning in Transmission Line Inspection 被引量:3
3
作者 YANG Qing YANG Zhong +1 位作者 HU Guoxiong DU Wei 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第5期671-677,共7页
A fusion chemical reaction optimization algorithm based on random molecules(RMCRO) is proposed to meet the special demand of power transmission line inspection. This new algorithm improves the shortcomings of chemical... A fusion chemical reaction optimization algorithm based on random molecules(RMCRO) is proposed to meet the special demand of power transmission line inspection. This new algorithm improves the shortcomings of chemical reaction algorithm by merging the idea of repellent-attractant rule and accelerates convergence by using difference algorithm. The molecules in this algorithm avoid obstacles and search optimal path of transmission line inspection by using sensors on multi-rotor unmanned aerial vehicle(UAV). The option of optimal path is based on potential energy of molecules and cost function without repeated parameter adjustment and complicated computation. By compared with an improved particle swarm optimization(IMPSO) in different circumstances of simulation, it can be concluded that the new algorithm presented not only can obtain more optimal path and avoid to trap in local minimum, but also can keep related sensors in a more stable status. 展开更多
关键词 unmanned aerial vehicle uav chemical reaction algorithm path planning power transmissionhne inspection
原文传递
分层池化:带宏观引导收益的UAV集群区域覆盖搜索方法
4
作者 王宁 梁晓龙 +2 位作者 李哲 孙贇 郑傲宇 《控制与决策》 北大核心 2025年第12期3763-3776,共14页
针对UAV集群在未知环境中的区域覆盖搜索问题,提出一种基于分层池化地图模型的UAV集群区域覆盖搜索算法.首先,构建环境地图对待搜索任务区域进行表征;其次,将图像处理领域的池化技术与区域栅格地图结合,构建分辨率不同的多层次池化地图... 针对UAV集群在未知环境中的区域覆盖搜索问题,提出一种基于分层池化地图模型的UAV集群区域覆盖搜索算法.首先,构建环境地图对待搜索任务区域进行表征;其次,将图像处理领域的池化技术与区域栅格地图结合,构建分辨率不同的多层次池化地图模型;然后,设计包含覆盖率、边界约束和宏观收益等在内的决策目标函数,提出适用于强对抗环境的UAV集群分布式信息交互机制;最后,采用数值仿真对所提方法的有效性进行验证.仿真结果表明,所提算法能够在不同信道质量的条件下有效引导UAV集群对未知任务区域展开覆盖搜索,在给定覆盖搜索场景中,算法决策时间和覆盖率均优于现有其他方法. 展开更多
关键词 uav集群 区域搜索 航迹规划 分层池化 信息交互
原文传递
考虑空中碰撞风险的UAV运行风险评估
5
作者 李楠 闫博芸 +3 位作者 孙廪实 韩鹏 郑志刚 焦庆宇 《中国安全科学学报》 北大核心 2025年第10期91-97,共7页
为提高无人机(UAV)空中交通管理效率、保障飞行安全以及推动UAV在复杂空域环境中的安全应用,聚焦于UAV运行风险评估。首先,针对非结构化空域环境下具有自主感知与决策能力的UAV,基于机载通信导航监视能力、机动特性及系统响应时间等关... 为提高无人机(UAV)空中交通管理效率、保障飞行安全以及推动UAV在复杂空域环境中的安全应用,聚焦于UAV运行风险评估。首先,针对非结构化空域环境下具有自主感知与决策能力的UAV,基于机载通信导航监视能力、机动特性及系统响应时间等关键参数,构建冲突概率模型和考虑避让机动策略的碰撞概率模型,量化评估空域碰撞风险;然后,鉴于UAV相撞事故不会直接导致人员伤亡,构建综合考虑UAV空中相撞事件与系统失效引发坠机的地面风险评估模型;最后,以1×10^(-6)死亡人数/飞行小时作为安全目标水平,确定空中飞行所需保持的的安全间隔。结果表明:同时考虑冲突概率和冲突升级为碰撞的概率,可解决自由飞行阶段风险被低估的问题;不同运行场景可容许的碰撞风险最大值有较大差异。 展开更多
关键词 无人机(uav) 运行风险 碰撞风险 地面风险 安全间隔
原文传递
UAV-TISP:A simulation platform for collaborative task training and algorithm development in multirotor UAV clusters
6
作者 Zhi-Bin Xie Hong-Ying Zhang +4 位作者 Xiu-Qin Cheng Ze-Kun Wang Xiao-Long Wang Kai Xi Qiang Guo 《Journal of Electronic Science and Technology》 2025年第4期65-79,共15页
To fulfill the training requirements for the daily operations of multirotor unmanned aerial vehicles(UAVs)clusters,a UAV cluster collaborative task integrated simulation platform(UAV-TISP)was developed.The platform in... To fulfill the training requirements for the daily operations of multirotor unmanned aerial vehicles(UAVs)clusters,a UAV cluster collaborative task integrated simulation platform(UAV-TISP)was developed.The platform integrates a suite of hardware and software to simulate a range of collaborative UAV cluster operation scenarios.It features modules for collaborative task planning,UAV cluster simulations,and tactical monitoring.The platform significantly reduces training costs by eliminating physical drone dependencies while offering a flexible environment for testing swarm algorithms.UAV-TISP supports both individual UAV and swarm operations,incorporating high-fidelity flight dynamics,real-time communication via user datagram protocol(UDP),and collision avoidance strategies.Utilizing the OSGEarth engine,it enables dynamic 3D environment visualization and scenario customization.Three key task scenarios-route flight,formation reconstruction,and formation transformation-were tested to validate the platform’s efficacy.Results demonstrated robust formation maintenance,adaptive collision avoidance,and seamless task execution.Comparative analysis with Gazebo Sim revealed lower trajectory deviations in UAV-TISP,highlighting its superior accuracy in simulating real-world flight dynamics.Future work will focus on enhancing scalability for diverse UAV models,optimizing swarm networking under communication constraints,and expanding mission scenarios.UAV-TISP serves as a versatile tool for both operational training and advanced algorithm development in UAV cluster applications. 展开更多
关键词 Mission planning multi-rotor uav cluster Scene visualization Simulation platform
在线阅读 下载PDF
基于UAV高密度点云的结构面粗糙度分形特征与各向异性 被引量:1
7
作者 宋盛渊 刘殿泽 +4 位作者 李保天 赵明宇 杨泽 黄迪 王思骢 《地球科学》 北大核心 2025年第4期1599-1611,共13页
为研究岩体结构面各向异性对粗糙度评价的影响,以藏东南某铁路察达工点高陡斜坡为研究对象,运用无人机综合摄影测量技术,提取研究区结构面高密度点云并剪裁结构面轮廓线,采用修正直边法与盒维数法求算粗糙度系数JRC与分形维数D,拟合JRC... 为研究岩体结构面各向异性对粗糙度评价的影响,以藏东南某铁路察达工点高陡斜坡为研究对象,运用无人机综合摄影测量技术,提取研究区结构面高密度点云并剪裁结构面轮廓线,采用修正直边法与盒维数法求算粗糙度系数JRC与分形维数D,拟合JRC与D的新公式并利用数字化Barton标准线验证.选取压剪性和拉张性结构面各15个,运用新公式计算各采样方向的JRC.结果表明:压剪性结构面粗糙度各向异性规律显著,整体上JRC由剪切滑动方向至垂直剪切滑动方向递增,呈椭圆状分布;拉张性结构面粗糙度存在各向异性但无明显规律,JRC随采样角度变化波动较大,呈刺状分布.证明不同力学成因的结构面JRC各向异性存在差异,在评价粗糙度时应遵循不同采样规则. 展开更多
关键词 无人机 综合摄影测量 高密度点云 结构面粗糙度 分形维数 各向异性 工程地质学
原文传递
基于改进SIFT和多约束的UAV影像匹配方法 被引量:1
8
作者 何明磊 王中元 +2 位作者 戚铭心 杨振宇 袁芳 《合肥工业大学学报(自然科学版)》 北大核心 2025年第2期212-219,共8页
针对尺度不变特征转换(scale invariant feature transform,SIFT)算法在无人机(unmanned aerial vehicle,UAV)影像的匹配过程中存在特征点稳定性差和误匹配多的问题,文章提出一种基于改进SIFT和多约束的UAV影像匹配方法。首先,在对影像... 针对尺度不变特征转换(scale invariant feature transform,SIFT)算法在无人机(unmanned aerial vehicle,UAV)影像的匹配过程中存在特征点稳定性差和误匹配多的问题,文章提出一种基于改进SIFT和多约束的UAV影像匹配方法。首先,在对影像降采样后,综合采用SIFT算法和Scharr-ORB(oriented brief)算法共同进行特征点检测和描述;然后,使用最近邻距离比值法(nearest neighbor distance ratio,NNDR)、双向约束匹配和余弦相似度约束匹配的多约束方法进行特征点的粗匹配;最后,使用最小中值(least median of squares,LMedS)算法计算基础矩阵和随机抽样一致性(random sample consensus,RANSAC)算法计算单应矩阵的多约束方法进行特征点的精匹配,进一步提高匹配精度。结果表明,该方法在获得更多特征点和匹配对数的同时,能够剔除较多的误匹配,使其具有较高的匹配正确率和匹配精度。 展开更多
关键词 无人机(uav)影像 影像匹配 边缘检测 多约束方法 基础矩阵
在线阅读 下载PDF
Influence of the inner tilt angle on downwash airflow field of multi-rotor UAV based on wireless wind speed acquisition system 被引量:2
9
作者 Ling Wang Qihang Hou +2 位作者 Junpeng Wang Zhiwei Wang Shumao Wang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2021年第6期19-26,共8页
The downwash airflow field is an important factor influencing the spraying performance of plant protection UAV,and the structural design of rotors directly affects the characteristics of the downwash airflow field.The... The downwash airflow field is an important factor influencing the spraying performance of plant protection UAV,and the structural design of rotors directly affects the characteristics of the downwash airflow field.Therefore,in this study,three-dimensional models of a six-rotor UAV with various inner tilt angles were established to simulate and analyze the influence of the inner tilt angle on the downwash airflow field based on the Reynolds average NS equation,RNG k-εturbulence model,etc..On this basis,a wireless wind speed acquisition system using the TCP server was developed to carry out the test through the marked points with real-time detection.The simulation results show that,the variation of inner tilt angles of the six-rotor UAV did not cause significant difference in the time dimension of the downwash airflow field,and with the change of the inner tilt angle from 0°to 8°,the distribution of downwash airflow field tended to obliquely shrink towards the central axis direction,and the amplitude of linear attenuation of airflow speed was also increased,which the difference of attenuation amplitude was 1 m/s.Besides,under the different inner tilt angle,the airflow velocity in“lead in area”was significantly greater than that in the“lead out area”,and the difference of air velocity distribution in space would affect the uniformity of droplet deposition.Through the calibration test,the measurement accuracy error of the developed system was lower than 0.3 m/s,and the adjusted R2 of the calibration fitting equation was higher than 0.99.The test and simulation values at test points from 0.2-2.3 m below the rotors exhibit the same variation trend,and the average relative error at the height of 1.1-2.3 m below the rotors and 0.2-0.8 m near the ground was within 10%and 20%,respectively.The simulation and test results were highly reliable,which could provide basis and reference for the design and optimization of plant protection drones. 展开更多
关键词 plant protection uav downwash airflow field inner tilt angle numerical simulation wind speed acquisition
原文传递
基于RSMA的UAV网络资源分配研究综述 被引量:1
10
作者 王正强 任凯 +2 位作者 万晓榆 樊自甫 朱小波 《电讯技术》 北大核心 2025年第6期829-837,共9页
速率分割多址接入(Rate-Splitting Multiple Access,RSMA)技术可以针对各种网络负载和用户信道条件提升频效、能效、用户公平性和服务质量,因此有望成为超5G(Beyond 5G,B5G)和6G中关键的多址接入技术。与此同时,无人机(Unmanned Aerial ... 速率分割多址接入(Rate-Splitting Multiple Access,RSMA)技术可以针对各种网络负载和用户信道条件提升频效、能效、用户公平性和服务质量,因此有望成为超5G(Beyond 5G,B5G)和6G中关键的多址接入技术。与此同时,无人机(Unmanned Aerial Vehicle,UAV)因具有良好的机动性、强视距链路、易于实施且成本低等特点而在无线通信领域中得到了广泛应用。将RSMA技术和UAV相结合成为B5G和6G的一个重要研究方向,基于RSMA的UAV网络资源分配问题成为学术研究的热点。通过梳理相关现有研究文献,从4个方面概述了基于RSMA的UAV网络资源分配研究现状,包括无人机基站的资源分配、无人机中继系统的资源分配、无人机挂载智能反射面的资源分配、无人机辅助边缘计算的资源分配。最后在总结当前研究的基础上,对未来的研究方向进行了展望。 展开更多
关键词 无人机基站 无人机中继 速率分割多址接入(RSMA) 资源分配
在线阅读 下载PDF
无人机视角多源目标检测数据集UAV-RGBT及算法基准
11
作者 汪进中 戴顺 +5 位作者 张秀伟 田雪涛 邢颖慧 汪芳 尹翰林 张艳宁 《电子学报》 北大核心 2025年第3期686-704,共19页
基于无人机(Unmanned Aerial Vehicle,UAV)平台的可见光(Red Green Blue,RGB)和热红外(Thermal infrared,T)多源目标检测,可实现全天时、全天候的目标侦察,在军用和民用领域有着重要的应用价值.受限于数据拍摄获取和处理的复杂性,当前... 基于无人机(Unmanned Aerial Vehicle,UAV)平台的可见光(Red Green Blue,RGB)和热红外(Thermal infrared,T)多源目标检测,可实现全天时、全天候的目标侦察,在军用和民用领域有着重要的应用价值.受限于数据拍摄获取和处理的复杂性,当前少有公开的UAV视角RGB-T多源目标检测数据集,一定程度上限制了UAV视角RGB-T多源目标检测算法的研究和应用.与此同时,UAV应用场景复杂多变,其飞行高度、速度、焦距和背景等快速变化,所拍摄目标在图像上呈现出尺度多样、稠密/稀疏分布不均衡、类别不平衡等特点,具有一定的挑战性.此外,在诸如目标侦察、交通监控等高时效性应用场景中,算法需在保证高精度的同时实现实时目标检测,因此,算法的设计必须充分考虑精度与速度之间的平衡.针对上述问题,本文构建了一个跨季节、跨昼夜、多类别、多尺度的大规模UAV视角RGB-T多源图像数据集UAV-RGBT,包含20个类别、5117对RGB-T图像和超11万个标注,有助于推进UAV视角多源目标检测算法的研究.同时,基于YOLOv8n模型,本文提出了一种UAV视角多源目标检测(UAV-based Dualbranch Multispectral object Detection,UAV-DMDet)模型,其通过多源交叉注意力融合和多源特征分解组合方法有效促进了多源特征的深度融合,较好地实现了模型参数量、检测速度和检测精度的均衡.实验结果表明:在UAVRGBT数据集上,UAV-DMDet模型较单源YOLOv8n模型,在RGB和T模态方面,mAP@0.5分别提高了3.61%、11.03%,mAP@0.5:0.95分别提高了0.84%、6.76%;在DroneVehicle数据集上,mAP@0.5和mAP@0.5:0.95较主流算法I2MDet提高了2.66%和12.36%;在检测速度方面,以640×640分辨率图像为例,UAV-DMDet模型在单张GeForce RTX 3090显卡上FP32精度推理速度可达31帧/s,在华为昇腾710处理器上FP16精度推理速度可达58帧/s,可有效应用于UAV视角RGB-T多源实时目标检测任务. 展开更多
关键词 无人机(uav) 可见光-热红外(RGB-T)多源目标检测 数据集 多源特征融合 YOLOv8
在线阅读 下载PDF
基于UAV影像点云密度的植被稀疏区DEM精度分析 被引量:1
12
作者 戴志林 郭辉 包勤跃 《北京测绘》 2025年第3期316-321,共6页
本文以无人机(UAV)倾斜摄影影像点云为数据源,通过对构建植被稀疏区数字高程模型(DEM)的最佳点云密度进行分析研究,从中选取出最佳点云密度,以实现高效、快速获取DEM数据。使用随机采样算法将原始点云以10%~90%密度进行抽稀,同时采用中... 本文以无人机(UAV)倾斜摄影影像点云为数据源,通过对构建植被稀疏区数字高程模型(DEM)的最佳点云密度进行分析研究,从中选取出最佳点云密度,以实现高效、快速获取DEM数据。使用随机采样算法将原始点云以10%~90%密度进行抽稀,同时采用中误差对生成的DEM进行精度评价分析。结果显示:①在点云抽稀10%~40%时,中误差随着点云密度的减小而增大,同时在点云抽稀30%时中误差与原始点云几乎相似;②在点云抽稀40%~60%时,中误差变化较为平缓,但总体呈上升趋势;③在点云抽稀60%~90%时,随着点云密度的进一步减小,中误差随着点云密度的减小而迅速增大。得出结论,点云密度与DEM精度呈正相关,抽稀30%的点云成为在同类型条件植被稀疏区UAV倾斜摄影点云生成DEM的最佳点云密度。 展开更多
关键词 无人机(uav)倾斜摄影 影像点云 点云密度 抽稀 数字高程模型(DEM)
在线阅读 下载PDF
基于UAV遥感技术的高标准农田耕种状况监测与时空分析 被引量:3
13
作者 苏秀永 杨杰 +1 位作者 李星华 杨磊 《江西农业学报》 2025年第6期68-72,共5页
阐述了UAV遥感技术在高标准农田耕种状况监测中的应用,探讨了基于UAV遥感技术的农田耕种状况监测方法,并对高标准农田耕种状况进行了时空分析。大量数据表明,UAV遥感技术能够快速、准确地获取农田耕种状况信息,为高标准农田的管理和决... 阐述了UAV遥感技术在高标准农田耕种状况监测中的应用,探讨了基于UAV遥感技术的农田耕种状况监测方法,并对高标准农田耕种状况进行了时空分析。大量数据表明,UAV遥感技术能够快速、准确地获取农田耕种状况信息,为高标准农田的管理和决策提供重要的数据支持,对提高农业生产效率和促进农业可持续发展具有重要意义。 展开更多
关键词 高标准农田 uav遥感技术 耕种状况 监测 时空分析
在线阅读 下载PDF
基于RIS辅助的UAV物理层安全传输技术
14
作者 丁伟豪 屈正浩 +3 位作者 申凌峰 王光辉 朱政宇 张千坤 《无线电工程》 2025年第10期1976-1985,共10页
针对低空通信背景下智能超表面(Reconfigurable Intelligent Surface,RIS)辅助的UAV物理层安全(Physical Layer Security,PLS)传输技术,考虑可能存在多窃听威胁的场景,提出基于UAV轨迹和RIS相移联合优化的安全增强机制。具体提出2种优... 针对低空通信背景下智能超表面(Reconfigurable Intelligent Surface,RIS)辅助的UAV物理层安全(Physical Layer Security,PLS)传输技术,考虑可能存在多窃听威胁的场景,提出基于UAV轨迹和RIS相移联合优化的安全增强机制。具体提出2种优化方案:①基于凸优化理论,通过连续凸近似(Successive Convex Approximation,SCA)和交替优化将非凸问题分解为可解的凸子问题,以最大化平均安全速率;②引入双延迟深度确定性策略梯度(Twin Delayed Deep Deterministic Policy Gradient,TD3)深度强化学习(Deep Reinforcement Learing,DRL)算法,利用双重Q网络和延迟策略更新机制,联合优化UAV轨迹与RIS相位,在连续动作空间中生成较为平滑的UAV轨迹,实现高效实时优化。仿真结果表明,凸优化算法在所构建的系统中展现出更快的收敛特性,而TD3算法在安全速率方面显著高于凸优化方法,尤其在RIS单元数增加时优势更明显,验证了其在提升通信安全性和鲁棒性方面的潜力。 展开更多
关键词 uav通信 智能超表面 物理层安全 凸优化算法 双延迟深度确定性策略梯度算法
在线阅读 下载PDF
基于DRL的UAV辅助海上物联网联合卸载和资源分配 被引量:1
15
作者 李予诺 魏泽 何荣希 《现代电子技术》 北大核心 2025年第3期141-148,共8页
针对多无人机辅助海上物联网搜救场景,为了使无人机能处理无人船卸载的更多计算任务,同时尽可能减少无人机的能量浪费,文中提出一种基于深度确定性策略梯度(DDPG)的任务感知联合卸载和资源分配算法。首先,考虑无人机可自适应调整时隙内... 针对多无人机辅助海上物联网搜救场景,为了使无人机能处理无人船卸载的更多计算任务,同时尽可能减少无人机的能量浪费,文中提出一种基于深度确定性策略梯度(DDPG)的任务感知联合卸载和资源分配算法。首先,考虑无人机可自适应调整时隙内飞行时间以及无人船卸载任务在无人机排队计算的实际情况,建立了通信模型、计算模型和能耗模型。其次,通过联合考虑卸载决策、功率分配以及无人机飞行轨迹规划和速度调整,构建最大化所有无人机平均收益的优化问题;然后将该问题转化为马尔科夫决策过程,确立了对应的状态空间、动作空间和奖励函数,并通过DDPG算法求解出最优策略。仿真结果表明,与其他基准算法相比,所提算法可以有效提高无人机的平均收益。 展开更多
关键词 移动边缘计算 无人机 深度强化学习 计算卸载 功率分配 轨迹规划
在线阅读 下载PDF
YOLO-S3DT:A Small Target Detection Model for UAV Images Based on YOLOv8 被引量:2
16
作者 Pengcheng Gao Zhenjiang Li 《Computers, Materials & Continua》 2025年第3期4555-4572,共18页
The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photograp... The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photographed objects,coupled with complex shooting environments,existing models often struggle to achieve accurate real-time target detection.In this paper,a You Only Look Once v8(YOLOv8)model is modified from four aspects:the detection head,the up-sampling module,the feature extraction module,and the parameter optimization of positive sample screening,and the YOLO-S3DT model is proposed to improve the performance of the model for detecting small targets in aerial images.Experimental results show that all detection indexes of the proposed model are significantly improved without increasing the number of model parameters and with the limited growth of computation.Moreover,this model also has the best performance compared to other detecting models,demonstrating its advancement within this category of tasks. 展开更多
关键词 Target detection uav images detection small target detection YOLO
在线阅读 下载PDF
Three-dimension collision-free trajectory planning of UAVs based on ADS-B information in low-altitude urban airspace 被引量:2
17
作者 Chao DONG Yifan ZHANG +3 位作者 Ziye JIA Yiyang LIAO Lei ZHANG Qihui WU 《Chinese Journal of Aeronautics》 2025年第2期274-285,共12页
The environment of low-altitude urban airspace is complex and variable due to numerous obstacles,non-cooperative aircraft,and birds.Unmanned Aerial Vehicles(UAVs)leveraging environmental information to achieve three-d... The environment of low-altitude urban airspace is complex and variable due to numerous obstacles,non-cooperative aircraft,and birds.Unmanned Aerial Vehicles(UAVs)leveraging environmental information to achieve three-dimension collision-free trajectory planning is the prerequisite to ensure airspace security.However,the timely information of surrounding situation is difficult to acquire by UAVs,which further brings security risks.As a mature technology leveraged in traditional civil aviation,the Automatic Dependent Surveillance-Broadcast(ADS-B)realizes continuous surveillance of the information of aircraft.Consequently,we leverage ADS-B for surveillance and information broadcasting,and divide the aerial airspace into multiple sub-airspaces to improve flight safety in UAV trajectory planning.In detail,we propose the secure Sub-airSpaces Planning(SSP)algorithm and Particle Swarm Optimization Rapidly-exploring Random Trees(PSO-RRT)algorithm for the UAV trajectory planning in law-altitude airspace.The performance of the proposed algorithm is verified by simulations and the results show that SSP reduces both the maximum number of UAVs in the sub-airspace and the length of the trajectory,and PSO-RRT reduces the cost of UAV trajectory in the sub-airspace. 展开更多
关键词 Three-dimension trajectory planning of uav Collision avoidance Sliding window ADS-B Low-altitude urban airspace
原文传递
MMHCA:Multi-feature representations based on multi-scale hierarchical contextual aggregation for UAV-view geo-localization 被引量:1
18
作者 Nanhua CHEN Tai-shan LOU Liangyu ZHAO 《Chinese Journal of Aeronautics》 2025年第6期517-532,共16页
In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The e... In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The essence of cross-view geo-localization resides in matching images containing the same geographical targets from disparate platforms,such as UAV-view and satellite-view images.However,images of the same geographical targets may suffer from occlusions and geometric distortions due to variations in the capturing platform,view,and timing.The existing methods predominantly extract features by segmenting feature maps,which overlook the holistic semantic distribution and structural information of objects,resulting in loss of image information.To address these challenges,dilated neighborhood attention Transformer is employed as the feature extraction backbone,and Multi-feature representations based on Multi-scale Hierarchical Contextual Aggregation(MMHCA)is proposed.In the proposed MMHCA method,the multiscale hierarchical contextual aggregation method is utilized to extract contextual information from local to global across various granularity levels,establishing feature associations of contextual information with global and local information in the image.Subsequently,the multi-feature representations method is utilized to obtain rich discriminative feature information,bolstering the robustness of model in scenarios characterized by positional shifts,varying distances,and scale ambiguities.Comprehensive experiments conducted on the extensively utilized University-1652 and SUES-200 benchmarks indicate that the MMHCA method surpasses the existing techniques.showing outstanding results in UAV localization and navigation. 展开更多
关键词 Geo-localization Image retrieval uav Hierarchical contextual aggregation Multi-feature representations
原文传递
Joint User Association,Resource Allocation and Trajectory Design for Multi-UAV-Aided NOMA Wireless Communication Systems 被引量:1
19
作者 Yin Sixing Qu Zhaowei Yu Peng 《China Communications》 2025年第3期217-233,共17页
In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its as... In this paper,we investigate a multi-UAV aided NOMA communication system,where multiple UAV-mounted aerial base stations are employed to serve ground users in the downlink NOMA communication,and each UAV serves its associated users on its own bandwidth.We aim at maximizing the overall common throughput in a finite time period.Such a problem is a typical mixed integer nonlinear problem,which involves both continuous-variable and combinatorial optimizations.To efficiently solve this problem,we propose a two-layer algorithm,which separately tackles continuous-variable and combinatorial optimization.Specifically,in the inner layer given one user association scheme,subproblems of bandwidth allocation,power allocation and trajectory design are solved based on alternating optimization.In the outer layer,a small number of candidate user association schemes are generated from an initial scheme and the best solution can be determined by comparing all the candidate schemes.In particular,a clustering algorithm based on K-means is applied to produce all candidate user association schemes,the successive convex optimization technique is adopted in the power allocation subproblem and a logistic function approximation approach is employed in the trajectory design subproblem.Simulation results show that the proposed NOMA scheme outperforms three baseline schemes in downlink common throughput,including one solution proposed in an existing literature. 展开更多
关键词 NOMA resource allocation trajectory design uav communications user association
在线阅读 下载PDF
YOLO-LE: A Lightweight and Efficient UAV Aerial Image Target Detection Model 被引量:1
20
作者 Zhe Chen Yinyang Zhang Sihao Xing 《Computers, Materials & Continua》 2025年第7期1787-1803,共17页
Unmanned aerial vehicle(UAV)imagery poses significant challenges for object detection due to extreme scale variations,high-density small targets(68%in VisDrone dataset),and complex backgrounds.While YOLO-series models... Unmanned aerial vehicle(UAV)imagery poses significant challenges for object detection due to extreme scale variations,high-density small targets(68%in VisDrone dataset),and complex backgrounds.While YOLO-series models achieve speed-accuracy trade-offs via fixed convolution kernels and manual feature fusion,their rigid architectures struggle with multi-scale adaptability,as exemplified by YOLOv8n’s 36.4%mAP and 13.9%small-object AP on VisDrone2019.This paper presents YOLO-LE,a lightweight framework addressing these limitations through three novel designs:(1)We introduce the C2f-Dy and LDown modules to enhance the backbone’s sensitivity to small-object features while reducing backbone parameters,thereby improving model efficiency.(2)An adaptive feature fusion module is designed to dynamically integrate multi-scale feature maps,optimizing the neck structure,reducing neck complexity,and enhancing overall model performance.(3)We replace the original loss function with a distributed focal loss and incorporate a lightweight self-attention mechanism to improve small-object recognition and bounding box regression accuracy.Experimental results demonstrate that YOLO-LE achieves 39.9%mAP@0.5 on VisDrone2019,representing a 9.6%improvement over YOLOv8n,while maintaining 8.5 GFLOPs computational efficiency.This provides an efficient solution for UAV object detection in complex scenarios. 展开更多
关键词 Deep learning target detection uav image YOLO adaptive feature fusion
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部