期刊文献+
共找到431,558篇文章
< 1 2 250 >
每页显示 20 50 100
Implementation of a Demoisturization and Devolatilization Model in Multi-Phase Simulation of a Hybrid Entrained-Flow and Fluidized Bed Mild Gasifier
1
作者 Jobaidur Khan Ting Wang 《International Journal of Clean Coal and Energy》 2013年第3期35-53,共19页
A mild gasification process has been implemented to provide an alternative form of clean coal technology called the Integrated Mild Gasification Combined Cycle (IMGCC), which can be utilized to build a new, highly eff... A mild gasification process has been implemented to provide an alternative form of clean coal technology called the Integrated Mild Gasification Combined Cycle (IMGCC), which can be utilized to build a new, highly efficient, and compact power plant or to retrofit an existing coal-fired power plant in order to achieve lower emissions and significantly improved thermal efficiency. The core technology of the mild gasification power plant lies on the design of a compact and effective mild gasifier that can produce synthesis gases with high energy volatiles through a hybrid system: utilizing the features of both entrained-flow and fluidized bed gasifiers. To aid in the design of the mild gasifier, a computational model has been implemented to investigate the thermal-flow and gasification process inside this mild gasifier using the commercial CFD (Computational Fluid Dynamics) solver ANSYS/FLUENT. The Eulerian-Eulerian method is employed to model both the primary phase (air) and the secondary phase (coal particles). However, the Eulerian-Eulerian model used in the software does not facilitate any built-in devolatilization model. The objective of this study is therefore to implement a devolatilization model (along with demoisturization) and incorporate it into the existing code. The Navier-Stokes equations and seven species transport equations are solved with three heterogeneous (gas-solid) and two homogeneous (gas-gas) global gasification reactions. Implementation of the complete model starts from adding demoisturization first, then devolatilization, and then adding one chemical equation at a time until finally all reactions are included in the multiphase flow. The result shows that the demoisturization and devolatilization models are successfully incorporated and a large amount of volatiles are preserved as high-energy fuels in the syngas stream without being further cracked or reacted into lighter gases. The overall results are encouraging but require future experimental data for verification. 展开更多
关键词 multi-phase simulation Gasification simulation Entrained-Flow GASIFIER Fluidized Bed MILD GASIFIER Clean Coal Technology
暂未订购
Numerical Simulation on Thermomechanical Coupling Process in Friction Stir-Assisted Wire Arc Additive Manufacturing
2
作者 Li Long Xiao Yichen +2 位作者 Shi Lei Chen Ji Wu Chuansong 《稀有金属材料与工程》 北大核心 2026年第1期1-8,共8页
Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit... Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties. 展开更多
关键词 friction stir processing wire arc additive manufacturing numerical simulation thermomechanical coupling temperature field DEFORMATION
原文传递
Thermal simulation method for researching solidification process of ductile iron pipe based on heat transfer similarity of characteristic unit of ductile iron pipe
3
作者 Gan-chao Zhai Gong-ao Zhu +4 位作者 Shao-dong Hu Bin Yang Jie-yu Zhang Xiang-ru Chen Qi-jie Zhai 《China Foundry》 2026年第1期62-72,共11页
Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presen... Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presents significant challenges.In this study,a novel research method was introduced for investigating the solidification process of ductile iron pipe,namely thermal simulation of ductile iron pipe.Comparative research was conducted on the microstructure and properties of the thermal simulation sample and the ductile iron pipe.The findings indicate that the thermal simulation sample and ductile iron pipe exhibit good heat transfer similarity and microstructure similarity.The difference of cooling rate between thermal simulation sample and ductile pipe is less than 0.24℃·s^(-1),and the difference of microstructure content of free cementite,ferrite,and pearlite is less than 5%.The tensile strength of annealed ductile iron pipe is 466 MPa,with an elongation of 16.1%and a Brinell hardness of 156.5 HBW.In comparison,the tensile strength of annealed thermal simulation sample is 482.0 MPa,with an elongation of 15.5%and a Brinell hardness of 159.0 HBW.These results suggest that the thermal simulation experimental research method is both scientific and feasible,offering an objective,reliable,and cost-effective approach to laboratory research on ductile iron pipe. 展开更多
关键词 ductile iron pipe centrifugal casting thermal simulation MICROSTRUCTURE mechanical property
在线阅读 下载PDF
Bridging the gap:A scoping review of wet and dry lab simulation training in orthopaedic surgical education
4
作者 Sari Wathiq Al Hajaj Chandramohan Ravichandran +4 位作者 Karthic Swaminathan Sanjeevi Bharadwaj Vishnu V Nair Hussein Shoukry Sriram Srinivasan 《World Journal of Orthopedics》 2026年第1期132-139,共8页
BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints... BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints,and patient safety concerns have constrained its practicality.Simulation-based training has become a reliable,safe,and cost-efficient alternative.Dry lab techniques,especially virtual and augmented reality,make up 78%of current dry lab research,whereas wet labs still set the standard for anatomical realism.AIM To evaluate the effectiveness,limitations,and future directions of wet and dry lab simulation in orthopaedic training.METHODS A scoping review was carried out across four databases-PubMed,Cochrane Library,Web of Science,and EBSCOhost-up to 2025.Medical Subject Headings included:"Orthopaedic Education","Wet Lab","Dry Lab","Simulation Training","Virtual Reality",and"Surgical Procedure".Eligible studies focused on orthopaedic or spinal surgical education,employed wet or dry lab techniques,and assessed training effectiveness.Exclusion criteria consisted of non-English publications,abstracts only,non-orthopaedic research,and studies unrelated to simulation.Two reviewers independently screened titles,abstracts,and full texts,resolving discrepancies with a third reviewer.RESULTS From 1851 records,101 studies met inclusion:78 on dry labs,7 on wet labs,4 on both.Virtual reality(VR)simulations were most common,with AI increasingly used for feedback and assessment.Cadaveric training remains the gold standard for accuracy and tactile feedback,while dry labs-especially VR-offer scalability,lower cost(40%-60%savings in five studies),and accessibility for novices.Senior residents prefer wet labs for complex tasks;juniors favour dry labs for basics.Challenges include limited transferability data,lack of standard outcome metrics,and ethical concerns about cadaver use and AI assessment.CONCLUSION Wet and dry labs each have unique strengths in orthopaedic training.A hybrid approach combining both,supported by standardised assessments and outcome studies,is most effective.Future efforts should aim for uniform reporting,integrating new technologies,and policy support for hybrid curricula to enhance skills and patient care. 展开更多
关键词 Orthopaedic education Wet lab Dry lab simulation training Virtual reality Surgical procedure
在线阅读 下载PDF
Typhoon Kompasu(2118)simulation with planetary boundary layer and cloud physics parameterization improvements
5
作者 Xiaowei Tan Zhiqiu Gao Yubin Li 《Atmospheric and Oceanic Science Letters》 2026年第1期41-46,共6页
This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the pred... This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure. 展开更多
关键词 Tropical cyclone Numerical simulation Planetary boundary layer parameterization SCHEME Cloud physics scheme
在线阅读 下载PDF
Numerical Simulation of the Welding Deformation of Marine Thin Plates Based on a Temperature Gradient-thermal Strain Method
6
作者 Lin Wang Yugang Miao +3 位作者 Zhenjian Zhuo Chunxiang Lin Benshun Zhang Duanfeng Han 《哈尔滨工程大学学报(英文版)》 2026年第1期122-135,共14页
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t... Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates. 展开更多
关键词 Marine thin plate Welding deformation Numerical simulation Temperature gradient-thermal strain method Shell element
在线阅读 下载PDF
Automatic gating and riser system design and defect control for K4169 superalloy guide blade casting based on parametric 3D modeling-simulation integrated system
7
作者 Le-chuan Li Ya-jun Yin +4 位作者 Bing-zheng Fan Guo-yan Shui Xiao-yuan Ji Jian-xin Zhou Lei Jin 《China Foundry》 2026年第1期20-30,共11页
Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical si... Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%. 展开更多
关键词 numerical simulation automatic design investment casting parametric 3D modeling gating and riser system
在线阅读 下载PDF
Numerical simulation of complex multi-phase fluid of casting process and its applications 被引量:5
8
作者 C. Beckermann 《China Foundry》 SCIE CAS 2006年第2期83-86,共4页
The fluid of casting process is a typical kind of multi-phase flow. Actually, many casting phenomena have close relationship with the multi-phase flow, such as molten metal filling process, air entrapment, slag moveme... The fluid of casting process is a typical kind of multi-phase flow. Actually, many casting phenomena have close relationship with the multi-phase flow, such as molten metal filling process, air entrapment, slag movement, venting process of die casting, gas escaping of lost foam casting and so on. Obviously, in order to analyze these phenomena accurately, numerical simulation of the multi-phase fluid is necessary. Unfortunately, so far, most of the commercial casting simulation systems do not have the ability of multi-phase flow modeling due to the difficulty in the multi-phase flow calculation. In the paper, Finite Different Method (FDM) technique was adopt to solve the multi-phase fluid model. And a simple object of the muiti-phase fluid was analyzed to obtain the fluid rates of the liquid phase and the entrapped air phase. 展开更多
关键词 CASTING multi-phase FLOW NUMERICAL simulation
在线阅读 下载PDF
Carbon Footprint and Economic Analysis of LNG-fueled Fishing Vessel Using Real Engine Performance Simulation
9
作者 Momir Sjerić Maja Perčić +1 位作者 Ivana Jovanović Nikola Vladimir 《哈尔滨工程大学学报(英文版)》 2026年第1期259-276,共18页
Analysis of the environmental and economic performance of fishing vessels has received limited attention compared with other ship types despite their notable contribution to global greenhouse gas(GHG)emissions.This st... Analysis of the environmental and economic performance of fishing vessels has received limited attention compared with other ship types despite their notable contribution to global greenhouse gas(GHG)emissions.This study evaluates the carbon footprint(CF)and economic viability of a liquefied natural gas(LNG)-fueled fishing vessel,using real engine operation simulations to provide precise and dynamic evaluation of fuel consumption and GHG emissions.Operational profiles are obtained through the utilization of onboard monitoring systems,whereas engine performance is simulated using the 1D/0D AVL Boost^(TM)model.Life cycle assessment(LCA)is conducted to quantify the environmental impact,whereas life cycle cost assessment(LCCA)is performed to analyze the profitability of LNG as an alternative fuel.The potential impact of the future fuel price uncertainties is addressed using Monte Carlo simulations.The LCA findings indicate that LNG has the potential to reduce the CF of the vessel by 14%to 16%,in comparison to a diesel power system configuration that serves as the baseline scenario.The LCCA results further indicate that the total cost of an LNG-powered ship is lower by 9.5%-13.8%,depending on the share of LNG and pilot fuels.This finding highlights the potential of LNG to produce considerable environmental benefits while addressing economic challenges under diverse operational and fuel price conditions. 展开更多
关键词 1D/0D simulation Carbon footprint Fishing vessels Life cycle assessment Life cycle cost assessment Liquefied natural gas
在线阅读 下载PDF
Enabling Intrinsic Antiferroelectricity in Two-dimensional NbOCl_(2):Molecular Dynamics Simulations based on Deep Learning Interatomic Potential
10
作者 Jiawei Mao Yinglu Jia +2 位作者 Gaoyang Gou Shi Liu Xiao Cheng Zeng 《Chinese Physics Letters》 2026年第1期156-178,共23页
Compared to the well-studied two-dimensional(2D)ferroelectricity,the appearance of 2D antiferroelectricity is much rarer,where local dipoles from the nonequivalent sublattices within 2D monolayers are oppositely orien... Compared to the well-studied two-dimensional(2D)ferroelectricity,the appearance of 2D antiferroelectricity is much rarer,where local dipoles from the nonequivalent sublattices within 2D monolayers are oppositely oriented.Using NbOCl_(2) monolayer with competing ferroelectric(FE)and antiferroelectric(AFE)phases as a 2D material platform,we demonstrate the emergence of intrinsic antiferroelectricity in NbOCl_(2) monolayer under experimentally accessible shear strain,along with new functionality associated with electric field-induced AFE-to-FE phase transition.Specifically,the complex configuration space accommodating FE and AFE phases,polarization switching kinetics,and finite temperature thermodynamic properties of 2D NbOCl_(2) are all accurately predicted by large-scale molecular dynamics simulations based on deep learning interatomic potential model.Moreover,room temperature stable antiferroelectricity with low polarization switching barrier and one-dimensional collinear polarization arrangement is predicted in shear-deformed NbOCl_(2) monolayer.The transition from AFE to FE phase in 2D NbOCl_(2) can be triggered by a low critical electric field,leading to a double polarization–electric(P–E)loop with small hysteresis.A new type of optoelectronic device composed of AFE-NbOCl_(2) is proposed,enabling electric“writing”and nonlinear optical“reading”logical operation with fast operation speed and low power consumption. 展开更多
关键词 d monolayers local dipoles nonequivalent sublattices intrinsic antiferroelectricity two dimensional nbocl d antiferroelectricity experimentally accessible shear strainalong molecular dynamics simulations
原文传递
Three-dimensional multi-phase simulation of the mixing and segregation of binary particle mixtures in a two-jet spout fluidized bed 被引量:6
11
作者 Xiaojia Wang Baosheng Jin +1 位作者 Yanyan Wang Chunhong Hu 《Particuology》 SCIE EI CAS CSCD 2015年第5期185-193,共9页
This study presents a three-dimensional numerical study of the mixing and segregation of binary particle mixtures in a two-jet spout fluidized bed based on an Eulerian-Eulerian three-fluid model. Initially, the partic... This study presents a three-dimensional numerical study of the mixing and segregation of binary particle mixtures in a two-jet spout fluidized bed based on an Eulerian-Eulerian three-fluid model. Initially, the particle mixtures were premixed and packed in a rectangular fluidized bed. As the calculation began, the gas stream was injected into the bed from the distributor and jet nozzles. The model was validated by comparing the simulated jet penetration depths with corresponding experimental data. The main features of the complex gas-solid flow behaviors and the mechanism of mixing and segregation of the binary mixtures were analyzed, Moreover, further simulations were carried out to evaluate the effects of operating conditions on the mixing and segregation of binary particle mixtures. The results illustrate that mixing can be enhanced by increasing the jet velocity or enlarging the difference of initial proportions of binary particle mixtures. 展开更多
关键词 Fluidized bed Binary particle mixture MIXING SEGREGATION Numerical simulation Three-fluid model
原文传递
Numerical Simulation of Shaped Charge Jet Using Multi-Phase SPH Method 被引量:2
12
作者 强洪夫 王坤鹏 高巍然 《Transactions of Tianjin University》 EI CAS 2008年第B10期495-499,共5页
Since the jets and detonation gaseous products are separated by sharp interfaces, the traditional smoothed particle hydrodynamics (SPH) method is difficult to avoid the computational instability at interfaces. The mul... Since the jets and detonation gaseous products are separated by sharp interfaces, the traditional smoothed particle hydrodynamics (SPH) method is difficult to avoid the computational instability at interfaces. The multi-phase SPH (MSPH) method was applied to improving the stabil-ity, which smoothes the particle density and makes pressure continuous at interfaces. Numericalexamples of jet forming process were used to test capability of the MSPH method. The results show that the method remains algorithm stability for large density gradient between the jets and gaseous products and has potential application to both the explosion and the jet problems. The effect of initiation ways of the shaped charge was discussed as well. 展开更多
关键词 smoothed particle hydrodynamics (SPH) multi-phase large deformation shaped charge jet INITIATION
在线阅读 下载PDF
Multi-phase field simulation of grain growth in multiple phase transformations of a binary alloy 被引量:1
13
作者 冯力 贾北北 +3 位作者 朱昶胜 安国升 肖荣振 冯小静 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期87-95,共9页
This work establishes a temperature-controlled sequence function, and a new multi-phase-field model, for liquid- solid-solid multi-phase transformation by coupling the liquid-solid phase transformation model with the ... This work establishes a temperature-controlled sequence function, and a new multi-phase-field model, for liquid- solid-solid multi-phase transformation by coupling the liquid-solid phase transformation model with the solid-solid phase transformation model. Taking an Fe-C alloy as an example, the continuous evolution of a multi-phase transformation is simulated by using this new model. In addition, the growth of grains affected by the grain orientation of the parent phase (generated in liquid-solid phase transformation) in the solid-solid phase transformation is studied. The results show that the morphology of ferrite grains which nucleate at the boundaries of the austenite grains is influenced by the orientation of the parent austenite grains. The growth rate of ferrite grains which nucleate at small-angle austenite grain boundaries is faster than those that nucleate at large-angle austenite grain boundaries. The difference of the growth rate of ferrites grains in different parent phase that nucleate at large-angle austenite grain boundaries, on both sides of the boundaries, is greater than that of ferrites nucleating at small-angle austenite grain boundaries. 展开更多
关键词 multi-phase transformation MICROSTRUCTURE multi-phase-field method grain orientation
原文传递
Multi-phase field simulation of competitive grain growth for directional solidification 被引量:1
14
作者 Chang-Sheng Zhu Zi-Hao Gao +2 位作者 Peng Lei Li Feng Bo-Rui Zhao 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期683-694,共12页
The multi-phase field model of grain competitive growth during directional solidification of alloy is established.Solving multi-phase field models for thin interface layer thickness conditions,the grain boundary evolu... The multi-phase field model of grain competitive growth during directional solidification of alloy is established.Solving multi-phase field models for thin interface layer thickness conditions,the grain boundary evolution and grain elimination during the competitive growth of SCN-0.24-wt%camphor model alloy bi-crystals are investigated.The effects of different crystal orientations and pulling velocities on grain boundary microstructure evolution are quantitatively analyzed.The obtained results are shown below.In the competitive growth of convergent bi-crystals,when favorably oriented dendrites are in the same direction as the heat flow and the pulling speed is too large,the orientation angle of the bi-crystal from small to large size is the normal elimination phenomenon of the favorably oriented dendrite,blocking the unfavorably oriented dendrite,and the grain boundary is along the growth direction of the favorably oriented dendrite.When the pulling speed becomes small,the grain boundary shows the anomalous elimination phenomenon of the unfavorably oriented dendrite,eliminating the favorably oriented dendrite.In the process of competitive growth of divergent bi-crystal,when the growth direction of favorably oriented dendrites is the same as the heat flow direction and the orientation angle of unfavorably oriented grains is small,the frequency of new spindles of favorably oriented grains is significantly higher than that of unfavorably oriented grains,and as the orientation angle of unfavorably oriented dendrites becomes larger,the unfavorably oriented grains are more likely to have stable secondary dendritic arms,which in turn develop new primary dendritic arms to occupy the liquid phase grain boundary space,but the grain boundary direction is still parallel to favorably oriented dendrites.In addition,the tertiary dendritic arms on the developed secondary dendritic arms may also be blocked by the surrounding lateral branches from further developing into nascent main axes,this blocking of the tertiary dendritic arms has a random nature,which can have aninfluence on the generation of nascent primary main axes in the grain boundaries. 展开更多
关键词 multi-phase field model directional solidification grain competition growth grain boundary orientation
原文传递
Numerical simulation for separation of multi-phase immiscible fluids in porous media
15
作者 吴柏志 许友生 +1 位作者 刘扬 黄国翔 《Chinese Physics B》 SCIE EI CAS CSCD 2005年第10期2046-2051,共6页
Based on a lattice Boltzmann method and general principles of porous flow, a numerical technique is presented for analysing the separation of multi-phase immiscible fluids in porous media. The total body force acting ... Based on a lattice Boltzmann method and general principles of porous flow, a numerical technique is presented for analysing the separation of multi-phase immiscible fluids in porous media. The total body force acting on fluid particles is modified by axiding relative permeability in Nithiarasu's expression with an axiditional surface tension term. As a test of this model, we simulate the phase separation for the case of two immiscible fluids. The numerical results show that the two coupling relative permeability coefficients K12 and K21 have the same magnitude, so the linear flux-forcing relationships satisfy Onsager reciprocity. Phase separation phenomenon is shown with the time evolution of density distribution and bears a strong similarity to the results obtained from other numerical models and the flows in sands. At the same time, the dynamical rules in this model are local, therefore it can be run on massively parallel computers with well computational efficiency. 展开更多
关键词 separation of multi-phase immiscible fluids porous media numerical simulation
原文传递
Multi-phase field simulation of multi-grain peritectic transition in multiple phase transformation 被引量:1
16
作者 Li Feng Jun-he Zhong +3 位作者 Chang-sheng Zhu Jun Wang Guo-sheng An Rong-zhen Xiao 《China Foundry》 SCIE 2020年第5期357-363,共7页
Taking Fe-C binary alloy as an example,based on the multi-phase field model,the nucleation and growth ofδphase,peritectic reaction,peritectic transformation,and the growth of subsequent austenite are simulated.Effect... Taking Fe-C binary alloy as an example,based on the multi-phase field model,the nucleation and growth ofδphase,peritectic reaction,peritectic transformation,and the growth of subsequent austenite are simulated.Effects of the nucleation site of austenite on the peritectic reaction rate and the starting time of the peritectic transformation were studied.The simulation results show that theγphase,as a shell,surrounds theδphase and grows rapidly when the peritectic reaction occurs between the dendriticδgrains,and a layer ofγphase shell is formed aroundδphase after the peritectic reaction.After theδphase is surrounded byγphase completely,the membrane shell separates the L phase from theδphase,so that the phase transfers from peritectic reaction to peritectic transformation.During the peritectic transformation,since the solute diffusion coefficient of the liquid phase is much greater than that of the solid phase,the average growth rate of austenite in the liquid phase is visibly higher than that of theδphase.The peritectic reaction rate is related to the curvature of the nucleation site of theγphase on theδphase grains.The peritectic reaction rate at the large curvatures is faster than that at small curvatures. 展开更多
关键词 phase field Fe-C binary alloy peritectic transformation microstructure numerical simulation
在线阅读 下载PDF
Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
17
作者 Chao Yang Jing Wang +4 位作者 Junsheng Wang Yu Liu Guomin Han Haifeng Song Houbing Huang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期572-577,共6页
A multi-phase-field model is implemented to investigate the peritectic solidification of Fe-C alloy. The nucleation mode of austenite is based on the local driving force, and two different thicknesses of the primary a... A multi-phase-field model is implemented to investigate the peritectic solidification of Fe-C alloy. The nucleation mode of austenite is based on the local driving force, and two different thicknesses of the primary austenite on the surface of the ferrite equiaxed crystal grain are used as the initial conditions. The simulation shows the multiple interactions of ferrite, austenite, and liquid phases, and the effects of carbon diffusion, which presents the non-equilibrium dynamic process during Fe-C peritectic solidification at the mesoscopic scale. This work not only reveals the influence of the austenite nucleation position, but also clarifies the formation mechanism of liquid phase channels and molten pools. Therefore, the present study contributes to the understanding of the micro-morphology and micro-segregation evolution mechanisms of Fe-C alloy during peritectic solidification. 展开更多
关键词 multi-phase-field simulation morphology evolution peritectic solidification carbon diffusion Fe-C alloy
原文传递
基于Plant Simulation的装配生产线规划方法 被引量:1
18
作者 陈光霞 《机械管理开发》 2025年第3期278-280,共3页
在工厂进行智能化改造或新建厂时,为节约开发成本,提高开发效率,必须进行工厂装配线规划。论述了利用Plant Simulation工厂仿真软件进行装配线规划的具体方法与过程,对规划过程中的功能模型的建立、装配过程的制定、Petri图及建模仿真... 在工厂进行智能化改造或新建厂时,为节约开发成本,提高开发效率,必须进行工厂装配线规划。论述了利用Plant Simulation工厂仿真软件进行装配线规划的具体方法与过程,对规划过程中的功能模型的建立、装配过程的制定、Petri图及建模仿真进行了分析描述,并利用仿真软件对所建立的装配线模型进行相关分析,利用智能工厂装配线仿真规划方法可以提高规划效率,节约规划成本,并为数字化工厂建设与数字孪生的应用提供了基础。 展开更多
关键词 智能制造 Plant simulation 装配线规划
在线阅读 下载PDF
基于Plant Simulation的双离合器装配线仿真优化 被引量:1
19
作者 江涛 刘雪梅 《农业装备与车辆工程》 2025年第6期97-102,共6页
在工程项目制定后,通过搭建仿真模型,对项目方案进行分析评估、优化与改进,有助于解决实际工程项目可能出现的问题,减少人力物力浪费,提高优化效率。以某企业DC300双离合器装配线为研究对象,结合装配工艺流程,利用仿真软件Plant Simulat... 在工程项目制定后,通过搭建仿真模型,对项目方案进行分析评估、优化与改进,有助于解决实际工程项目可能出现的问题,减少人力物力浪费,提高优化效率。以某企业DC300双离合器装配线为研究对象,结合装配工艺流程,利用仿真软件Plant Simulation构建装配线仿真模型,并进行装配线运行过程仿真。通过对生产线节拍、设备利用率等相关数据进行分析评估,找出生产线的瓶颈工位,通过工艺结构调整,实现了生产线节拍的优化与改善,达到了生产要求指标。同时进行了多组仿真实验,完成了托盘数量的优化。 展开更多
关键词 Plant simulation 双离合器 装配线
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部