期刊文献+
共找到45,930篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-objective optimization design of anti-roll torsion bar using improved beluga whale optimization algorithm
1
作者 Yonghua Li Zhe Chen +1 位作者 Maorui Hou Tao Guo 《Railway Sciences》 2024年第1期32-46,共15页
Purpose – This study aims to reduce the redundant weight of the anti-roll torsion bar brought by thetraditional empirical design and improving its strength and stiffness.Design/methodology/approach – Based on the fi... Purpose – This study aims to reduce the redundant weight of the anti-roll torsion bar brought by thetraditional empirical design and improving its strength and stiffness.Design/methodology/approach – Based on the finite element approach coupled with the improved belugawhale optimization (IBWO) algorithm, a collaborative optimization method is suggested to optimize the designof the anti-roll torsion bar structure and weight. The dimensions and material properties of the torsion bar weredefined as random variables, and the torsion bar’s mass and strength were investigated using finite elements.Then, chaotic mapping and differential evolution (DE) operators are introduced to improve the beluga whaleoptimization (BWO) algorithm and run case studies.Findings – The findings demonstrate that the IBWO has superior solution set distribution uniformity,convergence speed, solution correctness and stability than the BWO. The IBWO algorithm is used to optimizethe anti-roll torsion bar design. The error between the optimization and finite element simulation results wasless than 1%. The weight of the optimized anti-roll torsion bar was lessened by 4%, the maximum stress wasreduced by 35% and the stiffness was increased by 1.9%.Originality/value – The study provides a methodological reference for the simulation optimization process ofthe lateral anti-roll torsion bar. 展开更多
关键词 Anti-roll torsion bar multi-objective optimization IBWO Chaotic mapping Differential evolution
在线阅读 下载PDF
Multi-objective optimization design method of the high-speed train head 被引量:22
2
作者 Meng-ge YU Ji-ye ZHANG Wei-hua ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第9期631-641,共11页
With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train ... With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train head design. Given that the aerodynamic drag is a significant factor that restrains train speed and energy conservation, reducing the aerodynamic drag is thus an important consideration of the high-speed train head design. However, the reduction of the aerodynamic drag may increase other aerodynamic forces (moments), possibly deteriorating the operational safety of the train. The multi-objective optimization design method of the high-speed train head was proposed in this paper, and the aerodynamic drag and load reduction factor were set to be optimization objectives. The automatic multi-objective optimization design of the high-speed train head can be achieved by integrating a series of procedures into the multi-objective optimization algorithm, such as the establishment of 3D parametric model, the aerodynamic mesh generation, the calculation of the flow field around the train, and the vehicle system dynamics. The correlation between the optimization objectives and optimization variables was analyzed to obtain the most important optimization variables, and a further analysis of the nonlinear relationship between the key optimization variables and the optimization objectives was obtained. After optimization, the aerodynamic drag of optimized train was reduced by up to 4.15%, and the load reduction factor was reduced by up to 1.72%. 展开更多
关键词 High-speed train multi-objective optimization Parametric model Aerodynamic drag Load reduction factor
原文传递
Interactive Multi-objective Optimization Design for the Pylon Structure of an Airplane 被引量:4
3
作者 An Weigang Li Weiji 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第6期524-528,共5页
The pylon structure of an airplane is very complex, and its high-fidelity analysis is quite time-consuming. If posterior preference optimization algorithm is used to solve this problem, the huge time consumption will ... The pylon structure of an airplane is very complex, and its high-fidelity analysis is quite time-consuming. If posterior preference optimization algorithm is used to solve this problem, the huge time consumption will be unacceptable in engineering practice due to the large amount of evaluation needed for the algorithm. So, a new interactive optimization algorithm-interactive multi-objective particle swarm optimization (IMOPSO) is presented. IMOPSO is efficient, simple and operable. The decision-maker can expediently determine the accurate preference in IMOPSO. IMOPSO is used to perform the pylon structure optimization design of an airplane, and a satisfactory design is achieved after only 12 generations of IMOPSO evolutions. Compared with original design, the maximum displacement of the satisfactory design is reduced, and the mass of the satisfactory design is decreased for 22%. 展开更多
关键词 pylon structure multi-objective optimization algorithm interactive algorithm multi-objective particle swarm optimization neural network
在线阅读 下载PDF
Multi-Objective Optimization Design through Machine Learning for Drop-on-Demand Bioprinting 被引量:6
4
作者 Jia Shi Jinchun Song +1 位作者 Bin Song Wen F. Lu 《Engineering》 SCIE EI 2019年第3期586-593,共8页
Drop-on-demand (DOD) bioprinting has been widely used in tissue engineering due to its highthroughput efficiency and cost effectiveness. However, this type of bioprinting involves challenges such as satellite generati... Drop-on-demand (DOD) bioprinting has been widely used in tissue engineering due to its highthroughput efficiency and cost effectiveness. However, this type of bioprinting involves challenges such as satellite generation, too-large droplet generation, and too-low droplet speed. These challenges reduce the stability and precision of DOD printing, disorder cell arrays, and hence generate further structural errors. In this paper, a multi-objective optimization (MOO) design method for DOD printing parameters through fully connected neural networks (FCNNs) is proposed in order to solve these challenges. The MOO problem comprises two objective functions: to develop the satellite formation model with FCNNs;and to decrease droplet diameter and increase droplet speed. A hybrid multi-subgradient descent bundle method with an adaptive learning rate algorithm (HMSGDBA), which combines the multisubgradient descent bundle (MSGDB) method with Adam algorithm, is introduced in order to search for the Pareto-optimal set for the MOO problem. The superiority of HMSGDBA is demonstrated through comparative studies with the MSGDB method. The experimental results show that a single droplet can be printed stably and the droplet speed can be increased from 0.88 to 2.08 m·s^-1 after optimization with the proposed method. The proposed method can improve both printing precision and stability, and is useful in realizing precise cell arrays and complex biological functions. Furthermore, it can be used to obtain guidelines for the setup of cell-printing experimental platforms. 展开更多
关键词 Drop-on-demand printing INKJET Gradient DESCENT multi-objective optimization Fully connected neural networks
在线阅读 下载PDF
Multi-objective Optimization Design of Vented Cylindrical Airbag Cushioning System for Unmanned Aerial Vehicle 被引量:5
5
作者 Shao Zhijian He Cheng Pei Jinhua 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第2期208-214,共7页
Multi-objective optimization design of the gas-filled bag cushion landing system is investigated.Firstly,the landing process of airbag is decomposed into a adiabatic compression and a release of landing shock energy,a... Multi-objective optimization design of the gas-filled bag cushion landing system is investigated.Firstly,the landing process of airbag is decomposed into a adiabatic compression and a release of landing shock energy,and the differential equation of cylindrical gas-filled bag is presented from a theoretical perspective based on the ideal gas state equation and dynamic equation.Then,the effects of exhaust areas and blasting pressure on buffer characteristics are studied,taking those parameters as design variable for the multiobjective optimization problem,and the solution can be determined by comparing Pareto set,which is gained by NSGA-Ⅱ.Finally,the feasibility of the design scheme is verified by experimental results of the ground test. 展开更多
关键词 AIRBAG VENT ORIFICE soft LANDING multi-objective optimization unmanned AERIAL vehicle (UAV)
在线阅读 下载PDF
Multi-objective optimization design of deviation-correction trajectory considering the production loss in shale gas cluster well 被引量:1
6
作者 Zi-Jun Dou Yong-Sheng Liu +2 位作者 Xing Qin De-Li Gao Gan-Sheng Yang 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2995-3003,共9页
In shale gas mining,the inter-fracture interference effect will significantly occur if the actual well deviates from the planned trajectory.To reduce production loss,operators want to get back on the planned trajector... In shale gas mining,the inter-fracture interference effect will significantly occur if the actual well deviates from the planned trajectory.To reduce production loss,operators want to get back on the planned trajectory economically and safely.Based on this,a multi-objective optimization model of deviationcorrection trajectory is established considering the production loss evaluation.Firstly,the functional relationship between the production envelope and the fracturing depth is constructed,and the production loss is obtained by combining the calculation method of volume flow.Based on the proposed“double-arc”trajectory design method,the production loss of the fracture on the deviation-correction trajectory is obtained.Finally,combined with the well profile energy evaluation,a new optimization model of deviation-correction trajectory is established.The results demonstrate that after optimizing the fracturing depth,the production loss of the deviation-correction trajectory is reduced by 13.2%.The maximum curvature value results in a trajectory with a minimum production loss yet a maximum well profile energy.The proposed model reduces the well profile energy by 15.6%compared with the existing model.It is proved that the proposed model can reduce the probability of drilling accidents and achieve high gas production in the later mining stage.This study fully considers various factors affecting horizontal wells in the fracturing area,which can provide theoretical guidance for the design of deviationcorrection trajectory. 展开更多
关键词 Shale gas Inter-fracture interference effect Production loss Deviation-correction trajectory multi-objective optimization
原文传递
Multi-objective optimization design of bridge piers with hybrid heuristic algorithms
7
作者 Francisco J. MARTINEZ-MARTIN Fernando GONZALEZ-VIDOSA +1 位作者 Antonio HOSPITALER Víctor YEPES 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第6期420-432,共13页
This paper describes one approach to the design of reinforced concrete (RC) bridge piers, using a three-hybrid multi- objective simulated annealing (SA) algorithm with a neighborhood move based on the mutation operato... This paper describes one approach to the design of reinforced concrete (RC) bridge piers, using a three-hybrid multi- objective simulated annealing (SA) algorithm with a neighborhood move based on the mutation operator from the genetic algorithms (GAs), namely MOSAMO1, MOSAMO2 and MOSAMO3. The procedure is applied to three objective functions: the economic cost, the reinforcing steel congestion and the embedded CO 2 emissions. Additional results for a random walk and a descent local search multi-objective algorithm are presented. The evaluation of solutions follows the Spanish Code for structural concrete. The methodology was applied to a typical bridge pier of 23.97 m in height. This example involved 110 design variables. Results indicate that algorithm MOSAMO2 outperforms other algorithms regarding the definition of Pareto fronts. Further, the proposed procedure will help structural engineers to enhance their bridge pier designs. 展开更多
关键词 Bridge piers Concrete structures multi-objective optimization Simulated annealing (SA) Structural design
原文传递
The Coalition Cooperative Game Method and Its Application in Multi-objective Optimization Design 被引量:1
8
作者 LI Bi-yan 《International Journal of Plant Engineering and Management》 2011年第2期125-128,共4页
This paper proposes a multi-objective optimization design method based on the coalition cooperative game theory where the three design goals have been seen as three game players. By calculating the affecting factors a... This paper proposes a multi-objective optimization design method based on the coalition cooperative game theory where the three design goals have been seen as three game players. By calculating the affecting factors and fuzzy clustering, the design variables are divided into different strategic spaces which belong to each player, then it constructs a payoff function based on the coalition mechanism. Each game player takes its own revenue function as a target and obtains the best strategy versus other players. The best strategies of all players consist of the strategy permutation of a round game and it obtains the final game solutions through multi-round games according to the convergence criterion. A multi-objective optimization example of the luff mechanism of compensative sheave block shows the effectiveness of the coalition cooperative game method. 展开更多
关键词 coalition cooperative game multi-objective optimization fuzzy clustering luff mechanism
在线阅读 下载PDF
Multi-objective optimization design of radar absorbing sandwich structure
9
作者 陈明继 裴永茂 方岱宁 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第3期339-348,共10页
By introducing a dimensionless parameter to couple the two objectives, weight and radar absorbing performance, into a single objective function, a multi-objective optimization procedure for the radar absorbing sandwic... By introducing a dimensionless parameter to couple the two objectives, weight and radar absorbing performance, into a single objective function, a multi-objective optimization procedure for the radar absorbing sandwich structure (RASS) with a cellular core is proposed. The optimization models considered are one-side clamped sandwich panels with four kinds of cores subject to uniformly distributed loads. The average specular reflectivity calculated with the transfer matrix method and the periodic moment method is utilized to characterize the radar absorbing performance, while the mechanical constraints include the facesheet yielding, core shearing, and facesheet wrinkling. The optimization analysis indicates that the sandwich structure with a two-dimensional (2D) composite lattice core filled with ultra-lightweight sponge may be a better candidate of lightweight RASS than those with cellular foam or hexagonal honeycomb cores. The 2D Kagome lattice is found to outperform the square lattice with respect to radar absorbing. 展开更多
关键词 sandwich structure multi-objective optimization LIGHTWEIGHT radar absorbing failure mode
在线阅读 下载PDF
Multi-objective Optimization Design of Magnesium Alloy Wheel Based on Topology Optimization
10
作者 JIANG Xin LIU Hai +4 位作者 Yoshio Fukushima Minoru Otake Naoki Kawada ZHANG Zhenglai JU Dongying 《材料科学与工程(中英文B版)》 2019年第1期13-24,共12页
Lightweight of automatic vehicle is a significant application trend,using topology optimization and magnesium alloy materials is a valuable way.This article designs a new model of automobile wheel and optimizes the st... Lightweight of automatic vehicle is a significant application trend,using topology optimization and magnesium alloy materials is a valuable way.This article designs a new model of automobile wheel and optimizes the structure for lightweight.Through measuring and analyzing designed model under static force,clear and useful topology optimization results were obtained.Comparing wheel performance before and after optimization,the optimized wheel structure compliance with conditions such as strength can be obtained.Considering three different materials namely magnesium alloy,aluminum alloy and steel,the stress and strain performances of each materials can be obtained by finite element analysis.The reasonable and superior magnesium alloy wheels for lightweight design were obtained.This research predicts the reliability of the optimization design,some valuable references are provided for the development of magnesium alloy wheel. 展开更多
关键词 MAGNESIUM alloy WHEEL structural design TOPOLOGY optimization LIGHTWEIGHT FINITE ELEMENT
在线阅读 下载PDF
Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems
11
作者 Miloš Sedak Maja Rosic Božidar Rosic 《Computer Modeling in Engineering & Sciences》 2025年第2期2111-2145,共35页
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op... This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain. 展开更多
关键词 multi-objective optimization planetary gearbox gear efficiency sailfish optimization differential evolution hybrid algorithms
在线阅读 下载PDF
MOCBOA:Multi-Objective Chef-Based Optimization Algorithm Using Hybrid Dominance Relations for Solving Engineering Design Problems
12
作者 Nour Elhouda Chalabi Abdelouahab Attia +4 位作者 Abdulaziz S.Almazyad Ali Wagdy Mohamed Frank Werner Pradeep Jangir Mohammad Shokouhifar 《Computer Modeling in Engineering & Sciences》 2025年第4期967-1008,共42页
Multi-objective optimization is critical for problem-solving in engineering,economics,and AI.This study introduces the Multi-Objective Chef-Based Optimization Algorithm(MOCBOA),an upgraded version of the Chef-Based Op... Multi-objective optimization is critical for problem-solving in engineering,economics,and AI.This study introduces the Multi-Objective Chef-Based Optimization Algorithm(MOCBOA),an upgraded version of the Chef-Based Optimization Algorithm(CBOA)that addresses distinct objectives.Our approach is unique in systematically examining four dominance relations—Pareto,Epsilon,Cone-epsilon,and Strengthened dominance—to evaluate their influence on sustaining solution variety and driving convergence toward the Pareto front.Our comparison investigation,which was conducted on fifty test problems from the CEC 2021 benchmark and applied to areas such as chemical engineering,mechanical design,and power systems,reveals that the dominance approach used has a considerable impact on the key optimization measures such as the hypervolume metric.This paper provides a solid foundation for determining themost effective dominance approach and significant insights for both theoretical research and practical applications in multi-objective optimization. 展开更多
关键词 multi-objective optimization chef-based optimization algorithm(CBOA) pareto dominance epsilon dominance cone-epsilon dominance strengthened dominance
在线阅读 下载PDF
Designing Load-Bearing Bio-Inspired Materials for Simultaneous Static Properties and Dynamic Damping:Multi-Objective Optimization for Micro-Structure
13
作者 Bo Dong Yunfei Jia Wei Wang 《Chinese Journal of Mechanical Engineering》 2025年第2期247-261,共15页
Biological load-bearing materials,like the nacre in shells,have a unique staggered structure that supports their superior mechanical properties.Engineers have been encouraged to imitate it to create load-bearing bio-i... Biological load-bearing materials,like the nacre in shells,have a unique staggered structure that supports their superior mechanical properties.Engineers have been encouraged to imitate it to create load-bearing bio-inspired materials which have excellent properties not present in conventional composites.To create such materials with desirable mechanical properties,the optimum structural parameters combination must be selected.Moreover,the optimal design of bio-inspired composites needs to take into account the trade-offs between various mechanical properties.In this paper,multi-objective optimization models were developed using structural parameters as design variables and mechanical properties as optimization objectives,including stiffness,strength,toughness,and dynamic damping.Using the NSGA-II optimization algorithm,a set of optimal solutions were solved.Additionally,three different structures in natural nacre were introduced in order to utilize the better structure when design bio-inspired materials.The range of optimal solutions that obtained using results from previous research were examined and explained why this collection of optimal solution ranges is better.Also,optimal solutions were compared with the structural features and mechanical properties of real nacre and artificial biomimetic composites to validate our models.Finally,the optimum design strategies can be obtained for nacre-like composites.Our research methodically proposes an optimization method for achieving load-bearing bio-inspired materials with excellent properties and creates a set of optimal solutions from which designers can select the one that best suits their preferences,allowing the fabricated materials to demonstrate preferred performance. 展开更多
关键词 Load-bearing bio-inspired composites Staggered structure multi-objective optimization
在线阅读 下载PDF
A Multi-Objective Particle Swarm Optimization Algorithm Based on Decomposition and Multi-Selection Strategy
14
作者 Li Ma Cai Dai +1 位作者 Xingsi Xue Cheng Peng 《Computers, Materials & Continua》 SCIE EI 2025年第1期997-1026,共30页
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition... The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance. 展开更多
关键词 multi-objective optimization multi-objective particle swarm optimization DECOMPOSITION multi-selection strategy
在线阅读 下载PDF
Multi-objective optimal design of asymmetric base-isolated structures using NSGA-Ⅱ algorithm for improving torsional resistance
15
作者 Zhang Jiayu Qi Ai Yang Mianyue 《Earthquake Engineering and Engineering Vibration》 2025年第3期811-825,共15页
Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is... Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is cumbersome and inefficient.Thus,this work develops a multi-objective optimization method to enhance the torsional resistance of asymmetric base-isolated structures.The primary objective is to simultaneously minimize the interstory rotation of the superstructure,the rotation of the isolation layer,and the interstory displacement of the superstructure without exceeding the isolator displacement limits.A fast non-dominated sorting genetic algorithm(NSGA-Ⅱ)is employed to satisfy this optimization objective.Subsequently,the isolator arrangement,encompassing both positions and categories,is optimized according to this multi-objective optimization method.Additionally,an optimization design platform is developed to streamline the design operation.This platform integrates the input of optimization parameters,the output of optimization results,the finite element analysis,and the multi-objective optimization method proposed herein.Finally,the application of this multi-objective optimization method and its associated platform are demonstrated on two asymmetric base-isolated structures of varying heights and plan configurations.The results indicate that the optimal isolator arrangement derived from the optimization method can further improve the control over the lateral and torsional responses of asymmetric base-isolated structures compared to conventional conceptual design methods.Notably,the interstory rotation of the optimal base-isolated structure is significantly reduced,constituting only approximately 33.7%of that observed in the original base-isolated structure.The proposed platform facilitates the automatic generation of the optimal design scheme for the isolators of asymmetric base-isolated structures,offering valuable insights and guidance for the burgeoning field of intelligent civil engineering design. 展开更多
关键词 asymmetric base-isolated structures isolator arrangement multi-objective optimization NSGA-Ⅱalgorithm optimization design platform
在线阅读 下载PDF
Multi-objective optimization of top-level arrangement for flight test
16
作者 WANG Yunong BI Wenhao +2 位作者 FAN Qiucen XU Shuangfei ZHANG An 《Journal of Systems Engineering and Electronics》 2025年第3期714-724,共11页
The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flig... The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flight test duration and cost are established to set up the framework of flight test process.The top-level arrangement for flight test is optimized by multi-objective algorithm to reduce the duration and cost of flight test.In order to verify the necessity and validity of the mathematical models and the optimization algorithm of top-level arrangement,real flight test data is used to make an example calculation.Results show that the multi-objective optimization results of the top-level flight arrangement are better than the initial arrangement data,which can shorten the duration,reduce the cost,and improve the efficiency of flight test. 展开更多
关键词 flight test top-level arrangement flight test optimization multi-objective optimization
在线阅读 下载PDF
Dynamic Multi-Objective Gannet Optimization(DMGO):An Adaptive Algorithm for Efficient Data Replication in Cloud Systems
17
作者 P.William Ved Prakash Mishra +3 位作者 Osamah Ibrahim Khalaf Arvind Mukundan Yogeesh N Riya Karmakar 《Computers, Materials & Continua》 2025年第9期5133-5156,共24页
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat... Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance. 展开更多
关键词 Cloud computing data replication dynamic optimization multi-objective optimization gannet optimization algorithm adaptive algorithms resource efficiency SCALABILITY latency reduction energy-efficient computing
在线阅读 下载PDF
Optimization and Scheduling of Green Power System Consumption Based on Multi-Device Coordination and Multi-Objective Optimization
18
作者 Liang Tang Hongwei Wang +2 位作者 Xinyuan Zhu Jiying Liu Kaiyue Li 《Energy Engineering》 2025年第6期2257-2289,共33页
The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of... The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of energy systems.To enhance the consumption capacity of green power,the green power system consumption optimization scheduling model(GPS-COSM)is proposed,which comprehensively integrates green power system,electric boiler,combined heat and power unit,thermal energy storage,and electrical energy storage.The optimization objectives are to minimize operating cost,minimize carbon emission,and maximize the consumption of wind and solar curtailment.The multi-objective particle swarm optimization algorithm is employed to solve the model,and a fuzzy membership function is introduced to evaluate the satisfaction level of the Pareto optimal solution set,thereby selecting the optimal compromise solution to achieve a dynamic balance among economic efficiency,environmental friendliness,and energy utilization efficiency.Three typical operating modes are designed for comparative analysis.The results demonstrate that the mode involving the coordinated operation of electric boiler,thermal energy storage,and electrical energy storage performs the best in terms of economic efficiency,environmental friendliness,and renewable energy utilization efficiency,achieving the wind and solar curtailment consumption rate of 99.58%.The application of electric boiler significantly enhances the direct accommodation capacity of the green power system.Thermal energy storage optimizes intertemporal regulation,while electrical energy storage strengthens the system’s dynamic regulation capability.The coordinated optimization of multiple devices significantly reduces reliance on fossil fuels. 展开更多
关键词 multi-objective optimization scheduling model multi-objective particle swarm optimization algorithm consumption capacity of green power wind and solar curtailment coordinated optimization of multiple devices
在线阅读 下载PDF
Multi-Objective Optimization of Swirling Impinging Air Jets with Genetic Algorithm and Weighted Sum Method
19
作者 Sudipta Debnath Zahir Uddin Ahmed +3 位作者 Muhammad Ikhlaq Md.Tanvir Khan Avneet Kaur Kuljeet Singh Grewal 《Frontiers in Heat and Mass Transfer》 2025年第1期71-94,共24页
Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Opt... Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Optimizing the design and operating parameters of such systems is essential to enhance cooling efficiency and achieve uniform pressure distribution,which can lead to improved system performance and energy savings.This paper presents two multi-objective optimization methodologies for a turbulent air jet impingement cooling system.The governing equations are resolved employing the commercial computational fluid dynamics(CFD)software ANSYS Fluent v17.The study focuses on four controlling parameters:Reynolds number(Re),swirl number(S),jet-to-jet separation distance(Z/D),and impingement height(H/D).The effects of these parameters on heat transfer and impingement pressure distribution are investigated.Non-dominated Sorting Genetic Algorithm(NSGA-II)and Weighted Sum Method(WSM)are employed to optimize the controlling parameters for maximum cooling performance.The aim is to identify optimal design parameters and system configurations that enhance heat transfer efficiency while achieving a uniform impingement pressure distribution.These findings have practical implications for applications requiring efficient cooling.The optimized design achieved a 12.28%increase in convective heat transfer efficiency with a local Nusselt number of 113.05 compared to 100.69 in the reference design.Enhanced convective cooling and heat flux were observed in the optimized configuration,particularly in areas of direct jet impingement.Additionally,the optimized design maintained lower wall temperatures,demonstrating more effective thermal dissipation. 展开更多
关键词 Jet impingement multi-objective optimization pareto front NSGA-Ⅱ WSM
在线阅读 下载PDF
CCHP-Type Micro-Grid Scheduling Optimization Based on Improved Multi-Objective Grey Wolf Optimizer
20
作者 Yu Zhang Sheng Wang +1 位作者 Fanming Zeng Yijie Lin 《Energy Engineering》 2025年第3期1137-1151,共15页
With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm impro... With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement.To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy,while simultaneously enhancing user satisfaction on the demand side,this paper introduces an improvedmultiobjective Grey Wolf Optimizer based on Cauchy variation.The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of becoming trapped in local optima.At the same time,adoptingmultiple energy storage methods to improve the consumption rate of renewable energy.Subsequently,under different energy balance orders,themulti-objective particle swarmalgorithm,multi-objective grey wolf optimizer,and Cauchy’s variant of the improvedmulti-objective grey wolf optimizer are used for example simulation,solving the Pareto solution set of the model and comparing.The analysis of the results reveals that,compared to the original optimizer,the improved optimizer decreases the daily cost by approximately 100 yuan,and reduces the energy abandonment rate to zero.Meanwhile,it enhances user satisfaction and ensures the stable operation of the micro-grid. 展开更多
关键词 multi-objective optimization algorithm hybrid energy storage MICRO-GRID CCHP
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部