In this paper, a modified method to find the efficient solutions of multi-objective linear fractional programming (MOLFP) problems is presented. While some of the previously proposed methods provide only one efficient...In this paper, a modified method to find the efficient solutions of multi-objective linear fractional programming (MOLFP) problems is presented. While some of the previously proposed methods provide only one efficient solution to the MOLFP problem, this modified method provides multiple efficient solutions to the problem. As a result, it provides the decision makers flexibility to choose a better option from alternatives according to their financial position and their level of satisfaction of objectives. A numerical example is provided to illustrate the modified method and also a real life oriented production problem is modeled and solved.展开更多
This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time...This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time-variant multi-objective linear fractional transportation problem is formulated here. We take into account the parameters as cost, supply and demand are interval valued that involved in the proposed model, so we treat the model as a multi-objective linear fractional interval transportation problem. To solve the formulated model, we first convert it into a deterministic form using a new transformation technique and then apply fuzzy programming to solve it. The applicability of our proposed method is shown by considering two numerical examples. At last, conclusions and future research directions regarding our study is included.展开更多
In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be...In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be attained at a basic feasible solution withconstraint condition.展开更多
In this paper, we study a new approach for solving linear fractional programming problem (LFP) by converting it into a single Linear Programming (LP) Problem, which can be solved by using any type of linear fractional...In this paper, we study a new approach for solving linear fractional programming problem (LFP) by converting it into a single Linear Programming (LP) Problem, which can be solved by using any type of linear fractional programming technique. In the objective function of an LFP, if βis negative, the available methods are failed to solve, while our proposed method is capable of solving such problems. In the present paper, we propose a new method and develop FORTRAN programs to solve the problem. The optimal LFP solution procedure is illustrated with numerical examples and also by a computer program. We also compare our method with other available methods for solving LFP problems. Our proposed method of linear fractional programming (LFP) problem is very simple and easy to understand and apply.展开更多
A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming probl...A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.展开更多
In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single...In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single objective function from the fuzzy multi-objective linear programming problems. At first, a numerical example of solving fuzzy multi-objective linear programming problem has been provided to validate the maximum risk reduction by the proposed method. The proposed method has been applied to assess the risk of damage due to natural calamities like flood, cyclone, sidor, and storms at the coastal areas in Bangladesh. The proposed method of solving the fuzzy multi-objective linear programming problems by the statistical method has been compared with the Chandra Sen’s method. The numerical results show that the proposed method maximizes the risk reduction capacity better than Chandra Sen’s method.展开更多
This paper is comprised of the modeling and optimization of a multi objective linear programming problem in fuzzy environment in which some goals are fractional and some are linear. Here, we present a new approach for...This paper is comprised of the modeling and optimization of a multi objective linear programming problem in fuzzy environment in which some goals are fractional and some are linear. Here, we present a new approach for its solution by using α-cut of fuzzy numbers. In this proposed method, we first define membership function for goals by introducing non-deviational variables for each of objective functions with effective use of α-cut intervals to deal with uncertain parameters being represented by fuzzy numbers. In the optimization process the under deviational variables are minimized for finding a most satisfactory solution. The developed method has also been implemented on a problem for illustration and comparison.展开更多
A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equ...A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equaling to zero, the bilevel linear fractional-linear programming is transformed into a traditional sin- gle level programming problem, which can be transformed into a series of linear fractional programming problem. Thus, the modi- fied convex simplex method is used to solve the infinite linear fractional programming to obtain the global convergent solution of the original bilevel linear fractional-linear programming. Finally, an example demonstrates the feasibility of the proposed algorithm.展开更多
文摘In this paper, a modified method to find the efficient solutions of multi-objective linear fractional programming (MOLFP) problems is presented. While some of the previously proposed methods provide only one efficient solution to the MOLFP problem, this modified method provides multiple efficient solutions to the problem. As a result, it provides the decision makers flexibility to choose a better option from alternatives according to their financial position and their level of satisfaction of objectives. A numerical example is provided to illustrate the modified method and also a real life oriented production problem is modeled and solved.
文摘This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time-variant multi-objective linear fractional transportation problem is formulated here. We take into account the parameters as cost, supply and demand are interval valued that involved in the proposed model, so we treat the model as a multi-objective linear fractional interval transportation problem. To solve the formulated model, we first convert it into a deterministic form using a new transformation technique and then apply fuzzy programming to solve it. The applicability of our proposed method is shown by considering two numerical examples. At last, conclusions and future research directions regarding our study is included.
基金Supported by the Natural Science Foundation of Henan Province(0511012000 0511013600) Supported by the Science Foundation for Pure Research of Natural Science of the Education Department of Henan Province(200512950001)
文摘In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be attained at a basic feasible solution withconstraint condition.
文摘In this paper, we study a new approach for solving linear fractional programming problem (LFP) by converting it into a single Linear Programming (LP) Problem, which can be solved by using any type of linear fractional programming technique. In the objective function of an LFP, if βis negative, the available methods are failed to solve, while our proposed method is capable of solving such problems. In the present paper, we propose a new method and develop FORTRAN programs to solve the problem. The optimal LFP solution procedure is illustrated with numerical examples and also by a computer program. We also compare our method with other available methods for solving LFP problems. Our proposed method of linear fractional programming (LFP) problem is very simple and easy to understand and apply.
文摘A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.
文摘In this paper, the statistical averaging method and the new statistical averaging methods have been used to solve the fuzzy multi-objective linear programming problems. These methods have been applied to form a single objective function from the fuzzy multi-objective linear programming problems. At first, a numerical example of solving fuzzy multi-objective linear programming problem has been provided to validate the maximum risk reduction by the proposed method. The proposed method has been applied to assess the risk of damage due to natural calamities like flood, cyclone, sidor, and storms at the coastal areas in Bangladesh. The proposed method of solving the fuzzy multi-objective linear programming problems by the statistical method has been compared with the Chandra Sen’s method. The numerical results show that the proposed method maximizes the risk reduction capacity better than Chandra Sen’s method.
文摘This paper is comprised of the modeling and optimization of a multi objective linear programming problem in fuzzy environment in which some goals are fractional and some are linear. Here, we present a new approach for its solution by using α-cut of fuzzy numbers. In this proposed method, we first define membership function for goals by introducing non-deviational variables for each of objective functions with effective use of α-cut intervals to deal with uncertain parameters being represented by fuzzy numbers. In the optimization process the under deviational variables are minimized for finding a most satisfactory solution. The developed method has also been implemented on a problem for illustration and comparison.
基金supported by the National Natural Science Foundation of China(70771080)the Special Fund for Basic Scientific Research of Central Colleges+2 种基金China University of Geosciences(Wuhan) (CUG090113)the Research Foundation for Outstanding Young TeachersChina University of Geosciences(Wuhan)(CUGQNW0801)
文摘A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming, which is a special class of bilevel programming. In our algorithm, replacing the lower level problem by its dual gap equaling to zero, the bilevel linear fractional-linear programming is transformed into a traditional sin- gle level programming problem, which can be transformed into a series of linear fractional programming problem. Thus, the modi- fied convex simplex method is used to solve the infinite linear fractional programming to obtain the global convergent solution of the original bilevel linear fractional-linear programming. Finally, an example demonstrates the feasibility of the proposed algorithm.