Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of in...Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed.展开更多
Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we pr...Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we propose the Dyna actiondependent heuristic dynamic programming(Dyna-ADHDP)method, which incorporates the ideas of learning and planning from the Dyna framework in action-dependent heuristic dynamic programming. This method defines a continuous action space for precise control of an energy storage system and allows online optimization of algorithm performance during the real-time operation of the residential energy model. Meanwhile, the target network is introduced during the training process to make the training smoother and more efficient. We conducted experimental comparisons with the benchmark method using simulated and real data to verify its applicability and performance. The results confirm the method's excellent performance and generalization capabilities, as well as its excellence in increasing renewable energy utilization and extending equipment life.展开更多
The solenoid switching valve(SSV)is the key control component of heavy equipment such as continuous casting machines.However,the incompatibility of structural parameters increases the opening and closing time of the S...The solenoid switching valve(SSV)is the key control component of heavy equipment such as continuous casting machines.However,the incompatibility of structural parameters increases the opening and closing time of the SSV.Therefore,this study proposes an optimized design method for an SSV to improve its dynamic performance.First,a multi-physics field-coupling model of the SSV is built,and the effects of different structural parameters on the electromagnetic characteristics are analyzed.After identifying the key influencing parameters,second-order response surface models are established to efficiently predict the opening and closing time.Subsequently,based on the nondominated sorting genetic algorithmⅡ(NSGA-Ⅱ),multi-objective optimization is applied to obtain the Pareto optimal solution of the structural parameters under the double-voltage driving strategy.The structure of the solenoid and valve as well as the dynamic characteristics of the valve are improved.Compared with those before optimization,the optimization results show that the opening and closing time of the optimized SSV are reduced by 24.38%and 51.8%,respectively,and the volume is reduced by 19.7%.The research results and the influence of the solenoid structural parameters on the electromagnetic force provide significant guidance for the design of this type of valve.展开更多
To improve the efficiency of ship traffic in frequently traded sea areas and respond to the national“dual-carbon”strategy,a multi-objective ship route induction model is proposed.Considering the energy-saving and en...To improve the efficiency of ship traffic in frequently traded sea areas and respond to the national“dual-carbon”strategy,a multi-objective ship route induction model is proposed.Considering the energy-saving and environmental issues of ships,this study aims to improve the transportation efficiency of ships by providing a ship route induction method.Ship data from a certain bay during a defined period are collected,and an improved backpropagation neural network algorithm is used to forecast ship traffic.On the basis of the forecasted data and ship route induction objectives,dynamic programming of ship routes is performed.Experimental results show that the routes planned using this induction method reduce the combined cost by 17.55%compared with statically induced routes.This method has promising engineering applications in improving ship navigation efficiency,promoting energy conservation,and reducing emissions.展开更多
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat...Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.展开更多
In this paper,a distributed adaptive dynamic programming(ADP)framework based on value iteration is proposed for multi-player differential games.In the game setting,players have no access to the information of others...In this paper,a distributed adaptive dynamic programming(ADP)framework based on value iteration is proposed for multi-player differential games.In the game setting,players have no access to the information of others'system parameters or control laws.Each player adopts an on-policy value iteration algorithm as the basic learning framework.To deal with the incomplete information structure,players collect a period of system trajectory data to compensate for the lack of information.The policy updating step is implemented by a nonlinear optimization problem aiming to search for the proximal admissible policy.Theoretical analysis shows that by adopting proximal policy searching rules,the approximated policies can converge to a neighborhood of equilibrium policies.The efficacy of our method is illustrated by three examples,which also demonstrate that the proposed method can accelerate the learning process compared with the centralized learning framework.展开更多
The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system perf...The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method.展开更多
From a perspective of theoretical study, there are some faults in the models of the existing object-oriented programming languages. For example, C# does not support metaclasses, the primitive types of Java and C# are ...From a perspective of theoretical study, there are some faults in the models of the existing object-oriented programming languages. For example, C# does not support metaclasses, the primitive types of Java and C# are not objects, etc. So, this paper designs a programming language, Shrek, which integrates many language features and constructions in a compact and consistent model. The Shrek language is a class-based purely object-oriented language. It has a dynamical strong type system, and adopts a single-inheritance mechanism with Mixin as its complement. It has a consistent class instantiation and inheritance structure, and the ability of intercessive structural computational reflection, which enables it to support safe metaclass programming. It also supports multi-thread programming and automatic garbage collection, and enforces its expressive power by adopting a native method mechanism. The prototype system of the Shrek language is implemented and anticipated design goals are achieved.展开更多
The residential energy scheduling of solar energy is an important research area of smart grid. On the demand side, factors such as household loads, storage batteries, the outside public utility grid and renewable ener...The residential energy scheduling of solar energy is an important research area of smart grid. On the demand side, factors such as household loads, storage batteries, the outside public utility grid and renewable energy resources, are combined together as a nonlinear, time-varying, indefinite and complex system, which is difficult to manage or optimize. Many nations have already applied the residential real-time pricing to balance the burden on their grid. In order to enhance electricity efficiency of the residential micro grid, this paper presents an action dependent heuristic dynamic programming(ADHDP) method to solve the residential energy scheduling problem. The highlights of this paper are listed below. First,the weather-type classification is adopted to establish three types of programming models based on the features of the solar energy. In addition, the priorities of different energy resources are set to reduce the loss of electrical energy transmissions.Second, three ADHDP-based neural networks, which can update themselves during applications, are designed to manage the flows of electricity. Third, simulation results show that the proposed scheduling method has effectively reduced the total electricity cost and improved load balancing process. The comparison with the particle swarm optimization algorithm further proves that the present method has a promising effect on energy management to save cost.展开更多
This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain e...This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain environment. For adaptive selection of appropriate ESMs, we generalize an approximate dynamic programming(ADP) framework to the dynamic case. We define the environment model and agent model, respectively. To handle the partially observable challenge, we apply the unsented Kalman filter(UKF) algorithm for belief state estimation. To reduce the computational burden, a simulation-based approach rollout with a redesigned base policy is proposed to approximate the long-term cumulative reward. Meanwhile, Monte Carlo sampling is combined into the rollout to estimate the expectation of the rewards. The experiments indicate that our method outperforms other strategies due to its better performance in larger-scale problems.展开更多
Unmanned aerial vehicles(UAVs) may play an important role in data collection and offloading in vast areas deploying wireless sensor networks, and the UAV’s action strategy has a vital influence on achieving applicabi...Unmanned aerial vehicles(UAVs) may play an important role in data collection and offloading in vast areas deploying wireless sensor networks, and the UAV’s action strategy has a vital influence on achieving applicability and computational complexity. Dynamic programming(DP) has a good application in the path planning of UAV, but there are problems in the applicability of special terrain environment and the complexity of the algorithm.Based on the analysis of DP, this paper proposes a hierarchical directional DP(DDP) algorithm based on direction determination and hierarchical model. We compare our methods with Q-learning and DP algorithm by experiments, and the results show that our method can improve the terrain applicability, meanwhile greatly reduce the computational complexity.展开更多
Rolling dynamic compaction (RDC),which employs non-circular module towed behind a tractor,is an innovative soil compaction method that has proven to be successful in many ground improvement applications.RDC involves r...Rolling dynamic compaction (RDC),which employs non-circular module towed behind a tractor,is an innovative soil compaction method that has proven to be successful in many ground improvement applications.RDC involves repeatedly delivering high-energy impact blows onto the ground surface,which improves soil density and thus soil strength and stiffness.However,there exists a lack of methods to predict the effectiveness of RDC in different ground conditions,which has become a major obstacle to its adoption.For this,in this context,a prediction model is developed based on linear genetic programming (LGP),which is one of the common approaches in application of artificial intelligence for nonlinear forecasting.The model is based on in situ density-related data in terms of dynamic cone penetrometer (DCP) results obtained from several projects that have employed the 4-sided,8-t impact roller (BH-1300).It is shown that the model is accurate and reliable over a range of soil types.Furthermore,a series of parametric studies confirms its robustness in generalizing data.In addition,the results of the comparative study indicate that the optimal LGP model has a better predictive performance than the existing artificial neural network (ANN) model developed earlier by the authors.展开更多
The purpose of this paper is to develop an implementable strategy of brake energy recovery for a parallel hydraulic hybrid bus. Based on brake process analysis, a dynamic programming algorithm of brake energy recovery...The purpose of this paper is to develop an implementable strategy of brake energy recovery for a parallel hydraulic hybrid bus. Based on brake process analysis, a dynamic programming algorithm of brake energy recovery is established. And then an implementable strategy of brake energy recovery is proposed by the constraint variable trajectories analysis of the dynamic programming algorithm in the typical urban bus cycle. The simulation results indicate the brake energy recovery efficiency of the accumulator can reach 60% in the dynamic programming algorithm. And the hydraulic hybrid system can output braking torque as much as possible.Moreover, the accumulator has almost equal efficiency of brake energy recovery between the implementable strategy and the dynamic programming algorithm. Therefore, the implementable strategy is very effective in improving the efficiency of brake energy recovery.The road tests show the fuel economy of the hydraulic hybrid bus improves by 22.6% compared with the conventional bus.展开更多
A policy iteration algorithm of adaptive dynamic programming(ADP) is developed to solve the optimal tracking control for a class of discrete-time chaotic systems. By system transformations, the optimal tracking prob...A policy iteration algorithm of adaptive dynamic programming(ADP) is developed to solve the optimal tracking control for a class of discrete-time chaotic systems. By system transformations, the optimal tracking problem is transformed into an optimal regulation one. The policy iteration algorithm for discrete-time chaotic systems is first described. Then,the convergence and admissibility properties of the developed policy iteration algorithm are presented, which show that the transformed chaotic system can be stabilized under an arbitrary iterative control law and the iterative performance index function simultaneously converges to the optimum. By implementing the policy iteration algorithm via neural networks,the developed optimal tracking control scheme for chaotic systems is verified by a simulation.展开更多
This paper presents a new design approach to achieve decentralized optimal control of high-dimension complex singular systems with dynamic uncertainties. Based on robust adaptive dynamic programming(robust ADP) method...This paper presents a new design approach to achieve decentralized optimal control of high-dimension complex singular systems with dynamic uncertainties. Based on robust adaptive dynamic programming(robust ADP) method, controllers for solving the singular systems optimal control problem are designed. The proposed algorithm can work well when the system model is not exactly known but the input and output data can be measured. The policy iteration of each controller only uses their own states and input information for learning,and do not need to know the whole system dynamics. Simulation results on the New England 10-machine 39-bus test system show the effectiveness of the designed controller.展开更多
The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcom...The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcome the result mesh-sensitivity problem in the dynamic strain softening or strain localization analysis. The equations for the dynamic elastic-plastic problems are derived in terms of the parametric variational principle, which is valid for associated, non-associated and strain softening plastic constitutive models in the finite element analysis. The precise integration method, which has been widely used for discretization in time domain of the linear problems, is introduced for the solution of dynamic nonlinear equations. The new algorithm proposed is based on the combination of the parametric quadratic programming method and the precise integration method and has all the advantages in both of the algorithms. Results of numerical examples demonstrate not only the validity, but also the advantages of the algorithm proposed for the numerical solution of nonlinear dynamic problems.展开更多
In this paper,the multi-missile cooperative guidance system is formulated as a general nonlinear multi-agent system.To save the limited communication resources,an adaptive eventtriggered optimal guidance law is propos...In this paper,the multi-missile cooperative guidance system is formulated as a general nonlinear multi-agent system.To save the limited communication resources,an adaptive eventtriggered optimal guidance law is proposed by designing a synchronization-error-driven triggering condition,which brings together the consensus control with Adaptive Dynamic Programming(ADP)technique.Then,the developed event-triggered distributed control law can be employed by finding an approximate solution of event-triggered coupled Hamilton-Jacobi-Bellman(HJB)equation.To address this issue,the critic network architecture is constructed,in which an adaptive weight updating law is designed for estimating the cooperative optimal cost function online.Therefore,the event-triggered closed-loop system is decomposed into two subsystems:the system with flow dynamics and the system with jump dynamics.By using Lyapunov method,the stability of this closed-loop system is guaranteed and all signals are ensured to be Uniformly Ultimately Bounded(UUB).Furthermore,the Zeno behavior is avoided.Simulation results are finally provided to demonstrate the effectiveness of the proposed method.展开更多
The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and wate...The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.展开更多
This paper studies the problem of optimal parallel tracking control for continuous-time general nonlinear systems.Unlike existing optimal state feedback control,the control input of the optimal parallel control is int...This paper studies the problem of optimal parallel tracking control for continuous-time general nonlinear systems.Unlike existing optimal state feedback control,the control input of the optimal parallel control is introduced into the feedback system.However,due to the introduction of control input into the feedback system,the optimal state feedback control methods can not be applied directly.To address this problem,an augmented system and an augmented performance index function are proposed firstly.Thus,the general nonlinear system is transformed into an affine nonlinear system.The difference between the optimal parallel control and the optimal state feedback control is analyzed theoretically.It is proven that the optimal parallel control with the augmented performance index function can be seen as the suboptimal state feedback control with the traditional performance index function.Moreover,an adaptive dynamic programming(ADP)technique is utilized to implement the optimal parallel tracking control using a critic neural network(NN)to approximate the value function online.The stability analysis of the closed-loop system is performed using the Lyapunov theory,and the tracking error and NN weights errors are uniformly ultimately bounded(UUB).Also,the optimal parallel controller guarantees the continuity of the control input under the circumstance that there are finite jump discontinuities in the reference signals.Finally,the effectiveness of the developed optimal parallel control method is verified in two cases.展开更多
基金supported by the National Key Research and Development Program Project(No.2021YFB3301300).
文摘Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed.
基金supported in part by the National Key Research and Development Program of China(2024YFB4709100,2021YFE0206100)the National Natural Science Foundation of China(62073321)+1 种基金the National Defense Basic Scientific Research Program(JCKY2019203C029)the Science and Technology Development Fund,Macao SAR,China(0015/2020/AMJ)
文摘Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we propose the Dyna actiondependent heuristic dynamic programming(Dyna-ADHDP)method, which incorporates the ideas of learning and planning from the Dyna framework in action-dependent heuristic dynamic programming. This method defines a continuous action space for precise control of an energy storage system and allows online optimization of algorithm performance during the real-time operation of the residential energy model. Meanwhile, the target network is introduced during the training process to make the training smoother and more efficient. We conducted experimental comparisons with the benchmark method using simulated and real data to verify its applicability and performance. The results confirm the method's excellent performance and generalization capabilities, as well as its excellence in increasing renewable energy utilization and extending equipment life.
基金Supported by National Natural Science Foundation of China(Grant No.2018YFB1703000)State Key Laboratory of Metal Extrusion and Forging Equipment TechnologyChina National Heavy Machinery Research Institute Co.,Ltd.(Grant No.B2408100.W19)。
文摘The solenoid switching valve(SSV)is the key control component of heavy equipment such as continuous casting machines.However,the incompatibility of structural parameters increases the opening and closing time of the SSV.Therefore,this study proposes an optimized design method for an SSV to improve its dynamic performance.First,a multi-physics field-coupling model of the SSV is built,and the effects of different structural parameters on the electromagnetic characteristics are analyzed.After identifying the key influencing parameters,second-order response surface models are established to efficiently predict the opening and closing time.Subsequently,based on the nondominated sorting genetic algorithmⅡ(NSGA-Ⅱ),multi-objective optimization is applied to obtain the Pareto optimal solution of the structural parameters under the double-voltage driving strategy.The structure of the solenoid and valve as well as the dynamic characteristics of the valve are improved.Compared with those before optimization,the optimization results show that the opening and closing time of the optimized SSV are reduced by 24.38%and 51.8%,respectively,and the volume is reduced by 19.7%.The research results and the influence of the solenoid structural parameters on the electromagnetic force provide significant guidance for the design of this type of valve.
基金Supported by the National Key R&D Program of China project (2017YFC0805309)the National Natural Science Foundation of China (60602020)。
文摘To improve the efficiency of ship traffic in frequently traded sea areas and respond to the national“dual-carbon”strategy,a multi-objective ship route induction model is proposed.Considering the energy-saving and environmental issues of ships,this study aims to improve the transportation efficiency of ships by providing a ship route induction method.Ship data from a certain bay during a defined period are collected,and an improved backpropagation neural network algorithm is used to forecast ship traffic.On the basis of the forecasted data and ship route induction objectives,dynamic programming of ship routes is performed.Experimental results show that the routes planned using this induction method reduce the combined cost by 17.55%compared with statically induced routes.This method has promising engineering applications in improving ship navigation efficiency,promoting energy conservation,and reducing emissions.
文摘Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.
基金supported by the Aeronautical Science Foundation of China(20220001057001)an Open Project of the National Key Laboratory of Air-based Information Perception and Fusion(202437)
文摘In this paper,a distributed adaptive dynamic programming(ADP)framework based on value iteration is proposed for multi-player differential games.In the game setting,players have no access to the information of others'system parameters or control laws.Each player adopts an on-policy value iteration algorithm as the basic learning framework.To deal with the incomplete information structure,players collect a period of system trajectory data to compensate for the lack of information.The policy updating step is implemented by a nonlinear optimization problem aiming to search for the proximal admissible policy.Theoretical analysis shows that by adopting proximal policy searching rules,the approximated policies can converge to a neighborhood of equilibrium policies.The efficacy of our method is illustrated by three examples,which also demonstrate that the proposed method can accelerate the learning process compared with the centralized learning framework.
文摘The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method.
基金The National Science Fund for Distinguished Young Scholars (No.60425206)the National Natural Science Foundation of China (No.60633010)the Natural Science Foundation of Jiangsu Province(No.BK2006094)
文摘From a perspective of theoretical study, there are some faults in the models of the existing object-oriented programming languages. For example, C# does not support metaclasses, the primitive types of Java and C# are not objects, etc. So, this paper designs a programming language, Shrek, which integrates many language features and constructions in a compact and consistent model. The Shrek language is a class-based purely object-oriented language. It has a dynamical strong type system, and adopts a single-inheritance mechanism with Mixin as its complement. It has a consistent class instantiation and inheritance structure, and the ability of intercessive structural computational reflection, which enables it to support safe metaclass programming. It also supports multi-thread programming and automatic garbage collection, and enforces its expressive power by adopting a native method mechanism. The prototype system of the Shrek language is implemented and anticipated design goals are achieved.
基金supported in part by the National Natural Science Foundation of China(61533017,U1501251,61374105,61722312)
文摘The residential energy scheduling of solar energy is an important research area of smart grid. On the demand side, factors such as household loads, storage batteries, the outside public utility grid and renewable energy resources, are combined together as a nonlinear, time-varying, indefinite and complex system, which is difficult to manage or optimize. Many nations have already applied the residential real-time pricing to balance the burden on their grid. In order to enhance electricity efficiency of the residential micro grid, this paper presents an action dependent heuristic dynamic programming(ADHDP) method to solve the residential energy scheduling problem. The highlights of this paper are listed below. First,the weather-type classification is adopted to establish three types of programming models based on the features of the solar energy. In addition, the priorities of different energy resources are set to reduce the loss of electrical energy transmissions.Second, three ADHDP-based neural networks, which can update themselves during applications, are designed to manage the flows of electricity. Third, simulation results show that the proposed scheduling method has effectively reduced the total electricity cost and improved load balancing process. The comparison with the particle swarm optimization algorithm further proves that the present method has a promising effect on energy management to save cost.
基金supported by the National Natural Science Foundation of China(6157328561305133)
文摘This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain environment. For adaptive selection of appropriate ESMs, we generalize an approximate dynamic programming(ADP) framework to the dynamic case. We define the environment model and agent model, respectively. To handle the partially observable challenge, we apply the unsented Kalman filter(UKF) algorithm for belief state estimation. To reduce the computational burden, a simulation-based approach rollout with a redesigned base policy is proposed to approximate the long-term cumulative reward. Meanwhile, Monte Carlo sampling is combined into the rollout to estimate the expectation of the rewards. The experiments indicate that our method outperforms other strategies due to its better performance in larger-scale problems.
基金supported by the National Natural Science Foundation of China(91648204 61601486)+1 种基金State Key Laboratory of High Performance Computing Project Fund(1502-02)Research Programs of National University of Defense Technology(ZDYYJCYJ140601)
文摘Unmanned aerial vehicles(UAVs) may play an important role in data collection and offloading in vast areas deploying wireless sensor networks, and the UAV’s action strategy has a vital influence on achieving applicability and computational complexity. Dynamic programming(DP) has a good application in the path planning of UAV, but there are problems in the applicability of special terrain environment and the complexity of the algorithm.Based on the analysis of DP, this paper proposes a hierarchical directional DP(DDP) algorithm based on direction determination and hierarchical model. We compare our methods with Q-learning and DP algorithm by experiments, and the results show that our method can improve the terrain applicability, meanwhile greatly reduce the computational complexity.
基金supported under Australian Research Council’s Discovery Projects funding scheme(project No. DP120101761)
文摘Rolling dynamic compaction (RDC),which employs non-circular module towed behind a tractor,is an innovative soil compaction method that has proven to be successful in many ground improvement applications.RDC involves repeatedly delivering high-energy impact blows onto the ground surface,which improves soil density and thus soil strength and stiffness.However,there exists a lack of methods to predict the effectiveness of RDC in different ground conditions,which has become a major obstacle to its adoption.For this,in this context,a prediction model is developed based on linear genetic programming (LGP),which is one of the common approaches in application of artificial intelligence for nonlinear forecasting.The model is based on in situ density-related data in terms of dynamic cone penetrometer (DCP) results obtained from several projects that have employed the 4-sided,8-t impact roller (BH-1300).It is shown that the model is accurate and reliable over a range of soil types.Furthermore,a series of parametric studies confirms its robustness in generalizing data.In addition,the results of the comparative study indicate that the optimal LGP model has a better predictive performance than the existing artificial neural network (ANN) model developed earlier by the authors.
基金supported by Shanghai Science and Technology Committee(No.0904H155100)
文摘The purpose of this paper is to develop an implementable strategy of brake energy recovery for a parallel hydraulic hybrid bus. Based on brake process analysis, a dynamic programming algorithm of brake energy recovery is established. And then an implementable strategy of brake energy recovery is proposed by the constraint variable trajectories analysis of the dynamic programming algorithm in the typical urban bus cycle. The simulation results indicate the brake energy recovery efficiency of the accumulator can reach 60% in the dynamic programming algorithm. And the hydraulic hybrid system can output braking torque as much as possible.Moreover, the accumulator has almost equal efficiency of brake energy recovery between the implementable strategy and the dynamic programming algorithm. Therefore, the implementable strategy is very effective in improving the efficiency of brake energy recovery.The road tests show the fuel economy of the hydraulic hybrid bus improves by 22.6% compared with the conventional bus.
基金supported by the National Natural Science Foundation of China(Grant Nos.61034002,61233001,61273140,61304086,and 61374105)the Beijing Natural Science Foundation,China(Grant No.4132078)
文摘A policy iteration algorithm of adaptive dynamic programming(ADP) is developed to solve the optimal tracking control for a class of discrete-time chaotic systems. By system transformations, the optimal tracking problem is transformed into an optimal regulation one. The policy iteration algorithm for discrete-time chaotic systems is first described. Then,the convergence and admissibility properties of the developed policy iteration algorithm are presented, which show that the transformed chaotic system can be stabilized under an arbitrary iterative control law and the iterative performance index function simultaneously converges to the optimum. By implementing the policy iteration algorithm via neural networks,the developed optimal tracking control scheme for chaotic systems is verified by a simulation.
基金supported in part by the National Natural Science Foundation of China(61473070,61433004,61627809)SAPI Fundamental Research Funds(2018ZCX22)
文摘This paper presents a new design approach to achieve decentralized optimal control of high-dimension complex singular systems with dynamic uncertainties. Based on robust adaptive dynamic programming(robust ADP) method, controllers for solving the singular systems optimal control problem are designed. The proposed algorithm can work well when the system model is not exactly known but the input and output data can be measured. The policy iteration of each controller only uses their own states and input information for learning,and do not need to know the whole system dynamics. Simulation results on the New England 10-machine 39-bus test system show the effectiveness of the designed controller.
文摘The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcome the result mesh-sensitivity problem in the dynamic strain softening or strain localization analysis. The equations for the dynamic elastic-plastic problems are derived in terms of the parametric variational principle, which is valid for associated, non-associated and strain softening plastic constitutive models in the finite element analysis. The precise integration method, which has been widely used for discretization in time domain of the linear problems, is introduced for the solution of dynamic nonlinear equations. The new algorithm proposed is based on the combination of the parametric quadratic programming method and the precise integration method and has all the advantages in both of the algorithms. Results of numerical examples demonstrate not only the validity, but also the advantages of the algorithm proposed for the numerical solution of nonlinear dynamic problems.
基金co-supported by the National Natural Science Foundation of China(No.62003036)China Postdoctoral Science Foundation(No.2019TQ0037)。
文摘In this paper,the multi-missile cooperative guidance system is formulated as a general nonlinear multi-agent system.To save the limited communication resources,an adaptive eventtriggered optimal guidance law is proposed by designing a synchronization-error-driven triggering condition,which brings together the consensus control with Adaptive Dynamic Programming(ADP)technique.Then,the developed event-triggered distributed control law can be employed by finding an approximate solution of event-triggered coupled Hamilton-Jacobi-Bellman(HJB)equation.To address this issue,the critic network architecture is constructed,in which an adaptive weight updating law is designed for estimating the cooperative optimal cost function online.Therefore,the event-triggered closed-loop system is decomposed into two subsystems:the system with flow dynamics and the system with jump dynamics.By using Lyapunov method,the stability of this closed-loop system is guaranteed and all signals are ensured to be Uniformly Ultimately Bounded(UUB).Furthermore,the Zeno behavior is avoided.Simulation results are finally provided to demonstrate the effectiveness of the proposed method.
基金supported by the Public Welfare Industry Special Fund Project of the Ministry of Water Resources of China (Grant No. 200701028)the Humanities and Social Science Foundation Program of Hohai University (Grant No. 2008421411)
文摘The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.
基金supported in part by the National Key Reseanch and Development Program of China(2018AAA0101502,2018YFB1702300)in part by the National Natural Science Foundation of China(61722312,61533019,U1811463,61533017)in part by the Intel Collaborative Research Institute for Intelligent and Automated Connected Vehicles。
文摘This paper studies the problem of optimal parallel tracking control for continuous-time general nonlinear systems.Unlike existing optimal state feedback control,the control input of the optimal parallel control is introduced into the feedback system.However,due to the introduction of control input into the feedback system,the optimal state feedback control methods can not be applied directly.To address this problem,an augmented system and an augmented performance index function are proposed firstly.Thus,the general nonlinear system is transformed into an affine nonlinear system.The difference between the optimal parallel control and the optimal state feedback control is analyzed theoretically.It is proven that the optimal parallel control with the augmented performance index function can be seen as the suboptimal state feedback control with the traditional performance index function.Moreover,an adaptive dynamic programming(ADP)technique is utilized to implement the optimal parallel tracking control using a critic neural network(NN)to approximate the value function online.The stability analysis of the closed-loop system is performed using the Lyapunov theory,and the tracking error and NN weights errors are uniformly ultimately bounded(UUB).Also,the optimal parallel controller guarantees the continuity of the control input under the circumstance that there are finite jump discontinuities in the reference signals.Finally,the effectiveness of the developed optimal parallel control method is verified in two cases.