期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
Optimizing high-speed train tracking intervals with an improved multi-objective grey wolf
1
作者 Lin Yue Meng Wang +1 位作者 Peng Wang Jinchao Mu 《Railway Sciences》 2025年第3期322-336,共15页
Purpose-With the rapid advancement of China’s high-speed rail network,the density of train operations is on the rise.To address the challenge of shortening train tracking intervals while enhancing transportation effi... Purpose-With the rapid advancement of China’s high-speed rail network,the density of train operations is on the rise.To address the challenge of shortening train tracking intervals while enhancing transportation efficiency,the multi-objective dynamic optimization of the train operation process has emerged as a critical issue.Design/methodology/approach-Train dynamic model is established by analyzing the force of the train in the process of tracing operation.The train tracing operation model is established according to the dynamic mechanical model of the train tracking process,and the dynamic optimization analysis is carried out with comfort,energy saving and punctuality as optimization objectives.To achieve multi-objective dynamic optimization,a novel train tracking operation calculation method is proposed,utilizing the improved grey wolf optimization algorithm(MOGWO).The proposed method is simulated and verified based on the train characteristics and line data of CR400AF electric multiple units.Findings-The simulation results prove that the optimized MOGWO algorithm can be computed quickly during train tracks,the optimum results can be given within 5s and the algorithm can converge effectively in different optimization target directions.The optimized speed profile of the MOGWO algorithm is smoother and more stable and meets the target requirements of energy saving,punctuality and comfort while maximally respecting the speed limit profile.Originality/value-The MOGWO train tracking interval optimization method enhances the tracking process while ensuring a safe tracking interval.This approach enables the trailing train to operate more comfortably,energy-efficiently and punctually,aligning with passenger needs and industry trends.The method offers valuable insights for optimizing the high-speed train tracking process. 展开更多
关键词 tracking running Train dynamics model multi-objective optimization MOGWO CR400AF electric multiple units
在线阅读 下载PDF
Online Multi-Object Tracking Under Moving Unmanned Aerial Vehicle Platform Based on Object Detection and Feature Extraction Network 被引量:1
2
作者 刘增敏 王申涛 +1 位作者 姚莉秀 蔡云泽 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第3期388-399,共12页
In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle(UAV)platform,the object detection algorithm based on deep aggregation network and high-resolution fusion ... In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle(UAV)platform,the object detection algorithm based on deep aggregation network and high-resolution fusion module is studied.Furthermore,a joint network of object detection and feature extraction is studied to construct a real-time multi-object tracking algorithm.For the problem of object association failure caused by UAV movement,image registration is applied to multi-object tracking and a camera motion discrimination model is proposed to improve the speed of the multi-object tracking algorithm.The simulation results show that the algorithm proposed in this study can improve the accuracy of multi-object tracking under the UAV platform,and effectively solve the problem of association failure caused by UAV movement. 展开更多
关键词 moving unmanned aerial vehicle(UAV)platform small object feature extraction image registration multi-object tracking
原文传递
Warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography
3
作者 Pengyu Hu Jiangpeng Wu +3 位作者 Zhengang Yan Meng He Chao Liang Hao Bai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期162-172,共11页
High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it... High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%. 展开更多
关键词 Warhead fragment measurement High speed photography Stereo vision multi-object tracking Spatio-temporal reconstruction
在线阅读 下载PDF
LQTTrack:Multi-Object Tracking by Focusing on Low-Quality Targets Association
4
作者 Suya Li Ying Cao +2 位作者 Hengyi Ren Dongsheng Zhu Xin Xie 《Computers, Materials & Continua》 SCIE EI 2024年第10期1449-1470,共22页
Multi-object tracking(MOT)has seen rapid improvements in recent years.However,frequent occlusion remains a significant challenge in MOT,as it can cause targets to become smaller or disappear entirely,resulting in lowq... Multi-object tracking(MOT)has seen rapid improvements in recent years.However,frequent occlusion remains a significant challenge in MOT,as it can cause targets to become smaller or disappear entirely,resulting in lowquality targets,leading to trajectory interruptions and reduced tracking performance.Different from some existing methods,which discarded the low-quality targets or ignored low-quality target attributes.LQTTrack,with a lowquality association strategy(LQA),is proposed to pay more attention to low-quality targets.In the association scheme of LQTTrack,firstly,multi-scale feature fusion of FPN(MSFF-FPN)is utilized to enrich the feature information and assist in subsequent data association.Secondly,the normalized Wasserstein distance(NWD)is integrated to replace the original Inter over Union(IoU),thus overcoming the limitations of the traditional IoUbased methods that are sensitive to low-quality targets with small sizes and enhancing the robustness of low-quality target tracking.Moreover,the third association stage is proposed to improve the matching between the current frame’s low-quality targets and previously interrupted trajectories from earlier frames to reduce the problem of track fragmentation or error tracking,thereby increasing the association success rate and improving overall multi-object tracking performance.Extensive experimental results demonstrate the competitive performance of LQTTrack on benchmark datasets(MOT17,MOT20,and DanceTrack). 展开更多
关键词 Low-quality targets association strategy feature fusion multi-object tracking tracking-by-detection
在线阅读 下载PDF
Multi-object tracking based on behaviour and partial observation
5
作者 路红 费树岷 +1 位作者 郑建勇 张涛 《Journal of Southeast University(English Edition)》 EI CAS 2008年第4期468-472,共5页
To cope with multi-object tracking under real-world complex situations, a new video-based method is proposed. In the detecting step, the moving objects are segmented with the third level DWT (discrete wavelet transfo... To cope with multi-object tracking under real-world complex situations, a new video-based method is proposed. In the detecting step, the moving objects are segmented with the third level DWT (discrete wavelet transform )and background difference. In the tracking step, the Kalman filter and scale parameter are used first to estimate the object position and bounding box. Then, the center-association-based projection ratio and region-association-based occlusion ratio are defined and combined to judge object behaviours. Finally, the tracking scheme and Kalman parameters are adaptively adjusted according to object behaviour. Under occlusion, partial observability is utilized to obtain the object measurements and optimum box dimensions. This method is robust in tracking mobile objects under such situations as occlusion, new appearing and stablization, etc. Experimental results show that the proposed method is efficient. 展开更多
关键词 multi-object tracking projection ratio occlusion ratio BEHAVIOUR partial observation Kalman filter
在线阅读 下载PDF
Automatic velocity picking based on optimal key points tracking algorithm 被引量:1
6
作者 Yong-Hao Wang Wen-Kai Lu +3 位作者 Song-Bai Jin Yang Li Yu-Xuan Li Xiao-Feng Gu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期903-917,共15页
Picking velocities from semblances manually is laborious and necessitates experience. Although various methods for automatic velocity picking have been developed, there remains a challenge in efficiently incorporating... Picking velocities from semblances manually is laborious and necessitates experience. Although various methods for automatic velocity picking have been developed, there remains a challenge in efficiently incorporating information from nearby gathers to ensure picked velocity aligns with seismic horizons while also improving picking accuracy. The conventional method of velocity picking from a semblance volume is computationally demanding, highlighting a need for a more efficient strategy. In this study, we introduce a novel method for automatic velocity picking based on multi-object tracking. This dynamic tracking process across different semblance panels can integrate information from nearby gathers effectively while maintaining computational efficiency. First, we employ accelerated density clustering on the velocity spectrum to discern cluster centers without the requirement for prior knowledge regarding the number of clusters. These cluster centers embody the maximum likelihood velocities of the main subsurface structures. Second, our proposed method tracks key points within the semblance volume. Kalman filter is adopted to adjust the tracking process, followed by interpolation on these tracked points to construct the final velocity model. Our synthetic data example demonstrates that our proposed algorithm can effectively rectify the picking errors of the clustering algorithm. We further compare the performances of the clustering method(CM), the proposed tracking method(TM), and the variational method(VM) on a field dataset from the Gulf of Mexico. The results attest that our method offers superior accuracy than CM, achieves comparable accuracy with VM, and benefits from a reduced computational cost. 展开更多
关键词 Velocity picking multi-object tracking Density clustering Kalman filter
原文传递
Multi-object tracking based on deep associated features for UAV applications 被引量:4
7
作者 XIONG Lingyu TANG Guijin 《Optoelectronics Letters》 EI 2023年第2期105-111,共7页
Multi-object tracking(MOT) techniques have been increasingly applied in a diverse range of tasks. Unmanned aerial vehicle(UAV) is one of its typical application scenarios. Due to the scene complexity and the low resol... Multi-object tracking(MOT) techniques have been increasingly applied in a diverse range of tasks. Unmanned aerial vehicle(UAV) is one of its typical application scenarios. Due to the scene complexity and the low resolution of moving targets in UAV applications, it is difficult to extract target features and identify them. In order to solve this problem, we propose a new re-identification(re-ID) network to extract association features for tracking in the association stage. Moreover, in order to reduce the complexity of detection model, we perform the lightweight optimization for it. Experimental results show that the proposed re-ID network can effectively reduce the number of identity switches, and surpass current state-of-the-art algorithms. In the meantime, the optimized detector can increase the speed by 27% owing to its lightweight design, which enables it to further meet the requirements of UAV tracking tasks. 展开更多
关键词 multi-object tracking deep associated features UAV applications
原文传递
An AIoT Monitoring System for Multi-Object Tracking and Alerting 被引量:3
8
作者 Wonseok Jung Se-Han Kim +1 位作者 Seng-Phil Hong Jeongwook Seo 《Computers, Materials & Continua》 SCIE EI 2021年第4期337-348,共12页
Pig farmers want to have an effective solution for automatically detecting and tracking multiple pigs and alerting their conditions in order to recognize disease risk factors quickly.In this paper,therefore,we propose... Pig farmers want to have an effective solution for automatically detecting and tracking multiple pigs and alerting their conditions in order to recognize disease risk factors quickly.In this paper,therefore,we propose a novel monitoring system using an Artificial Intelligence of Things(AIoT)technique combining artificial intelligence and Internet of Things(IoT).The proposed system consists of AIoT edge devices and a central monitoring server.First,an AIoT edge device extracts video frame images from a CCTV camera installed in a pig pen by a frame extraction method,detects multiple pigs in the images by a faster region-based convolutional neural network(RCNN)model,and tracks them by an object center-point tracking algorithm(OCTA)based on bounding box regression outputs of the faster RCNN.Finally,it sends multi-pig tracking images to the central monitoring server,which alerts them to pig farmers through a social networking service(SNS)agent in cooperation with an oneM2M-compliant IoT alerting method.Experimental results showed that the multi-pig tracking method achieved the multi-object tracking accuracy performance of about 77%.In addition,we verified alerting operation by confirming the images received in the SNS smartphone application. 展开更多
关键词 Internet of Things multi-object tracking pig pen social network
在线阅读 下载PDF
Multi-Object Tracking with Micro Aerial Vehicle 被引量:1
9
作者 Yufeng Ji Weixing Li +2 位作者 Xiaolin Li Shikun Zhang Feng Pan 《Journal of Beijing Institute of Technology》 EI CAS 2019年第3期389-398,共10页
A simple yet efficient tracking framework is proposed for real-time multi-object tracking with micro aerial vehicles(MAVs). It's basic missions for MAVs to detect specific targets and then track them automatically... A simple yet efficient tracking framework is proposed for real-time multi-object tracking with micro aerial vehicles(MAVs). It's basic missions for MAVs to detect specific targets and then track them automatically. In our method, candidate regions are generated using the salient detection in each frame and then classified by an eural network. A kernelized correlation filter(KCF) is employed to track each target until it disappears or the peak-sidelobe ratio is lower than a threshold. Besides, we define the birth and death of each tracker for the targets. The tracker is recycled if its target disappears and can be assigned to a new target. The algorithm is evaluated on the PAFISS and UAV123 datasets. The results show a good performance on both the tracking accuracy and speed. 展开更多
关键词 multi-object tracking salient detection kernelized CORRELATION FILTER (KCF) micro AERIAL vehicle(MAV)
在线阅读 下载PDF
Multi-objective optimization sensor node scheduling for target tracking in wireless sensor network 被引量:1
10
作者 文莎 Cai Zixing Hu Xiaoqing 《High Technology Letters》 EI CAS 2014年第3期267-273,共7页
Target tracking in wireless sensor network usually schedules a subset of sensor nodes to constitute a tasking cluster to collaboratively track a target.For the goals of saving energy consumption,prolonging network lif... Target tracking in wireless sensor network usually schedules a subset of sensor nodes to constitute a tasking cluster to collaboratively track a target.For the goals of saving energy consumption,prolonging network lifetime and improving tracking accuracy,sensor node scheduling for target tracking is indeed a multi-objective optimization problem.In this paper,a multi-objective optimization sensor node scheduling algorithm is proposed.It employs the unscented Kalman filtering algorithm for target state estimation and establishes tracking accuracy index,predicts the energy consumption of candidate sensor nodes,analyzes the relationship between network lifetime and remaining energy balance so as to construct energy efficiency index.Simulation results show that,compared with the existing sensor node scheduling,our proposed algorithm can achieve superior tracking accuracy and energy efficiency. 展开更多
关键词 wireless sensor network (WSN) target tracking sensor scheduling multi-objective optimization
在线阅读 下载PDF
Multi-Object Tracking Strategy of Autonomous Vehicle Using Modified Unscented Kalman Filter and Reference Point Switching
11
作者 WANG Muyuan WU Xiaodong 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第5期607-614,共8页
In this study,a multi-object tracking(MOT)scheme based on a light detection and ranging sensor was proposed to overcome imprecise velocity observations in object occlusion scenarios.By applying real-time velocity esti... In this study,a multi-object tracking(MOT)scheme based on a light detection and ranging sensor was proposed to overcome imprecise velocity observations in object occlusion scenarios.By applying real-time velocity estimation,a modified unscented Kalman filter(UKF)was proposed for the state estimation of a target object.The proposed method can reduce the calculation cost by obviating unscented transformations.Additionally,combined with the advantages of a two-reference-point selection scheme based on a center point and a corner point,a reference point switching approach was introduced to improve tracking accuracy and consistency.The state estimation capability of the proposed UKF was verified by comparing it with the standard UKF in single-target tracking simulations.Moreover,the performance of the proposed MOT system was evaluated using real traffic datasets. 展开更多
关键词 multi-object tracking(mot) light detection and ranging(LiDAR)sensor unscented Kalman filter(UKF) object occlusion
原文传递
Novel learning framework for optimal multi-object video trajectory tracking
12
作者 Siyuan CHEN Xiaowu HU +2 位作者 Wenying JIANG Wen ZHOU Xintao DING 《Virtual Reality & Intelligent Hardware》 EI 2023年第5期422-438,共17页
Background With the rapid development of Web3D, virtual reality, and digital twins, virtual trajectories and decision data considerably rely on the analysis and understanding of real video data, particularly in emerge... Background With the rapid development of Web3D, virtual reality, and digital twins, virtual trajectories and decision data considerably rely on the analysis and understanding of real video data, particularly in emergency evacuation scenarios. Correctly and effectively evacuating crowds in virtual emergency scenarios are becoming increasingly urgent. One good solution is to extract pedestrian trajectories from videos of emergency situations using a multi-target tracking algorithm and use them to define evacuation procedures. Methods To implement this solution, a trajectory extraction and optimization framework based on multi-target tracking is developed in this study. First, a multi-target tracking algorithm is used to extract and preprocess the trajectory data of the crowd in a video. Then, the trajectory is optimized by combining the trajectory point extraction algorithm and Savitzky-Golay smoothing filtering method. Finally, related experiments are conducted, and the results show that the proposed approach can effectively and accurately extract the trajectories of multiple target objects in real time. Results In addition, the proposed approach retains the real characteristics of the trajectories as much as possible while improving the trajectory smoothing index, which can provide data support for the analysis of pedestrian trajectory data and formulation of personnel evacuation schemes in emergency scenarios. Conclusions Further comparisons with methods used in related studies confirm the feasibility and superiority of the proposed framework. 展开更多
关键词 WEB3D Virtual evacuation multi-object tracking Trajectory extraction Trajectory optimization
在线阅读 下载PDF
Moving Multi-Object Detection and Tracking Using MRNN and PS-KM Models
13
作者 V.Premanand Dhananjay Kumar 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1807-1821,共15页
On grounds of the advent of real-time applications,like autonomous driving,visual surveillance,and sports analysis,there is an augmenting focus of attention towards Multiple-Object Tracking(MOT).The tracking-by-detect... On grounds of the advent of real-time applications,like autonomous driving,visual surveillance,and sports analysis,there is an augmenting focus of attention towards Multiple-Object Tracking(MOT).The tracking-by-detection paradigm,a commonly utilized approach,connects the existing recognition hypotheses to the formerly assessed object trajectories by comparing the simila-rities of the appearance or the motion between them.For an efficient detection and tracking of the numerous objects in a complex environment,a Pearson Simi-larity-centred Kuhn-Munkres(PS-KM)algorithm was proposed in the present study.In this light,the input videos were,initially,gathered from the MOT dataset and converted into frames.The background subtraction occurred whichfiltered the inappropriate data concerning the frames after the frame conversion stage.Then,the extraction of features from the frames was executed.Afterwards,the higher dimensional features were transformed into lower-dimensional features,and feature reduction process was performed with the aid of Information Gain-centred Singular Value Decomposition(IG-SVD).Next,using the Modified Recurrent Neural Network(MRNN)method,classification was executed which identified the categories of the objects additionally.The PS-KM algorithm identi-fied that the recognized objects were tracked.Finally,the experimental outcomes exhibited that numerous targets were precisely tracked by the proposed system with 97%accuracy with a low false positive rate(FPR)of 2.3%.It was also proved that the present techniques viz.RNN,CNN,and KNN,were effective with regard to the existing models. 展开更多
关键词 multi-object detection object tracking feature extraction morlet wavelet mutation(MWM) ant lion optimization(ALO) background subtraction
在线阅读 下载PDF
Multi-Object Tracking Based on Segmentation and Collision Avoidance
14
作者 Meng Zhao Junhui Wang +3 位作者 Maoyong Cao Peirui Bai Hongyan Gu Mingtao Pei 《Journal of Beijing Institute of Technology》 EI CAS 2018年第2期213-219,共7页
An approach to track multiple objects in crowded scenes with long-term partial occlusions is proposed. Tracking-by-detection is a successful strategy to address the task of tracking multiple objects in unconstrained s... An approach to track multiple objects in crowded scenes with long-term partial occlusions is proposed. Tracking-by-detection is a successful strategy to address the task of tracking multiple objects in unconstrained scenarios,but an obvious shortcoming of this method is that most information available in image sequences is simply ignored due to thresholding weak detection responses and applying non-maximum suppression. This paper proposes a multi-label conditional random field( CRF) model which integrates the superpixel information and detection responses into a unified energy optimization framework to handle the task of tracking multiple targets. A key characteristic of the model is that the pairwise potential is constructed to enforce collision avoidance between objects,which can offer the advantage to improve the tracking performance in crowded scenes. Experiments on standard benchmark databases demonstrate that the proposed algorithm significantly outperforms the state-of-the-art tracking-by-detection methods. 展开更多
关键词 multi-object tracking conditional random field superpixel collision avoidance
在线阅读 下载PDF
HAMOT:A Hierarchical Adaptive Framework for Robust Multi-Object Tracking in Complex Environments
15
作者 Jahfar Khan Said Baz Peng Zhang +3 位作者 Mian Muhammad Kamal Heba G.Mohamed Muhammad Sheraz Teong Chee Chuah 《Computer Modeling in Engineering & Sciences》 2025年第10期947-969,共23页
Multiple Object Tracking(MOT)is essential for applications such as autonomous driving,surveillance,and analytics;However,challenges such as occlusion,low-resolution imaging,and identity switches remain persistent.We p... Multiple Object Tracking(MOT)is essential for applications such as autonomous driving,surveillance,and analytics;However,challenges such as occlusion,low-resolution imaging,and identity switches remain persistent.We propose HAMOT,a hierarchical adaptive multi-object tracker that solves these challenges with a novel,unified framework.Unlike previous methods that rely on isolated components,HAMOT incorporates a Swin Transformer-based Adaptive Enhancement(STAE)module—comprising Scene-Adaptive Transformer Enhancement and Confidence-Adaptive Feature Refinement—to improve detection under low-visibility conditions.The hierarchical DynamicGraphNeuralNetworkwith TemporalAttention(DGNN-TA)models both short-and long-termassociations,and the Adaptive Unscented Kalman Filter with Gated Recurrent Unit(AUKF-GRU)ensures accurate motion prediction.The novel Graph-Based Density-Aware Clustering(GDAC)improves occlusion recovery by adapting to scene density,preserving identity integrity.This integrated approach enables adaptive responses to complex visual scenarios,Achieving exceptional performance across all evaluation metrics,including aHigher Order TrackingAccuracy(HOTA)of 67.05%,a Multiple Object Tracking Accuracy(MOTA)of 82.4%,an ID F1 Score(IDF1)of 83.1%,and a total of 1052 Identity Switches(IDSW)on theMOT17;66.61%HOTA,78.3%MOTA,82.1%IDF1,and a total of 748 IDSWonMOT20;and 66.4%HOTA,92.32%MOTA,and 68.96%IDF1 on DanceTrack.With fixed thresholds,the full HAMOT model(all six components)achieves real-time functionality at 24 FPS on MOT17 using RTX3090,ensuring robustness and scalability for real-world MOT applications. 展开更多
关键词 Occlusions mot low-resolution association trajectory tracking
在线阅读 下载PDF
Conditional Random Field Tracking Model Based on a Visual Long Short Term Memory Network 被引量:3
16
作者 Pei-Xin Liu Zhao-Sheng Zhu +1 位作者 Xiao-Feng Ye Xiao-Feng Li 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第4期308-319,共12页
In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is es... In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation. 展开更多
关键词 Conditional random field(CRF) long short term memory network(LSTM) motion estimation multiple object tracking(mot)
在线阅读 下载PDF
Influence of Design Reference on Tracking Performance of Feedback Control 被引量:1
17
作者 Qiqi Zhao Zhichang Qin Jianqiao Sun 《Transactions of Tianjin University》 EI CAS 2018年第1期66-72,共7页
In this paper, we present an investigation on the tracking performances of feedback control as a function of reference signals. We use multi-objective optimal designs of feedback controls as a fair basis for comparing... In this paper, we present an investigation on the tracking performances of feedback control as a function of reference signals. We use multi-objective optimal designs of feedback controls as a fair basis for comparing different control designs, and examine step, ramp, and periodic signals at various frequencies. Through comparing the tracking performances of controls designed with different reference signals,we find that the controls designed with ramp signals perform better in tracking step and ramp references than those designed with step signals. To track periodic signals, we find that the controls designed with periodic signals at the same frequency generally provide the best performance, and those designed with step and ramp signals perform comparably. 展开更多
关键词 REFERENCE SIGNAL tracking performance FEEDBACK control multi-objectIVE optimization
在线阅读 下载PDF
Visual-attention gabor filter based online multi-armored target tracking 被引量:1
18
作者 Fan-jie Meng Xin-qing Wang +3 位作者 Fa-ming Shao Dong Wang Yao-wei Yu Yi Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1249-1261,共13页
The multi-armored target tracking(MATT)plays a crucial role in coordinated tracking and strike.The occlusion and insertion among targets and target scale variation is the key problems in MATT.Most stateof-the-art mult... The multi-armored target tracking(MATT)plays a crucial role in coordinated tracking and strike.The occlusion and insertion among targets and target scale variation is the key problems in MATT.Most stateof-the-art multi-object tracking(MOT)works adopt the tracking-by-detection strategy,which rely on compute-intensive sliding window or anchoring scheme in detection module and neglect the target scale variation in tracking module.In this work,we proposed a more efficient and effective spatial-temporal attention scheme to track multi-armored target in the ground battlefield.By simulating the structure of the retina,a novel visual-attention Gabor filter branch is proposed to enhance detection.By introducing temporal information,some online learned target-specific Convolutional Neural Networks(CNNs)are adopted to address occlusion.More importantly,we built a MOT dataset for armored targets,called Armored Target Tracking dataset(ATTD),based on which several comparable experiments with state-ofthe-art methods are conducted.Experimental results show that the proposed method achieves outstanding tracking performance and meets the actual application requirements. 展开更多
关键词 multi-object tracking Deep learning Gabor filter Biological vision MILITARY Application Video processing
在线阅读 下载PDF
ORT:Occlusion-robust for multi-object tracking
19
作者 Shoudong Han Hongwei Wang +1 位作者 En Yu Zhuo Hu 《Fundamental Research》 2025年第3期1214-1220,共7页
Although the joint-detection-and-tracking paradigm has promoted the development of multi-object tracking(MOT)significantly,the long-term occlusion problem is still unsolved.After a period of trajectory inactivation du... Although the joint-detection-and-tracking paradigm has promoted the development of multi-object tracking(MOT)significantly,the long-term occlusion problem is still unsolved.After a period of trajectory inactivation due to occlusion,it is difficult to achieve trajectory reconnection with appearance features because they are no longer reliable.Although using motion cues does not suffer from occlusion,the commonly used Kalman Filter is also ineffective in its long-term inertia prediction in cases of no observation updates or wrong updates.Besides,occlusion is prone to cause multiple track-detection pairs to have close similarity scores during the data association phase.The direct use of the Hungarian algorithm to give the global optimal solution may generate the identity switching problem.In this paper,we propose the Long-term Spatio-Temporal Prediction(LSTP)module and the Ordered Association(OA)module to alleviate the occlusion problem in terms of motion prediction and data association,respectively.The LSTP module estimates the states of all tracked objects over time using a combination of spatial and temporal Transformers.The spatial Transformer models crowd interaction and learns the influence of neighbors,while the temporal Transformer models the temporal continuity of historical trajectories.Besides,the LSTP module also predicts the visibilities of the motion prediction boxes,which denote the occlusion attributes of trajectories.Based on the occlusion attribute and active state,the association priority is defined in the OA module to associate trajectories in order,which helps to alleviate the identity switching problem.Comprehensive experiments on the MOT17 and MOT20 benchmarks indicate the superiority of the proposed MOT framework,namely Occlusion-Robust Tracker(ORT).Without using any appearance information,our ORT can achieve competitive performance beyond other state-of-the-art trackers in terms of trajectory accuracy and purity. 展开更多
关键词 multi-object tracking motion-based prediction Trajectory reconnection Data association Long-term occlusion modeling
原文传递
Methods and Means for Small Dynamic Objects Recognition and Tracking 被引量:1
20
作者 Dmytro Kushnir 《Computers, Materials & Continua》 SCIE EI 2022年第11期3649-3665,共17页
A literature analysis has shown that object search,recognition,and tracking systems are becoming increasingly popular.However,such systems do not achieve high practical results in analyzing small moving living objects... A literature analysis has shown that object search,recognition,and tracking systems are becoming increasingly popular.However,such systems do not achieve high practical results in analyzing small moving living objects ranging from 8 to 14 mm.This article examines methods and tools for recognizing and tracking the class of small moving objects,such as ants.To fulfill those aims,a customized You Only Look Once Ants Recognition(YOLO_AR)Convolutional Neural Network(CNN)has been trained to recognize Messor Structor ants in the laboratory using the LabelImg object marker tool.The proposed model is an extension of the You Only Look Once v4(Yolov4)512×512 model with an additional Self Regularized Non–Monotonic(Mish)activation function.Additionally,the scalable solution for continuous object recognizing and tracking was implemented.This solution is based on the OpenDatacam system,with extended Object Tracking modules that allow for tracking and counting objects that have crossed the custom boundary line.During the study,the methods of the alignment algorithm for finding the trajectory of moving objects were modified.I discovered that the Hungarian algorithm showed better results in tracking small objects than the K–D dimensional tree(k-d tree)matching algorithm used in OpenDataCam.Remarkably,such an algorithm showed better results with the implemented YOLO_AR model due to the lack of False Positives(FP).Therefore,I provided a new tracker module with a Hungarian matching algorithm verified on the Multiple Object Tracking(MOT)benchmark.Furthermore,additional customization parameters for object recognition and tracking results parsing and filtering were added,like boundary angle threshold(BAT)and past frames trajectory prediction(PFTP).Experimental tests confirmed the results of the study on a mobile device.During the experiment,parameters such as the quality of recognition and tracking of moving objects,the PFTP and BAT,and the configuration parameters of the neural network and boundary line model were analyzed.The results showed an increased tracking accuracy with the proposed methods by 50%.The study results confirmed the relevance of the topic and the effectiveness of the implemented methods and tools. 展开更多
关键词 Object detection artificial intelligence object tracking object counting small movable objects ants tracking ants recognition YOLO_AR Yolov4 Hungarian algorithm k-d tree algorithm mot benchmark image labeling movement prediction
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部