期刊文献+
共找到94篇文章
< 1 2 5 >
每页显示 20 50 100
Optimization and Scheduling of Green Power System Consumption Based on Multi-Device Coordination and Multi-Objective Optimization
1
作者 Liang Tang Hongwei Wang +2 位作者 Xinyuan Zhu Jiying Liu Kaiyue Li 《Energy Engineering》 2025年第6期2257-2289,共33页
The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of... The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of energy systems.To enhance the consumption capacity of green power,the green power system consumption optimization scheduling model(GPS-COSM)is proposed,which comprehensively integrates green power system,electric boiler,combined heat and power unit,thermal energy storage,and electrical energy storage.The optimization objectives are to minimize operating cost,minimize carbon emission,and maximize the consumption of wind and solar curtailment.The multi-objective particle swarm optimization algorithm is employed to solve the model,and a fuzzy membership function is introduced to evaluate the satisfaction level of the Pareto optimal solution set,thereby selecting the optimal compromise solution to achieve a dynamic balance among economic efficiency,environmental friendliness,and energy utilization efficiency.Three typical operating modes are designed for comparative analysis.The results demonstrate that the mode involving the coordinated operation of electric boiler,thermal energy storage,and electrical energy storage performs the best in terms of economic efficiency,environmental friendliness,and renewable energy utilization efficiency,achieving the wind and solar curtailment consumption rate of 99.58%.The application of electric boiler significantly enhances the direct accommodation capacity of the green power system.Thermal energy storage optimizes intertemporal regulation,while electrical energy storage strengthens the system’s dynamic regulation capability.The coordinated optimization of multiple devices significantly reduces reliance on fossil fuels. 展开更多
关键词 multi-objective optimization scheduling model multi-objective particle swarm optimization algorithm consumption capacity of green power wind and solar curtailment coordinated optimization of multiple devices
在线阅读 下载PDF
Multi-objective optimization and evaluation of supercritical CO_(2) Brayton cycle for nuclear power generation 被引量:4
2
作者 Guo-Peng Yu Yong-Feng Cheng +1 位作者 Na Zhang Ping-Jian Ming 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期183-209,共27页
The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayto... The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully. 展开更多
关键词 Supercritical CO_(2)Brayton cycle Nuclear power generation Thermo-economic analysis multi-objective optimization Decision-making methods
在线阅读 下载PDF
Optimization of Processing Parameters of Power Spinning for Bushing Based on Neural Network and Genetic Algorithms 被引量:4
3
作者 Junsheng Zhao Yuantong Gu Zhigang Feng 《Journal of Beijing Institute of Technology》 EI CAS 2019年第3期606-616,共11页
A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization o... A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization of the process parameters is conducted using the genetic algorithm (GA). The experimental results have shown that a surface model of the neural network can describe the nonlinear implicit relationship between the parameters of the power spinning process:the wall margin and amount of expansion. It has been found that the process of determining spinning technological parameters can be accelerated using the optimization method developed based on the BP neural network and the genetic algorithm used for the process parameters of power spinning formation. It is undoubtedly beneficial towards engineering applications. 展开更多
关键词 power spinning process parameters optimization BP NEURAL network GENETIC algorithms (GA) response surface methodology (RSM)
在线阅读 下载PDF
Multi-objective optimization scheduling for new energy power system considering energy storage participation 被引量:9
4
作者 YUN Yun-yun DONG Hai-ying +2 位作者 CHEN Zhao HUANG Rong DING Kun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第4期365-372,共8页
For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a mult... For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a multi-objective optimization scheduling strategy considering energy storage participation is proposed.Firstly,the new energy power system model is established,and the PP scenario generation and reduction frame based on the autoregressive moving average model and Kantorovich-distance is proposed.Then,based on the optimization goal of the system operation cost minimization and the PP output power consumption maximization,the multi-objective optimization scheduling model is established.Finally,the simulation results show that introducing energy storage into the system can effectively reduce the system operation cost and improve the utilization efficiency of PP. 展开更多
关键词 new energy power system multi-objective optimization energy storage participation operation cost autoregressive moving average model
在线阅读 下载PDF
Performance optimization of electric power steering based on multi-objective genetic algorithm 被引量:2
5
作者 赵万忠 王春燕 +1 位作者 于蕾艳 陈涛 《Journal of Central South University》 SCIE EI CAS 2013年第1期98-104,共7页
The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-obj... The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-objective genetic algorithm (GA) was designed. Based on the model of system, the quantitative formula of the road feel, sensitivity, and operation stability of the steering were induced. Considering the road feel and sensitivity of steering as optimization objectives, and the operation stability of steering as constraint, the multi-objective GA was proposed and the system parameters were optimized. The simulation results show that the system optimized by multi-objective genetic algorithm has better road feel, steering sensibility and steering stability. The energy of steering road feel after optimization is 1.44 times larger than the one before optimization, and the energy of portability after optimization is 0.4 times larger than the one before optimization. The ground test was conducted in order to verify the feasibility of simulation results, and it is shown that the pure electric bus equipped with the recirculating ball-type EPS system can provide better road feel and better steering portability for the drivers, thus the optimization methods can provide a theoretical basis for the design and optimization of the recirculating ball-type EPS system. 展开更多
关键词 vehicle engineering electric power steering multi-objective optimization genetic algorithm
在线阅读 下载PDF
Non-dominated sorting culture differential evolution algorithm for multi-objective optimal operation of Wind-Solar-Hydro complementary power generation system 被引量:4
6
作者 Guanjun Liu Hui Qin +2 位作者 Rui Tian Lingyun Tang Jie Li 《Global Energy Interconnection》 2019年第4期368-374,共7页
Due to the intermittency and instability of Wind-Solar energy and easy compensation of hydropower, this study proposes a Wind-Solar-Hydro power optimal scheduling model. This model is aimed at maximizing the total sys... Due to the intermittency and instability of Wind-Solar energy and easy compensation of hydropower, this study proposes a Wind-Solar-Hydro power optimal scheduling model. This model is aimed at maximizing the total system power generation and the minimum ten-day joint output. To effectively optimize the multi-objective model, a new algorithm named non-dominated sorting culture differential evolution algorithm(NSCDE) is proposed. The feasibility of NSCDE was verified through several well-known benchmark problems. It was then applied to the Jinping Wind-Solar-Hydro complementary power generation system. The results demonstrate that NSCDE can provide decision makers a series of optimized scheduling schemes. 展开更多
关键词 Wind-Solar-Hydro COMPLEMENTARY power generation system Scheduling strategy multi-objectIVE optimization CULTURE algorithm
在线阅读 下载PDF
Multi-objective optimization for voltage and frequency control of smart grids based on controllable loads 被引量:2
7
作者 Yaxin Wang Donglian Qi Jianliang Zhang 《Global Energy Interconnection》 CAS CSCD 2021年第2期136-144,共9页
The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capabi... The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB. 展开更多
关键词 multi-objective optimization Voltage control Frequency control power flow Controllable loads Game theory
在线阅读 下载PDF
Robust design and optimization for autonomous PV-wind hybrid power systems 被引量:1
8
作者 Jun-hai SHI Zhi-dan ZHONG +1 位作者 Xin-jian ZHU Guang-yi CAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第3期401-409,共9页
This study presents a robust design method for autonomous photovoltaic (PV)-wind hybrid power systems to obtain an optimum system configuration insensitive to design variable variations. This issue has been formulated... This study presents a robust design method for autonomous photovoltaic (PV)-wind hybrid power systems to obtain an optimum system configuration insensitive to design variable variations. This issue has been formulated as a constraint multi-objective optimization problem, which is solved by a multi-objective genetic algorithm, NSGA-II. Monte Carlo Simulation (MCS) method, combined with Latin Hypercube Sampling (LHS), is applied to evaluate the stochastic system performance. The potential of the proposed method has been demonstrated by a conceptual system design. A comparative study between the proposed robust method and the deterministic method presented in literature has been conducted. The results indicate that the proposed method can find a large mount of Pareto optimal system configurations with better compromising performance than the deterministic method. The trade-off information may be derived by a systematical comparison of these configurations. The proposed robust design method should be useful for hybrid power systems that require both optimality and robustness. 展开更多
关键词 PV-wind power system Robust design Constraint multi-objective optimizations multi-objective genetic algorithms Monte Carlo Simulation (MCS) Latin Hypercube Sampling (LHS)
在线阅读 下载PDF
Improved multi-objective artificial bee colony algorithm for optimal power flow problem 被引量:1
9
作者 马连博 胡琨元 +1 位作者 朱云龙 陈瀚宁 《Journal of Central South University》 SCIE EI CAS 2014年第11期4220-4227,共8页
The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting obj... The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting objectives of OPF, instead of transforming multi-objective functions into a single objective function. The main idea of HMOABC is to extend original ABC algorithm to multi-objective and cooperative mode by combining the Pareto dominance and divide-and-conquer approach. HMOABC is then used in the 30-bus IEEE test system for solving the OPF problem considering the cost, loss, and emission impacts. The simulation results show that the HMOABC is superior to other algorithms in terms of optimization accuracy and computation robustness. 展开更多
关键词 cooperative artificial colony algorithm optimal power flow multi-objective optimization
在线阅读 下载PDF
Particle swarm optimization algorithm for simultaneous optimal placement and sizing of shunt active power conditioner(APC)and shunt capacitor in harmonic distorted distribution system
10
作者 Mohammadi Mohammad 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2035-2048,共14页
Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into p... Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into power system.Under this condition if capacitor banks are not properly selected and placed in the power system,they could amplify and propagate these harmonics and deteriorate power quality to unacceptable levels.With attention of disadvantages of passive filters,such as occurring resonance,nowadays the usage of this type of harmonic compensator is restricted.On the other side,one of parallel multi-function compensating devices which are recently used in distribution system to mitigate voltage sag and harmonic distortion,performs power factor correction,and improves the overall power quality as active power conditioner(APC).Therefore,the utilization of APC in harmonic distorted system can affect and change the optimal location and size of shunt capacitor bank under harmonic distortion condition.This paper presents an optimization algorithm for improvement of power quality using simultaneous optimal placement and sizing of APC and shunt capacitor banks in radial distribution networks in the presence of voltage and current harmonics.The algorithm is based on particle swarm optimization(PSO).The objective function includes the cost of power losses,energy losses and those of the capacitor banks and APCs. 展开更多
关键词 shunt capacitor banks active power conditioner multi-objective function particle swarm optimization (PSO) harmonic distorted distribution system
在线阅读 下载PDF
Multi-Objective Optimal Dispatch Considering Wind Power and Interactive Load for Power System
11
作者 Xinxin Shi Guangqing Bao +1 位作者 Kun Ding Liang Lu 《Energy and Power Engineering》 2018年第4期1-10,共10页
With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to th... With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to the severe wind power curtailment issue, the characteristics of interactive load are studied upon the traditional day-ahead dispatch model to mitigate the influence of wind power fluctuation. A multi-objective optimal dispatch model with the minimum operating cost and power losses is built. Optimal power flow distribution is available when both generation and demand side participate in the resource allocation. The quantum particle swarm optimization (QPSO) algorithm is applied to convert multi-objective optimization problem into single objective optimization problem. The simulation results of IEEE 30-bus system verify that the proposed method can effectively reduce the operating cost and grid loss simultaneously enhancing the consumption of wind power. 展开更多
关键词 WIND power Interactive Load optimal DISPATCH multi-objectIVE QPSO Models
暂未订购
An Optimization Capacity Design Method of Wind/Photovoltaic/Hydrogen Storage Power System Based on PSO-NSGA-II
12
作者 Lei Xing Yakui Liu 《Energy Engineering》 EI 2023年第4期1023-1043,共21页
The optimal allocation of integrated energy systemcapacity based on the heuristic algorithms can reduce economic costs and achieve maximum consumption of renewable energy,which has attracted many attentions.However,th... The optimal allocation of integrated energy systemcapacity based on the heuristic algorithms can reduce economic costs and achieve maximum consumption of renewable energy,which has attracted many attentions.However,the optimization results of heuristic algorithms are usually influenced by the choice of hyperparameters.To solve the above problem,the particle swarm algorithm is introduced to find the optimal hyperparameters of the heuristic algorithms.Firstly,an integrated energy system consisting of the photovoltaic,wind turbine,electrolysis cell,hydrogen storage tank,and energy storage is established.Meanwhile,the minimum economic cost,the maximum wind and PV power consumption rate,and the minimum load shortage rate are considered to be the objective functions.Then,a hybrid method combined the particle swarm combined with non-dominated sorting genetic algorithms-II is proposed to solve the optimal allocation problem.According to the optimal result,the economic cost is 6.3 million RMB,and the load shortage rate is 9.83%.Finally,four comparative experiments are conducted to verify the superiority-seeking ability of the proposed method.The comparative results indicate that the proposed method possesses a strongermerit-seeking ability,resulting in a solution satisfaction rate of 87.37%,which is higher than that of the unimproved non-dominated sorting genetic algorithms-II. 展开更多
关键词 multi-objective optimization wind/photovoltaic/hydrogen power system particle swarm algorithm non-dominated sorting genetic algorithms-II
在线阅读 下载PDF
A dynamic spectrum and power allocation method for co-located pulse radar and communication system coexistence
13
作者 Youwei MENG Yaoyao LI +1 位作者 Shaoxiong CAI Donglin SU 《Chinese Journal of Aeronautics》 2025年第4期501-512,共12页
Airborne pulse radar and communication systems are essential for precise detection and collision avoidance,ensuring that aircraft operate safely and efficiently.A major challenge in spectrum sharing is the allocation ... Airborne pulse radar and communication systems are essential for precise detection and collision avoidance,ensuring that aircraft operate safely and efficiently.A major challenge in spectrum sharing is the allocation of resources in both the time and frequency domains,aiming to minimize inter-system interference as the available spectrum fluctuates over time.In this paper,regarding maximization of detection probability and spectrum utilization efficiency as two fundamental objectives,a novel Dynamic Spectrum and Power Allocation based on Genetic Algorithm(GA-DSPA)model is proposed,which dynamically allocates communication channel frequency and power under the constraints of pulse radar detection probability and signal-to-interferenceplus-noise ratio of communication.To solve this bi-objective model,a non-dominated sortingbased multi-objective genetic algorithm is developed.A novel environment perception strategy and offspring sorting technique based on radar echoes are integrated into the optimization framework.Simulation results indicate that by integrating environmental monitoring mechanisms and dynamic adaptation strategies,the proposed method effectively tracks the evolving Paretooptimal Fronts(Po Fs),thereby ensuring optimal performance for both co-located pulse radar and communication systems.Hardware test results confirm that within the GA-DSPA framework,the pulse radar achieves higher detection probabilities under identical conditions,while the communication system realizes increased average throughput. 展开更多
关键词 Communication systems Dynamic multi-objective optimization Electromagnetic compatibility Radar-communication coexistence Spectrum and power allocation
原文传递
Optimization Study on the Blade Profiles of A Horizontal Axis Tidal Turbine Based on BEM-CFD Model 被引量:7
14
作者 ZHANG Da-hai DING Lan +2 位作者 HUANG Bin CHEN Xue-meng LIU Jin-tao 《China Ocean Engineering》 SCIE EI CSCD 2019年第4期436-445,共10页
In order to increase the performance of horizontal tidal turbines, a multi-objective optimization model was proposed in this study. Firstly, the prediction model for horizontal tidal turbines was built, which coupled ... In order to increase the performance of horizontal tidal turbines, a multi-objective optimization model was proposed in this study. Firstly, the prediction model for horizontal tidal turbines was built, which coupled the blade element momentum (BEM) theory and the CFD calculation. Secondly, a multi-objective optimization method coupled the response surface method (RSM) with the multi-objective genetic algorithm NSGA-II was applied to obtain the optimal blade profiles. The pitch angle and the chord length distribution were chosen as the design variables, while the mean power coefficient and the variance of power coefficient were chosen as the objective functions. With the mean power coefficient improved by 4.1% and the variance of power coefficient decreased by 46.7%, results showed that both objective functions could be improved. 展开更多
关键词 TIDAL TURBINE BEM-CFD multi-objectIVE optimization power COEFFICIENT
在线阅读 下载PDF
Optimal path planning method of electric vehicles considering power supply 被引量:7
15
作者 GUO Dong LI Chao-chao +8 位作者 YAN Wei HAO Yu-jiao XU Yi WANG Yu-qiong ZHOU Ying-chao E Wen-juan ZHANG Tong-qing GAO Xing-bang TAN Xiao-chuan 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期331-345,共15页
Because of the limitations of electric vehicle(EV)battery technology and relevant supporting facilities,there is a great risk of breakdown of EVs during driving.The resulting driver“range anxiety”greatly affects the... Because of the limitations of electric vehicle(EV)battery technology and relevant supporting facilities,there is a great risk of breakdown of EVs during driving.The resulting driver“range anxiety”greatly affects the travel quality of EVs.These limitations should be overcome to promote the use of EVs.In this study,a method for travel path planning considering EV power supply was developed.First,based on real-time road conditions,a dynamic energy model of EVs was established considering the driving energy and accessory energy.Second,a multi-objective travel path planning model of EVs was constructed considering the power supply,taking the distance,time,energy,and charging cost as the optimization objectives.Finally,taking the actual traffic network of 15 km×15 km area in a city as the research object,the model was simulated and verified in MATLAB based on Dijkstra shortest path algorithm.The simulation results show that compared with the traditional route planning method,the total distance in the proposed optimal route planning method increased by 1.18%,but the energy consumption,charging cost,and driving time decreased by 11.62%,41.26%and 11.00%,respectively,thus effectively reducing the travel cost of EVs and improving the driving quality of EVs. 展开更多
关键词 electric vehicle vehicle special power charging path multi-objective optimization Dijkstra algorithm
在线阅读 下载PDF
Multi-objective Robust Optimal Secure Operation Model of Large-scale Power Grid with Multiple Back-to-back Voltage Source Converter Based Systems Considering Short-circuit Current Limitation
16
作者 Weikun Liang Shunjiang Lin +2 位作者 Yuerong Yang Ziqing Yang Mingbo Liu 《Journal of Modern Power Systems and Clean Energy》 2025年第4期1151-1166,共16页
With the load growth and the power grid expansion,the problem of short-circuit current(SCC)exceeding the secure limit in large-scale power grids has become more serious,which poses great challenge to the optimal secur... With the load growth and the power grid expansion,the problem of short-circuit current(SCC)exceeding the secure limit in large-scale power grids has become more serious,which poses great challenge to the optimal secure operation.Aiming at the SCC limitations,we use multiple back-toback voltage source converter based(B2B VSC)systems to separate a large-scale AC power grid into two asynchronous power grids.A multi-objective robust optimal secure operation model of large-scale power grid with multiple B2B VSC systems considering the SCC limitation is established based on the AC power flow equations.The decision variables include the on/off states of synchronous generators,power output,terminal voltage,transmission switching,bus sectionalization,and modulation ratios of B2B VSC systems.The influence of inner current sources of renewable energy generators on the system SCC is also considered.To improve the computational efficiency,a mixedinteger convex programming(MICP)framework based on convex relaxation methods including the inscribed N-sided approximation for the nonlinear SCC limitation constraints is proposed.Moreover,combined with the column-and-constraint generation(C&CG)algorithm,a method to directly solve the compromise optimal solution(COS)of the multi-objective robust optimal secure operation model is proposed.Finally,the effectiveness and computational efficiency of the proposed solution method is demonstrated by an actual 4407-bus provincial power grid and the modified IEEE 39-bus power grid,which can reduce the consumed CPU time of solving the COS by more than 90%and obtain a better COS. 展开更多
关键词 Large-scale power grid optimal secure operation short-circuit current(SCC)limitation BACK-TO-BACK voltage source converter convex relaxation multi-objective robust optimization
原文传递
Optimal Configuration Method for the Installed Capacity of the Solar-Thermal Power Stations 被引量:1
17
作者 Yan Wang Zhicheng Ma +3 位作者 Jinping Zhang Qiang Zhou Ruiping Zhang Haiying Dong 《Energy Engineering》 EI 2023年第4期949-963,共15页
Because of the randomness of wind power and photovoltaic(PV)output of new energy bases,the problem of peak regulation capability and voltage stability of ultra-high voltage direct current(UHVDC)transmission lines,we p... Because of the randomness of wind power and photovoltaic(PV)output of new energy bases,the problem of peak regulation capability and voltage stability of ultra-high voltage direct current(UHVDC)transmission lines,we proposed an optimum allocation method of installed capacity of the solar-thermal power station based on chance constrained programming in this work.Firstly,we established the uncertainty model of wind power and PV based on the chance constrained planning theory.Then we used the K-medoids clusteringmethod to cluster the scenarios considering the actual operation scenarios throughout the year.Secondly,we established the optimal configuration model based on the objective function of the strongest transient voltage stability and the lowest overall cost of operation.Finally,by quantitative analysis of actual wind power and photovoltaic new energy base,this work verified the feasibility of the proposed method.As a result of the simulations,we found that using the optimal configuration method of solar-thermal power stations could ensure an accurate allocation of installed capacity.When the installed capacity of the solar-thermal power station is 1×106 kW,the transient voltage recovery index(TVRI)is 0.359,which has a strong voltage support capacity for the system.Based on the results of this work,the optimal configuration of the installed capacity of the solar-thermal power plant can improve peak shaving performance,transient voltage support capability,and new energy consumption while satisfying the Direct Current(DC)outgoing transmission premise. 展开更多
关键词 Solar-thermal power station optimal configuration of installed capacity new energy base multi-objective optimization chance constrained planning theory
在线阅读 下载PDF
Multi-Objective Optimization Based on Life Cycle Assessment for Hybrid Solar and Biomass Combined Cooling,Heating and Power System 被引量:1
18
作者 LIU Jiejie LI Yao +1 位作者 MENG Xianyang WU Jiangtao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第3期931-950,共20页
The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a mult... The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a multi-objective optimization model based on the life cycle assessment(LCA)method for the optimal design of hybrid solar and biomass system.The life-cycle process of the poly-generation system is divided into six phases to analyze energy consumption and greenhouse gas emissions.The comprehensive performances of the hybrid system are optimized by incorporating the evaluation criteria,including environmental impact in the whole life cycle,renewable energy contribution and economic benefit.The non-dominated sorting genetic algorithmⅡ(NSGA-Ⅱ)with the technique for order preference by similarity to ideal solution(TOPSIS)method is employed to search the Pareto frontier result and thereby achieve optimal performance.The developed optimization methodology is used for a case study in an industrial park.The results indicate that the best performance from the optimized hybrid system is reached with the environmental impact load reduction rate(EILRR)of 46.03%,renewable energy contribution proportion(RECP)of 92.73%and annual total cost saving rate(ATCSR)of35.75%,respectively.By comparing pollutant-eq emissions of different stages,the operation phase emits the largest pollutant followed by the phase of raw material acquisition.Overall,this study reveals that the proposed multi-objective optimization model integrated with LCA method delivers an alternative path for the design and optimization of more sustainable CCHP system. 展开更多
关键词 combined cooling heating and power system solar-biomass multi-objective optimization life cycle assessment optimal design
原文传递
Quantum particle swarm optimization for micro-grid system with consideration of consumer satisfaction and benefit of generation side
19
作者 LU Xiaojuan CAO Kai GAO Yunbo 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第1期83-92,共10页
Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of... Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of energy management.An improved multi-objective local mutation adaptive quantum particle swarm optimization(MO-LM-AQPSO)algorithm is adopted to obtain the Pareto frontier of consumer satisfaction and the benefit of power generation side.The optimal solution of the non-dominant solution is selected with introducing the power shortage and power loss to maximize the benefit of power generation side,and its reasonableness is verified by numerical simulation.Then,translational load and time-of-use electricity price incentive mechanism are considered and reasonable peak-valley price ratio is adopted to guide users to actively participate in demand response.The simulation results show that the reasonable incentive mechanism increases the benefit of power generation side and improves the consumer satisfaction.Also the mechanism maximizes the utilization of renewable energy and effectively reduces the operation cost of the battery. 展开更多
关键词 micro-grid system consumer satisfaction benefit of power generation side time-of-use electricity price multi-objective local mutation adaptive quantum particle swarm optimization(MO-LM-AQPSO)
在线阅读 下载PDF
Radio resource management in energy harvesting cooperative cognitive UAV assisted IoT networks:A multi-objective approach
20
作者 Muhammad Rashid Ramzan Muhammad Naeem +2 位作者 Omer Chughtai Waleed Ejaz Mohammad Altaf 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1088-1102,共15页
Cooperative communication through energy harvested relays in Cognitive Internet of Things(CIoT)has been envisioned as a promising solution to support massive connectivity of Cognitive Radio(CR)based IoT devices and to... Cooperative communication through energy harvested relays in Cognitive Internet of Things(CIoT)has been envisioned as a promising solution to support massive connectivity of Cognitive Radio(CR)based IoT devices and to achieve maximal energy and spectral efficiency in upcoming wireless systems.In this work,a cooperative CIoT system is contemplated,in which a source acts as a satellite,communicating with multiple CIoT devices over numerous relays.Unmanned Aerial Vehicles(UAVs)are used as relays,which are equipped with onboard Energy Harvesting(EH)facility.We adopted a Power Splitting(PS)method for EH at relays,which are harvested from the Radio frequency(RF)signals.In conjunction with this,the Decode and Forward(DF)relaying strategy is used at UAV relays to transmit the messages from the satellite source to the CIoT devices.We developed a Multi-Objective Optimization(MOO)framework for joint optimization of source power allocation,CIoT device selection,UAV relay assignment,and PS ratio determination.We formulated three objectives:maximizing the sum rate and the number of admitted CIoT in the network and minimizing the carbon dioxide emission.The MOO formulation is a Mixed-Integer Non-Linear Programming(MINLP)problem,which is challenging to solve.To address the joint optimization problem for an epsilon optimal solution,an Outer Approximation Algorithm(OAA)is proposed with reduced complexity.The simulation results show that the proposed OAA is superior in terms of CIoT device selection and network utility maximization when compared to those obtained using the Nonlinear Optimization with Mesh Adaptive Direct-search(NOMAD)algorithm. 展开更多
关键词 Cooperative communication Energy harvesting power splitting Unmanned aerial vehicles Cognitive radio Internet of things multi-objective optimization Relay assignment power allocation
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部