This paper consolidates the activity of design and fabrication of 2.9 - 4.32 GHz, 4.3 - 6.42 GHz, and 6.4 - 8.4 GHz filter bank. Novel compact microstrip bandpass filters with stub-loaded multi-mode resonators are pro...This paper consolidates the activity of design and fabrication of 2.9 - 4.32 GHz, 4.3 - 6.42 GHz, and 6.4 - 8.4 GHz filter bank. Novel compact microstrip bandpass filters with stub-loaded multi-mode resonators are proposed. Simulated results indicate that all the filters exhibit insertion losses less than 1.5 dB with passband ripples of 1 dB and sharp attenuations of above 40 dB in their stopbands. The maximums of input and output VSWRs are 1.742 and 1.734, respectively. Due to fabrication error, the initial measured passbands show frequency shifts and insertion losses in upper passbands deteriorate seriously. After tuning of the filter bank, measured results imply that the input and output VSWRs are found lower than 2.135 and 2.187, and the insertion loss in 1 dB bandwidth is less than 2.52 dB. Filter bank has a sharp skirt and out-of-band rejection levels approaching to 40 dB in all desired stopbands except at the frequencies near 2f0.展开更多
We investigate the angular-dependent multi-mode resonance frequencies in CoZr magnetic thin films with a rotatable stripe domain structure.A variable range of multi-mode resonance frequencies from 1.86 GHz to 4.80 GHz...We investigate the angular-dependent multi-mode resonance frequencies in CoZr magnetic thin films with a rotatable stripe domain structure.A variable range of multi-mode resonance frequencies from 1.86 GHz to 4.80 GHz is achieved by pre-magnetizing the CoZr films along different azimuth directions,which can be ascribed to the competition between the uniaxial anisotropy caused by the oblique deposition and the rotatable anisotropy induced by the rotatable stripe domain.Furthermore,the regulating range of resonance frequency for the CoZr film can be adjusted by changing the oblique deposition angle.Our results might be beneficial for the applications of magnetic thin films in microwave devices.展开更多
Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coup...Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coupled micromechanical resonators,highlighting the latest advancements in four key areas:internal resonance,synchronization,frequency combs,and mode localization.The origin,development,and potential applications of each of these dynamic phenomena within mode-coupled micromechanical systems are investigated,with the goal of inspiring new ideas and directions for researchers in this field.展开更多
Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature...Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature phosphorescence(RTP)detection in single system due to the formidable synthesis.Herein,a multifunctional composite of Eu&CDs@p RHO has been designed by co-assembly strategy and prepared via a facile calcination and impregnation treatment.Eu&CDs@p RHO exhibits intense fluorescence(FL)and RTP coming from two individual luminous centers,Eu3+in the free pores and CDs in the interrupted structure of RHO zeolite.Unique four-mode color outputs including pink(Eu^(3+),ex.254 nm),light violet(CDs,ex.365 nm),blue(CDs,254 nm off),and green(CDs,365 nm off)could be realized,on the basis of it,a preliminary application of advanced information encoding has been demonstrated.Given the free pores of matrix and stable RTP in water of confined CDs,a visual RTP detection of Fe^(3+)ions is achieved with the detection limit as low as 9.8μmol/L.This work has opened up a new perspective for the strategic amalgamation of luminous vips with porous zeolite to construct the advanced functional materials.展开更多
The excellent mechanical properties make graphene promising for realizing nanomechanical resonators with high resonant frequencies,large quality factors,strong nonlinearities,and the capability to efectively interface...The excellent mechanical properties make graphene promising for realizing nanomechanical resonators with high resonant frequencies,large quality factors,strong nonlinearities,and the capability to efectively interface with various physical systems.Equipped with gate electrodes,it has been demonstrated that these exceptional device properties can be electrically manipulated,leading to a variety of nanomechanical/acoustic applications.Here,we review the recent progress of graphene nanomechanical resonators with a focus on their electrical tunability.First,we provide an overview of diferent graphene nanomechanical resonators,including their device structures,fabrication methods,and measurement setups.Then,the key mechanical properties of these devices,for example,resonant frequencies,nonlinearities,dissipations,and mode coupling mechanisms,are discussed,with their behaviors upon electrical gating being highlighted.After that,various potential classical/quantum applications based on these graphene nanomechanical resonators are reviewed.Finally,we briefy discuss challenges and opportunities in this feld to ofer future prospects for the ongoing studies on graphene nanomechanical resonators.展开更多
Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials prov...Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials provide a promising prospect for imaging-guided precision therapy.Considering that tumor-derived alkaline phosphatase(ALP)is over-expressed in metastatic PCa,it makes a great chance to develop a theranostics system with ALP responsive in the TME.Herein,an ALP-responsive aggregationinduced emission luminogens(AIEgens)nanoprobe AMNF self-assembly was designed for enhancing the diagnosis and treatment of metastatic PCa.The nanoprobe exhibited self-aggregation in the presence of ALP resulted in aggregation-induced fluorescence,and enhanced accumulation and prolonged retention period at the tumor site.In terms of detection,the fluorescence(FL)/computed tomography(CT)/magnetic resonance(MR)multi-mode imaging effect of nanoprobe was significantly improved post-aggregation,enabling precise diagnosis through the amalgamation of multiple imaging modes.Enhanced CT/MR imaging can achieve assist preoperative tumor diagnosis,and enhanced FL imaging technology can achieve“intraoperative visual navigation”,showing its potential application value in clinical tumor detection and surgical guidance.In terms of treatment,AMNF showed strong absorption in the near infrared region after aggregation,which improved the photothermal treatment effect.Overall,our work developed an effective aggregation-enhanced theranostic strategy for ALP-related cancers.展开更多
Acute Bilirubin Encephalopathy(ABE)is a significant threat to neonates and it leads to disability and high mortality rates.Detecting and treating ABE promptly is important to prevent further complications and long-ter...Acute Bilirubin Encephalopathy(ABE)is a significant threat to neonates and it leads to disability and high mortality rates.Detecting and treating ABE promptly is important to prevent further complications and long-term issues.Recent studies have explored ABE diagnosis.However,they often face limitations in classification due to reliance on a single modality of Magnetic Resonance Imaging(MRI).To tackle this problem,the authors propose a Tri-M2MT model for precise ABE detection by using tri-modality MRI scans.The scans include T1-weighted imaging(T1WI),T2-weighted imaging(T2WI),and apparent diffusion coefficient maps to get indepth information.Initially,the tri-modality MRI scans are collected and preprocessesed by using an Advanced Gaussian Filter for noise reduction and Z-score normalisation for data standardisation.An Advanced Capsule Network was utilised to extract relevant features by using Snake Optimization Algorithm to select optimal features based on feature correlation with the aim of minimising complexity and enhancing detection accuracy.Furthermore,a multi-transformer approach was used for feature fusion and identify feature correlations effectively.Finally,accurate ABE diagnosis is achieved through the utilisation of a SoftMax layer.The performance of the proposed Tri-M2MT model is evaluated across various metrics,including accuracy,specificity,sensitivity,F1-score,and ROC curve analysis,and the proposed methodology provides better performance compared to existing methodologies.展开更多
Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power li...Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms.展开更多
Enhancing the vibration resistance of micro-electro-mechanical systems(MEMS)resonators in complex environments is a critical issue that urgently needs to be addressed.This paper presents a chip-scale locally resonant ...Enhancing the vibration resistance of micro-electro-mechanical systems(MEMS)resonators in complex environments is a critical issue that urgently needs to be addressed.This paper presents a chip-scale locally resonant phononic crystal(LRPnC)plate based on a folded helical beam structure.Through finite element simulation and theoretical analysis,the bandgap characteristics and vibration suppression mechanisms of this structure were thoroughly investigated.The results show that the structure exhibits a complete bandgap in the frequency range of 9.867-14.605 kHz,and the bandgap can be effectively tuned by adjusting the structural parameters.Based on this,the influence of the number of unit cell layers on the vibration reduction performance was further studied,and a finite periodic LRPnC plate was constructed.Numerical studies have shown that the LRPnC plate can achieve more than-30 dB of vibration attenuation within the bandgap and effectively suppress y-direction coupling vibrations caused by x-direction propagating waves.In addition,its chip-scale size and planar structure design provide new ideas and methods for the engineering application of phononic crystal technology in the field of MEMS vibration isolation.展开更多
Passive Kerr fiber-loop resonators driven by coherent lasers exhibit a variety of nonlinear states,including modulation instability(MI),localized dissipative structures(solitons),and chaos.Although these transitions h...Passive Kerr fiber-loop resonators driven by coherent lasers exhibit a variety of nonlinear states,including modulation instability(MI),localized dissipative structures(solitons),and chaos.Although these transitions have been predicted theoretically,experimental real-time observations are rare in coherently driven Kerr fiber-loop resonators.In this study,we observed real-time transitions between the predicted nonlinear states by sweeping detuning both positively and negatively.We discovered the transition path between nonlinear states depending on the direction of detuning,providing new insights into the nonlinear dynamics.Our findings directly validate theoretical predictions and offer potential implications for future nonlinear optical applications.展开更多
As an ultrathin wide-bandgap(WBG)material,CaNb_(2)O_(6)exhibits excellent optical and electrical properties.Particularly,its highly asymmetric crystal structure provides new opportunities for designing novel nanodevic...As an ultrathin wide-bandgap(WBG)material,CaNb_(2)O_(6)exhibits excellent optical and electrical properties.Particularly,its highly asymmetric crystal structure provides new opportunities for designing novel nanodevices with directional functionality.However,due to the significant challenges in applying conventional techniques to nanoscale samples,the in-plane anisotropy of CaNb_(2)O_(6)has still remained unexplored.Here,we leverage the resonant nanoelectromechanical systems(NEMS)platform to successfully quantify both the mechanical and thermal anisotropies in such an ultrathin WBG crystal.Specifically,by measuring the dynamic response in both spectral and spatial domains,we determine the anisotropic Young’s modulus of CaNb_(2)O_(6)as E_(Y(a))=70.42 GPa and EY(b)=116.2 GPa.By further expanding this technique to cryogenic temperatures,we unveil the anisotropy in thermal expansion coefficients as α_((a))=13.4 ppm·K^(-1),α(b)=2.9 ppm·K^(-1).Interestingly,through thermal strain engineering,we successfully modulate the mode sequence and achieve a crossing of(1×2)-(2×1)modes with perfect degeneracy.Our study provides guidelines for future CaNb_(2)O_(6)nanodevices with additional degrees of freedom and new device functions.展开更多
Aging,as an inherent stage of life processes,has always been a core research focus in life sciences.Current studies confirm that the accumulation of intracellular molecular damage is a key driver of aging.As protectiv...Aging,as an inherent stage of life processes,has always been a core research focus in life sciences.Current studies confirm that the accumulation of intracellular molecular damage is a key driver of aging.As protective structures at chromosome ends,telomeres exhibit direct correlations between their length and stability and cellular aging processes,disease risks,and lifespan.This article systematically reviews the structural functions of telomeres and their relationship with aging,with particular emphasis on telomere rejuvenation strategies based on electromagnetic radiation techniques.Key experimental approaches include Gavich's mitotic radiation,Composite Wave Resonator(CWRT),and modern telomere length intervention trials.By synthesizing the latest domestic and international research findings,this paper analyzes the feasibility and limitations of these technologies while exploring their potential applications in anti-aging research,providing theoretical references for future studies.展开更多
A broadband tunable acoustic metasurface(BTAM)is conceived with Helmholtz resonators(HRs).The tunability of HRs’neck enables precise control over the phase shift of the unit cell.Through careful arrangement of unit c...A broadband tunable acoustic metasurface(BTAM)is conceived with Helmholtz resonators(HRs).The tunability of HRs’neck enables precise control over the phase shift of the unit cell.Through careful arrangement of unit cells,the BTAMs are engineered to exhibit various phase differences,thereby inducing anomalous reflections and acoustic focusing.Numerical simulations demonstrate the BTAM’s remarkable efficacy in manipulating the angle of reflection wave and achieving wave focusing across a broadband frequency range.Experimental investigations of the phase shift and anomalous reflection further validate the design of metasurface.This work contributes to the fields of broadband and tunable acoustic wave manipulation and provides a flexible and efficient approach for acoustic control devices.展开更多
Microring resonators(MRRs)are extensively utilized in photonic chips for generating quantum light sources and enabling high-efficiency nonlinear frequency conversion.However,conventional microrings are typically optim...Microring resonators(MRRs)are extensively utilized in photonic chips for generating quantum light sources and enabling high-efficiency nonlinear frequency conversion.However,conventional microrings are typically optimized for a single specific function,limiting their versatility in multifunctional applications.In this work,we propose a reconfigurable microring resonator architecture designed to accommodate diverse application requirements.By integrating a cascaded Mach–Zehnder interferometer(MZI)as the microring coupler,the design enables independent control of the quality factors for pump,signal and idler photons through two tunable phase shifters.This capability allows for dynamic tuning and optimization of critical performance parameters,including photon-pair generation rate(PGR),spectral purity and single photon heralding efficiency(HE).The proposed structure is implemented on a silicon photonic chip,and experimental results exhibit a wide range of tunability for these parameters,with excellent agreement with theoretical predictions.This flexible and multi-functional design offers a promising pathway for high-performance,highly integrated on-chip quantum information processing systems.展开更多
Photonic hardware implementation of spiking neural networks,regarded as a viable potential paradigm for ultra-high speed and energy efficiency computing,leverages spatiotemporal spike encoding and event-driven dynamic...Photonic hardware implementation of spiking neural networks,regarded as a viable potential paradigm for ultra-high speed and energy efficiency computing,leverages spatiotemporal spike encoding and event-driven dynamics to simulate brain-like parallel information processing.Silicon-based microring resonators(MRRs)offer a power efficiency and ultrahigh flexibility scheme to mimic biological neuron,however,their substantial potential for integrated neuromorphic systems remains limited by insufficient exploration of MRR-based spiking digital and analog computation.Here,an all-optical neural dynamics framework,encompassing both excitatory and inhibitory behaviors based on multi-wavelength auxiliary and competition mechanism in an MRR,is proposed numerically.Leveraging multi-wavelength resonance characteristics and wavelength division multiplexing(WDM)technology,a single MRR implements the five fundamental optical digital logic gates:AND,OR,NOT,XNOR and XOR.Besides,the cascading capabilities of MRR-based spiking neurons are demonstrated through multi-level digital logic gates including NAND,NOR,4-input AND,8-input AND,and a full adder,emphasizing their promise for large-scale digital logic networks.Furthermore,an exemplary binary convolution has been achieved by utilizing the proposed MRR-based digital logic operation,illustrating the potential of all-optical binary convolution to compute image gradient magnitudes for edge detection.Such passive photonic neurons and networks promise access to the high transmission speed and low power consumption inherent to optical systems,thus enabling direct hardware-algorithm co-computation and accelerating artificial intelligence.展开更多
Two-dimensional phononic crystal(PnC)slabs have shown advantages in enhancing the quality factors Q of piezoelectric laterally vibrating resonators(LVRs)through topology optimization.However,the narrow geometries of m...Two-dimensional phononic crystal(PnC)slabs have shown advantages in enhancing the quality factors Q of piezoelectric laterally vibrating resonators(LVRs)through topology optimization.However,the narrow geometries of most topology-optimized silicon–air 2D PnC slabs face significant fabrication challenges owing to restricted etching precision,and the anisotropic nature of silicon is frequently overlooked.To address these issues,this study employs the finite element method with appropriate discretization numbers and the genetic algorithm to optimize the structures and geometries of 2D silicon–air PnC slabs.The optimized square-lattice PnC slabs,featuring a rounded-cross structure oriented along the`110e directions of silicon,achieve an impressive relative bandgap(RBG)width of 82.2%for in-plane modes.When further tilted by 15° from the (100) directions within the(001)plane,the optimal RBG width is expanded to 91.4%.We fabricate and characterize thin-film piezoelectric-on-silicon LVRs,with or without optimized 2D PnC slabs.The presence of PnC slabs around anchors increases the series and parallel quality factors Q_(s) and Q_(p) from 2240 to 7118 and from 2237 to 7501,respectively,with the PnC slabs oriented along the`110e directions of silicon.展开更多
To enhance the quality factor and sensitivity of refractive index sensors,a feedback waveguide slot grating micro-ring resonator was proposed.An air-hole grating structure was introduced based on the slot micro-ring,u...To enhance the quality factor and sensitivity of refractive index sensors,a feedback waveguide slot grating micro-ring resonator was proposed.An air-hole grating structure was introduced based on the slot micro-ring,utilizing the reflection of the grating to achieve the electromagnetic-like induced transparency effect at different wavelengths.The high slope characteristics of the EIT-like effect enabled a higher quality factor and sensitivity.The transmission principle of the structure was analyzed using the transmission matrix method,and the transmission spectrum and mode field distribution were simulated using the finite-difference time-domain(FDTD)method,and the device structure parameters were adjusted for optimization.Simulation results show that the proposed structure achieves an EIT-like effect with a quality factor of 59267.5.In the analysis of refractive index sensing characteristics,the structure exhibits a sensitivity of 408.57 nm/RIU and a detection limit of 6.23×10^(-5) RIU.Therefore,the proposed structure achieved both a high quality factor and refractive index sensitivity,demonstrating excellent sensing performance for applications in environmental monitoring,biomedical fields,and other areas with broad market potential.展开更多
The fused quartz hemispherical resonator is the core component of the hemispherical resonator gyroscope.It features a complex shape and is Made from a Material that is difficult to process.Scratches are easily introdu...The fused quartz hemispherical resonator is the core component of the hemispherical resonator gyroscope.It features a complex shape and is Made from a Material that is difficult to process.Scratches are easily introduced during grinding,potentially degrading the mass-stiffness-damping symmetry;however,the underlying mechanisms of this influence have not been fully understood.This paper aims to investigate the effects of scratch defects on the frequency splitting and quality factor of the hemispherical resonator.First,finite element models of the hemispherical resonator with scratches are established.Then,the effects of the mass-stiffness factor,as well as the latitude and length of the scratches,on frequency splitting are analyzed.Furthermore,the impacts of latitude,length,and the first four harmonics of the unbalanced mass caused by scratches on thermoelastic damping and anchor loss are examined.Simulation results indicate that scratches above 55°latitude cause frequency splitting solely due to stiffness changes.Frequency splitting caused by scratches of the same size on the inherent rigidity shaft at the rim is approximately 50%of that near the transition fillet.Frequency splitting varies linearly with the volume of material removed by scratches.Scratches have little effect on thermoelastic damping.The first three harmonics of the unbalanced mass due to scratches at the rim are the primary contributors to anchor loss.Finally,focused ion beam trimming experiments are conducted at different locations on the hemispherical resonator.The trends observed in the experimental results are consistent with the simulation results.This work provides guidance for evaluating the impact of scratches on the performance of hemispherical resonators and for developing appropriate trimming processes.展开更多
The topic of improving the mechanical stability of external cavity diode lasers(ECDLs)has recently attracted widespread attention and interest.The use of corner-cube-array(CCA)-based resonators provides a potential so...The topic of improving the mechanical stability of external cavity diode lasers(ECDLs)has recently attracted widespread attention and interest.The use of corner-cube-array(CCA)-based resonators provides a potential solution for this purpose,although continuous oscillation at super large incident angle remains challenging.In this work,we employ the CCA resonator to generate continuous oscillation within±20°angular misalignment of cavity mirror in experiment.On the basis of retroreflection theory,the retroreflectivity of a CCA is analyzed by using optical simulation software.Notably,the experiment verifies the advantage of using a CCA over a plane mirror in laser resonator,thereby providing a promising approach for ECDLs.The threshold characteristic curves measured at different incident angles in the experiment verify that the CCA possesses an obvious anti-angle misalignment performance.This research introduces an alternative solution of using CCA resonator instead of parallel plane cavity,thereby realizing an adjustment-free ECDL with enhanced mechanical stability.展开更多
Accurate detection of dimethyl methylphosphonate(DMMP),a simulant for chemical warfare agents,is vital for both public safety and military defense.However,conventional detection methods suffer from low selectivity,owi...Accurate detection of dimethyl methylphosphonate(DMMP),a simulant for chemical warfare agents,is vital for both public safety and military defense.However,conventional detection methods suffer from low selectivity,owing to interference from structurally similar compounds.In this study,we present a highly sensitive and selective gas sensor utilizing a solid-mounted film bulk acoustic resonator based on carbon nanotubes functionalized with hexafluoroisopropanol(HFiP)to enhance DMMP detection.This approach leverages the strong hydrogen bonding between HFiP and DMMP molecules to significantly improve the sensor’s adsorption capacity and selectivity.To further refine selectivity and at the same time solve the cross-sensitivity problem of sensitive membranes,we introduce a virtual sensor array design,generated by modulating the input power to the resonator,which enables the sensor to operate in multiple response modes across varying vibrational amplitudes.These multimodal responses are subjected to linear discriminant analysis,allowing precise differentiation of DMMP from other volatile organic compounds such as tributyl phosphate and dimethyl phthalate.Our results demonstrate superior performance in terms of both sensitivity and selectivity,offering a robust solution for detecting low-concentration DMMP in complex environments.展开更多
文摘This paper consolidates the activity of design and fabrication of 2.9 - 4.32 GHz, 4.3 - 6.42 GHz, and 6.4 - 8.4 GHz filter bank. Novel compact microstrip bandpass filters with stub-loaded multi-mode resonators are proposed. Simulated results indicate that all the filters exhibit insertion losses less than 1.5 dB with passband ripples of 1 dB and sharp attenuations of above 40 dB in their stopbands. The maximums of input and output VSWRs are 1.742 and 1.734, respectively. Due to fabrication error, the initial measured passbands show frequency shifts and insertion losses in upper passbands deteriorate seriously. After tuning of the filter bank, measured results imply that the input and output VSWRs are found lower than 2.135 and 2.187, and the insertion loss in 1 dB bandwidth is less than 2.52 dB. Filter bank has a sharp skirt and out-of-band rejection levels approaching to 40 dB in all desired stopbands except at the frequencies near 2f0.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51871117 and 51671099)the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT-16R35)the Gansu Provincial Science Foundation for Distinguished Young Scholars,China(Grant No.20JR10RA649).
文摘We investigate the angular-dependent multi-mode resonance frequencies in CoZr magnetic thin films with a rotatable stripe domain structure.A variable range of multi-mode resonance frequencies from 1.86 GHz to 4.80 GHz is achieved by pre-magnetizing the CoZr films along different azimuth directions,which can be ascribed to the competition between the uniaxial anisotropy caused by the oblique deposition and the rotatable anisotropy induced by the rotatable stripe domain.Furthermore,the regulating range of resonance frequency for the CoZr film can be adjusted by changing the oblique deposition angle.Our results might be beneficial for the applications of magnetic thin films in microwave devices.
基金supported by the National Key Research and Development Program of China(No.2022YFB3203600)the National Natural Science Foundation of China(Nos.12202355,12132013,and 12172323)the Zhejiang Provincial Natural Science Foundation of China(No.LZ22A020003)。
文摘Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coupled micromechanical resonators,highlighting the latest advancements in four key areas:internal resonance,synchronization,frequency combs,and mode localization.The origin,development,and potential applications of each of these dynamic phenomena within mode-coupled micromechanical systems are investigated,with the goal of inspiring new ideas and directions for researchers in this field.
基金supported by the National Natural Science Foundation of China(No.22288101)the 111 Project(No.B17020)。
文摘Carbon dots(CDs)-based composites have shown impressive performance in fields of information encryption and sensing,however,a great challenge is to simultaneously implement multi-mode luminescence and room-temperature phosphorescence(RTP)detection in single system due to the formidable synthesis.Herein,a multifunctional composite of Eu&CDs@p RHO has been designed by co-assembly strategy and prepared via a facile calcination and impregnation treatment.Eu&CDs@p RHO exhibits intense fluorescence(FL)and RTP coming from two individual luminous centers,Eu3+in the free pores and CDs in the interrupted structure of RHO zeolite.Unique four-mode color outputs including pink(Eu^(3+),ex.254 nm),light violet(CDs,ex.365 nm),blue(CDs,254 nm off),and green(CDs,365 nm off)could be realized,on the basis of it,a preliminary application of advanced information encoding has been demonstrated.Given the free pores of matrix and stable RTP in water of confined CDs,a visual RTP detection of Fe^(3+)ions is achieved with the detection limit as low as 9.8μmol/L.This work has opened up a new perspective for the strategic amalgamation of luminous vips with porous zeolite to construct the advanced functional materials.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20240123)the National Key Research and Development Program of China(Grant No.2022YFA1405900)the National Natural Science Foundation of China(Grant Nos.12274397,12274401,and 12034018)。
文摘The excellent mechanical properties make graphene promising for realizing nanomechanical resonators with high resonant frequencies,large quality factors,strong nonlinearities,and the capability to efectively interface with various physical systems.Equipped with gate electrodes,it has been demonstrated that these exceptional device properties can be electrically manipulated,leading to a variety of nanomechanical/acoustic applications.Here,we review the recent progress of graphene nanomechanical resonators with a focus on their electrical tunability.First,we provide an overview of diferent graphene nanomechanical resonators,including their device structures,fabrication methods,and measurement setups.Then,the key mechanical properties of these devices,for example,resonant frequencies,nonlinearities,dissipations,and mode coupling mechanisms,are discussed,with their behaviors upon electrical gating being highlighted.After that,various potential classical/quantum applications based on these graphene nanomechanical resonators are reviewed.Finally,we briefy discuss challenges and opportunities in this feld to ofer future prospects for the ongoing studies on graphene nanomechanical resonators.
基金supported by Natural Science Foundation of Jilin Province(No.SKL202302002)Key Research and Development project of Jilin Provincial Science and Technology Department(No.20210204142YY)+2 种基金The Science and Technology Development Program of Jilin Province(No.2020122256JC)Beijing Kechuang Medical Development Foundation Fund of China(No.KC2023-JX-0186BQ079)Talent Reserve Program(TRP),the First Hospital of Jilin University(No.JDYY-TRP-2024007)。
文摘Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials provide a promising prospect for imaging-guided precision therapy.Considering that tumor-derived alkaline phosphatase(ALP)is over-expressed in metastatic PCa,it makes a great chance to develop a theranostics system with ALP responsive in the TME.Herein,an ALP-responsive aggregationinduced emission luminogens(AIEgens)nanoprobe AMNF self-assembly was designed for enhancing the diagnosis and treatment of metastatic PCa.The nanoprobe exhibited self-aggregation in the presence of ALP resulted in aggregation-induced fluorescence,and enhanced accumulation and prolonged retention period at the tumor site.In terms of detection,the fluorescence(FL)/computed tomography(CT)/magnetic resonance(MR)multi-mode imaging effect of nanoprobe was significantly improved post-aggregation,enabling precise diagnosis through the amalgamation of multiple imaging modes.Enhanced CT/MR imaging can achieve assist preoperative tumor diagnosis,and enhanced FL imaging technology can achieve“intraoperative visual navigation”,showing its potential application value in clinical tumor detection and surgical guidance.In terms of treatment,AMNF showed strong absorption in the near infrared region after aggregation,which improved the photothermal treatment effect.Overall,our work developed an effective aggregation-enhanced theranostic strategy for ALP-related cancers.
文摘Acute Bilirubin Encephalopathy(ABE)is a significant threat to neonates and it leads to disability and high mortality rates.Detecting and treating ABE promptly is important to prevent further complications and long-term issues.Recent studies have explored ABE diagnosis.However,they often face limitations in classification due to reliance on a single modality of Magnetic Resonance Imaging(MRI).To tackle this problem,the authors propose a Tri-M2MT model for precise ABE detection by using tri-modality MRI scans.The scans include T1-weighted imaging(T1WI),T2-weighted imaging(T2WI),and apparent diffusion coefficient maps to get indepth information.Initially,the tri-modality MRI scans are collected and preprocessesed by using an Advanced Gaussian Filter for noise reduction and Z-score normalisation for data standardisation.An Advanced Capsule Network was utilised to extract relevant features by using Snake Optimization Algorithm to select optimal features based on feature correlation with the aim of minimising complexity and enhancing detection accuracy.Furthermore,a multi-transformer approach was used for feature fusion and identify feature correlations effectively.Finally,accurate ABE diagnosis is achieved through the utilisation of a SoftMax layer.The performance of the proposed Tri-M2MT model is evaluated across various metrics,including accuracy,specificity,sensitivity,F1-score,and ROC curve analysis,and the proposed methodology provides better performance compared to existing methodologies.
基金supported by the Science and Technology Project of State Grid Corporation of China under grant 52094021N010(5400-202199534A-0-5-ZN)。
文摘Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms.
基金supported by National Natural Science Foundation of China(No.62271262).
文摘Enhancing the vibration resistance of micro-electro-mechanical systems(MEMS)resonators in complex environments is a critical issue that urgently needs to be addressed.This paper presents a chip-scale locally resonant phononic crystal(LRPnC)plate based on a folded helical beam structure.Through finite element simulation and theoretical analysis,the bandgap characteristics and vibration suppression mechanisms of this structure were thoroughly investigated.The results show that the structure exhibits a complete bandgap in the frequency range of 9.867-14.605 kHz,and the bandgap can be effectively tuned by adjusting the structural parameters.Based on this,the influence of the number of unit cell layers on the vibration reduction performance was further studied,and a finite periodic LRPnC plate was constructed.Numerical studies have shown that the LRPnC plate can achieve more than-30 dB of vibration attenuation within the bandgap and effectively suppress y-direction coupling vibrations caused by x-direction propagating waves.In addition,its chip-scale size and planar structure design provide new ideas and methods for the engineering application of phononic crystal technology in the field of MEMS vibration isolation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12475006 and 12004309)the Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.22JSQ036)。
文摘Passive Kerr fiber-loop resonators driven by coherent lasers exhibit a variety of nonlinear states,including modulation instability(MI),localized dissipative structures(solitons),and chaos.Although these transitions have been predicted theoretically,experimental real-time observations are rare in coherently driven Kerr fiber-loop resonators.In this study,we observed real-time transitions between the predicted nonlinear states by sweeping detuning both positively and negatively.We discovered the transition path between nonlinear states depending on the direction of detuning,providing new insights into the nonlinear dynamics.Our findings directly validate theoretical predictions and offer potential implications for future nonlinear optical applications.
基金supported by the National Key R&D Program of China(2022YFB3203600)the National Natural Science Foundation of China(Grant Nos.T2325007,62450003,62401104,62404029,U21A20459,62250073,61774029,and U23A20570)+1 种基金the China Postdoctoral Science Foundation(Grant Nos.GZB20230107 and GZB20240109)the Natural Science Foundation of Sichuan Province(Grant Nos.2024NSFSC1430 and 2024NSFSC1408).
文摘As an ultrathin wide-bandgap(WBG)material,CaNb_(2)O_(6)exhibits excellent optical and electrical properties.Particularly,its highly asymmetric crystal structure provides new opportunities for designing novel nanodevices with directional functionality.However,due to the significant challenges in applying conventional techniques to nanoscale samples,the in-plane anisotropy of CaNb_(2)O_(6)has still remained unexplored.Here,we leverage the resonant nanoelectromechanical systems(NEMS)platform to successfully quantify both the mechanical and thermal anisotropies in such an ultrathin WBG crystal.Specifically,by measuring the dynamic response in both spectral and spatial domains,we determine the anisotropic Young’s modulus of CaNb_(2)O_(6)as E_(Y(a))=70.42 GPa and EY(b)=116.2 GPa.By further expanding this technique to cryogenic temperatures,we unveil the anisotropy in thermal expansion coefficients as α_((a))=13.4 ppm·K^(-1),α(b)=2.9 ppm·K^(-1).Interestingly,through thermal strain engineering,we successfully modulate the mode sequence and achieve a crossing of(1×2)-(2×1)modes with perfect degeneracy.Our study provides guidelines for future CaNb_(2)O_(6)nanodevices with additional degrees of freedom and new device functions.
文摘Aging,as an inherent stage of life processes,has always been a core research focus in life sciences.Current studies confirm that the accumulation of intracellular molecular damage is a key driver of aging.As protective structures at chromosome ends,telomeres exhibit direct correlations between their length and stability and cellular aging processes,disease risks,and lifespan.This article systematically reviews the structural functions of telomeres and their relationship with aging,with particular emphasis on telomere rejuvenation strategies based on electromagnetic radiation techniques.Key experimental approaches include Gavich's mitotic radiation,Composite Wave Resonator(CWRT),and modern telomere length intervention trials.By synthesizing the latest domestic and international research findings,this paper analyzes the feasibility and limitations of these technologies while exploring their potential applications in anti-aging research,providing theoretical references for future studies.
基金supported by the National Natural Science Foundation of China(Grant Nos.11991030,11991031 and 12202054)Aeronautical Science Foundation(Grant No.ASFC20230042072010).
文摘A broadband tunable acoustic metasurface(BTAM)is conceived with Helmholtz resonators(HRs).The tunability of HRs’neck enables precise control over the phase shift of the unit cell.Through careful arrangement of unit cells,the BTAMs are engineered to exhibit various phase differences,thereby inducing anomalous reflections and acoustic focusing.Numerical simulations demonstrate the BTAM’s remarkable efficacy in manipulating the angle of reflection wave and achieving wave focusing across a broadband frequency range.Experimental investigations of the phase shift and anomalous reflection further validate the design of metasurface.This work contributes to the fields of broadband and tunable acoustic wave manipulation and provides a flexible and efficient approach for acoustic control devices.
基金Project supported by the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301500)the National Natural Science Foundation of China(Grant No.62105366)。
文摘Microring resonators(MRRs)are extensively utilized in photonic chips for generating quantum light sources and enabling high-efficiency nonlinear frequency conversion.However,conventional microrings are typically optimized for a single specific function,limiting their versatility in multifunctional applications.In this work,we propose a reconfigurable microring resonator architecture designed to accommodate diverse application requirements.By integrating a cascaded Mach–Zehnder interferometer(MZI)as the microring coupler,the design enables independent control of the quality factors for pump,signal and idler photons through two tunable phase shifters.This capability allows for dynamic tuning and optimization of critical performance parameters,including photon-pair generation rate(PGR),spectral purity and single photon heralding efficiency(HE).The proposed structure is implemented on a silicon photonic chip,and experimental results exhibit a wide range of tunability for these parameters,with excellent agreement with theoretical predictions.This flexible and multi-functional design offers a promising pathway for high-performance,highly integrated on-chip quantum information processing systems.
基金supports from National Natural Science Foundation of China(62171087,62475036).
文摘Photonic hardware implementation of spiking neural networks,regarded as a viable potential paradigm for ultra-high speed and energy efficiency computing,leverages spatiotemporal spike encoding and event-driven dynamics to simulate brain-like parallel information processing.Silicon-based microring resonators(MRRs)offer a power efficiency and ultrahigh flexibility scheme to mimic biological neuron,however,their substantial potential for integrated neuromorphic systems remains limited by insufficient exploration of MRR-based spiking digital and analog computation.Here,an all-optical neural dynamics framework,encompassing both excitatory and inhibitory behaviors based on multi-wavelength auxiliary and competition mechanism in an MRR,is proposed numerically.Leveraging multi-wavelength resonance characteristics and wavelength division multiplexing(WDM)technology,a single MRR implements the five fundamental optical digital logic gates:AND,OR,NOT,XNOR and XOR.Besides,the cascading capabilities of MRR-based spiking neurons are demonstrated through multi-level digital logic gates including NAND,NOR,4-input AND,8-input AND,and a full adder,emphasizing their promise for large-scale digital logic networks.Furthermore,an exemplary binary convolution has been achieved by utilizing the proposed MRR-based digital logic operation,illustrating the potential of all-optical binary convolution to compute image gradient magnitudes for edge detection.Such passive photonic neurons and networks promise access to the high transmission speed and low power consumption inherent to optical systems,thus enabling direct hardware-algorithm co-computation and accelerating artificial intelligence.
基金supported by the National Natural Science Foundation of China(Grant No.52175552)the National Key RD Program of China(Grant Nos.2022YFB3205400 and 2022YFB3204300).
文摘Two-dimensional phononic crystal(PnC)slabs have shown advantages in enhancing the quality factors Q of piezoelectric laterally vibrating resonators(LVRs)through topology optimization.However,the narrow geometries of most topology-optimized silicon–air 2D PnC slabs face significant fabrication challenges owing to restricted etching precision,and the anisotropic nature of silicon is frequently overlooked.To address these issues,this study employs the finite element method with appropriate discretization numbers and the genetic algorithm to optimize the structures and geometries of 2D silicon–air PnC slabs.The optimized square-lattice PnC slabs,featuring a rounded-cross structure oriented along the`110e directions of silicon,achieve an impressive relative bandgap(RBG)width of 82.2%for in-plane modes.When further tilted by 15° from the (100) directions within the(001)plane,the optimal RBG width is expanded to 91.4%.We fabricate and characterize thin-film piezoelectric-on-silicon LVRs,with or without optimized 2D PnC slabs.The presence of PnC slabs around anchors increases the series and parallel quality factors Q_(s) and Q_(p) from 2240 to 7118 and from 2237 to 7501,respectively,with the PnC slabs oriented along the`110e directions of silicon.
基金supported by Natural Science Foundation of Gansu Province(NO.21JR7RA289)。
文摘To enhance the quality factor and sensitivity of refractive index sensors,a feedback waveguide slot grating micro-ring resonator was proposed.An air-hole grating structure was introduced based on the slot micro-ring,utilizing the reflection of the grating to achieve the electromagnetic-like induced transparency effect at different wavelengths.The high slope characteristics of the EIT-like effect enabled a higher quality factor and sensitivity.The transmission principle of the structure was analyzed using the transmission matrix method,and the transmission spectrum and mode field distribution were simulated using the finite-difference time-domain(FDTD)method,and the device structure parameters were adjusted for optimization.Simulation results show that the proposed structure achieves an EIT-like effect with a quality factor of 59267.5.In the analysis of refractive index sensing characteristics,the structure exhibits a sensitivity of 408.57 nm/RIU and a detection limit of 6.23×10^(-5) RIU.Therefore,the proposed structure achieved both a high quality factor and refractive index sensitivity,demonstrating excellent sensing performance for applications in environmental monitoring,biomedical fields,and other areas with broad market potential.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFB3403600)the National Natural Science Foundation of China(Grant No.52305461)。
文摘The fused quartz hemispherical resonator is the core component of the hemispherical resonator gyroscope.It features a complex shape and is Made from a Material that is difficult to process.Scratches are easily introduced during grinding,potentially degrading the mass-stiffness-damping symmetry;however,the underlying mechanisms of this influence have not been fully understood.This paper aims to investigate the effects of scratch defects on the frequency splitting and quality factor of the hemispherical resonator.First,finite element models of the hemispherical resonator with scratches are established.Then,the effects of the mass-stiffness factor,as well as the latitude and length of the scratches,on frequency splitting are analyzed.Furthermore,the impacts of latitude,length,and the first four harmonics of the unbalanced mass caused by scratches on thermoelastic damping and anchor loss are examined.Simulation results indicate that scratches above 55°latitude cause frequency splitting solely due to stiffness changes.Frequency splitting caused by scratches of the same size on the inherent rigidity shaft at the rim is approximately 50%of that near the transition fillet.Frequency splitting varies linearly with the volume of material removed by scratches.Scratches have little effect on thermoelastic damping.The first three harmonics of the unbalanced mass due to scratches at the rim are the primary contributors to anchor loss.Finally,focused ion beam trimming experiments are conducted at different locations on the hemispherical resonator.The trends observed in the experimental results are consistent with the simulation results.This work provides guidance for evaluating the impact of scratches on the performance of hemispherical resonators and for developing appropriate trimming processes.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20240613)Jiangsu Province’s“Innovation and Entrepreneurship Doctor”Program(Grant No.JSSCBS20230088)+4 种基金Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY224123)Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY222112)Beijing Nova Program(Grant No.20240484696)Wenzhou Major Science and Technology Innovation Key Project(Grant No.ZG2020046)INNOVATION Program for Quantum Science and Technology(Grant No.2021ZD0303200)。
文摘The topic of improving the mechanical stability of external cavity diode lasers(ECDLs)has recently attracted widespread attention and interest.The use of corner-cube-array(CCA)-based resonators provides a potential solution for this purpose,although continuous oscillation at super large incident angle remains challenging.In this work,we employ the CCA resonator to generate continuous oscillation within±20°angular misalignment of cavity mirror in experiment.On the basis of retroreflection theory,the retroreflectivity of a CCA is analyzed by using optical simulation software.Notably,the experiment verifies the advantage of using a CCA over a plane mirror in laser resonator,thereby providing a promising approach for ECDLs.The threshold characteristic curves measured at different incident angles in the experiment verify that the CCA possesses an obvious anti-angle misalignment performance.This research introduces an alternative solution of using CCA resonator instead of parallel plane cavity,thereby realizing an adjustment-free ECDL with enhanced mechanical stability.
基金supported by the State Key Laboratory of Pathogens and Biosecurity(Grant No.SKLPBS2240).
文摘Accurate detection of dimethyl methylphosphonate(DMMP),a simulant for chemical warfare agents,is vital for both public safety and military defense.However,conventional detection methods suffer from low selectivity,owing to interference from structurally similar compounds.In this study,we present a highly sensitive and selective gas sensor utilizing a solid-mounted film bulk acoustic resonator based on carbon nanotubes functionalized with hexafluoroisopropanol(HFiP)to enhance DMMP detection.This approach leverages the strong hydrogen bonding between HFiP and DMMP molecules to significantly improve the sensor’s adsorption capacity and selectivity.To further refine selectivity and at the same time solve the cross-sensitivity problem of sensitive membranes,we introduce a virtual sensor array design,generated by modulating the input power to the resonator,which enables the sensor to operate in multiple response modes across varying vibrational amplitudes.These multimodal responses are subjected to linear discriminant analysis,allowing precise differentiation of DMMP from other volatile organic compounds such as tributyl phosphate and dimethyl phthalate.Our results demonstrate superior performance in terms of both sensitivity and selectivity,offering a robust solution for detecting low-concentration DMMP in complex environments.