期刊文献+
共找到119篇文章
< 1 2 6 >
每页显示 20 50 100
Pore structure properties characterization of shale using generative adversarial network:Image augmentation,super-resolution reconstruction,and multi-mineral auto-segmentation
1
作者 LIU Fugui YANG Yongfei +7 位作者 YANG Haiyuan TAO Liu TAO Yunwei ZHANG Kai SUN Hai ZHANG Lei ZHONG Junjie YAO Jun 《Petroleum Exploration and Development》 2025年第5期1262-1274,共13页
Existing imaging techniques cannot simultaneously achieve high resolution and a wide field of view,and manual multi-mineral segmentation in shale lacks precision.To address these limitations,we propose a comprehensive... Existing imaging techniques cannot simultaneously achieve high resolution and a wide field of view,and manual multi-mineral segmentation in shale lacks precision.To address these limitations,we propose a comprehensive framework based on generative adversarial network(GAN)for characterizing pore structure properties of shale,which incorporates image augmentation,super-resolution reconstruction,and multi-mineral auto-segmentation.Using real 2D and 3D shale images,the framework was assessed through correlation function,entropy,porosity,pore size distribution,and permeability.The application results show that this framework enables the enhancement of 3D low-resolution digital cores by a scale factor of 8,without paired shale images,effectively reconstructing the unresolved fine-scale pores under a low resolution,rather than merely denoising,deblurring,and edge clarification.The trained GAN-based segmentation model effectively improves manual multi-mineral segmentation results,resulting in a strong resemblance to real samples in terms of pore size distribution and permeability.This framework significantly improves the characterization of complex shale microstructures and can be expanded to other heterogeneous porous media,such as carbonate,coal,and tight sandstone reservoirs. 展开更多
关键词 SHALE pore structure parameter generative adversarial network super-resolution multi-mineral auto-segmentation multiscale fusion
在线阅读 下载PDF
Generation and Analysis of Sandstone Pore Structure Images Based on CT Scanning and Generative Adversarial Network
2
作者 Zhaowei WANG Limin SUO +7 位作者 Hailong LIU Wenlong SU Xianda SUN Likai CUI Yangdong CAO Tao LIU Wenjie YANG Wenying SUN 《Agricultural Biotechnology》 2024年第6期99-101,共3页
In this study,cylindrical sandstone samples were imaged by CT scanning technique,and the pore structure images of sandstone samples were analyzed and generated by combining with StyleGAN2-ADA generative adversarial ne... In this study,cylindrical sandstone samples were imaged by CT scanning technique,and the pore structure images of sandstone samples were analyzed and generated by combining with StyleGAN2-ADA generative adversarial network(GAN)model.Firstly,nine small column samples with a diameter of 4 mm were drilled from sandstone samples with a diameter of 2.5 cm,and their CT scanning results were preprocessed.Because the change between adjacent slices was little,using all slices directly may lead to the problem of pattern collapse in the process of model generation.In order to solve this problem,one slice was selected as training data every 30 slices,and the diversity of slices was verified by calculating the LPIPS values of these slices.The results showed that the strategy of selecting one slice every 30 slices could effectively improve the diversity of images generated by the model and avoid the phenomenon of pattern collapse.Through this process,a total of 295 discontinuous two-dimensional slices were generated for the generation and segmentation analysis of sandstone pore structures.This study can provide effective data support for accurate segmentation of porous medium structures,and simultaneously improves the stability and diversity of generative adversarial network under the condition of small samples. 展开更多
关键词 StyleGAN2-ADA generative adversarial network Adaptive data augmentation CT scanning Sandstone pore structure
在线阅读 下载PDF
Intelligent Design Method for Thermal Conductivity Topology Based on a Deep Generative Network 被引量:1
3
作者 Qiyin Lin Feiyu Gu +5 位作者 Chen Wang Hao Guan Tao Wang Kaiyi Zhou Lian Liu Desheng Yao 《Chinese Journal of Mechanical Engineering》 2025年第6期67-82,共16页
Heat dissipation performance is critical to the design of high-end equipment,such as integrated chips and high-precision machine tools.Owing to the advantages of artificial intelligence in solving complex tasks involv... Heat dissipation performance is critical to the design of high-end equipment,such as integrated chips and high-precision machine tools.Owing to the advantages of artificial intelligence in solving complex tasks involving a large number of variables,researchers have exploited deep learning to expedite the optimization of material properties,such as the heat dissipation of solid isotropic materials with penalization(SIMP).However,because the approach is limited by discrete datasets and labeled training forms,ensuring the continuous adaptation of the condition domain and maintaining the stability of the design structure remain major challenges in the current intelligent design methodology for thermally conductive structures.In this study,we propose an innovative intelligent design fram-ework integrating Conditional Deep Convolutional Generative Adversarial Networks(CDCGAN)with SIMP,capable of creating topology structures that meet prescribed thermal conduction performance.This proposed design strategy significantly reduces the computational time required to solve symmetric and random heat sink problems compared with existing design approaches and is approximately 98%faster than standard SIMP methods and 55.5%faster than conventional deep-learning-based methods.In addition,we benchmarked the design performance of the proposed framework against theoretical structural designs via experimental measurements.We observed a 50.1%reduction in the average temperature and a 28.2%reduction in the highest temperature in our designed topology compared with those theoretical structure designs. 展开更多
关键词 Topology optimization Intelligent prediction Thermal conductivity structure generative adversarial network Instantaneous prediction
在线阅读 下载PDF
Hair-GAN:Recovering 3D hair structure from a single image using generative adversarial networks 被引量:2
4
作者 Meng Zhang Youyi Zheng 《Visual Informatics》 EI 2019年第2期102-112,共11页
We introduce Hair-GAN,an architecture of generative adversarial networks,to recover the 3D hair structure from a single image.The goal of our networks is to build a parametric transformation from 2D hair maps to 3D ha... We introduce Hair-GAN,an architecture of generative adversarial networks,to recover the 3D hair structure from a single image.The goal of our networks is to build a parametric transformation from 2D hair maps to 3D hair structure.The 3D hair structure is represented as a 3D volumetric field which encodes both the occupancy and the orientation information of the hair strands.Given a single hair image,we first align it with a bust model and extract a set of 2D maps encoding the hair orientation information in 2D,along with the bust depth map to feed into our Hair-GAN.With our generator network,we compute the 3D volumetric field as the structure guidance for the final hair synthesis.The modeling results not only resemble the hair in the input image but also possesses many vivid details in other views.The efficacy of our method is demonstrated by using a variety of hairstyles and comparing with the prior art. 展开更多
关键词 Single-view hair modeling 3D volumetric structure Deep learning generative adversarial networks
原文传递
An efficient deep learning-based topology optimization method for continuous fiber composite structure
5
作者 Jicheng Li Hongling Ye +3 位作者 Yongjia Dong Zhanli Liu Tianfeng Sun Haisheng Wu 《Acta Mechanica Sinica》 2025年第4期82-96,共15页
This paper presents a deep learning-based topology optimization method for the joint design of material layout and fiber orientation in continuous fiber-reinforced composite structure(CFRCS).The proposed method mainly... This paper presents a deep learning-based topology optimization method for the joint design of material layout and fiber orientation in continuous fiber-reinforced composite structure(CFRCS).The proposed method mainly includes three steps:(1)a ResUNet-involved generative and adversarial network(ResUNet-GAN)is developed to establish the end-to-end mapping from structural design parameters to fiber-reinforced composite optimized structure,and a fiber orientation chromatogram is presented to represent continuous fiber angles;(2)to avoid the local optimum problem,the independent continuous mapping method(ICM method)considering the improved principal stress orientation interpolated continuous fiber angle optimization(PSO-CFAO)strategy is utilized to construct CFRCS topology optimization dataset;(3)the well-trained ResUNet-GAN is deployed to design the optimal structural material distribution together with the corresponding continuous fiber orientations.Numerical simulations for benchmark structure verify that the proposed method greatly improves the design efficiency of CFRCS along with high design accuracy.Furthermore,the CFRCS topology configuration designed by ResUNet-GAN is fabricated by additive manufacturing.Compression experiments of the specimens show that both the stiffness structure and peak load of the CFRCS topology configuration designed by the proposed method have significantly enhanced.The proposed deep learning-based topology optimization method will provide great flexibility in CFRCS for engineering applications. 展开更多
关键词 Topology optimization Fiber-reinforced composite structure generative and adversarial networks Additive manufacturing
原文传递
The study of high-performance generation methods for rural plan based on generative adversarial network
6
作者 Xiao-Hu Liu Peng-Cheng Miao +3 位作者 Xiao-Xiao Dong Baghdad Esmail Fei Ye Dian Lei 《Frontiers of Architectural Research》 2025年第3期739-758,共20页
In China,traditional village layouts are dynamic,harmoniously integrated with the natural environment,and rich in unique cultural characteristics.However,rapidly constructed villages often lack professional design,res... In China,traditional village layouts are dynamic,harmoniously integrated with the natural environment,and rich in unique cultural characteristics.However,rapidly constructed villages often lack professional design,resulting in overly simple layouts and causing the villages to lose their traditional characteristics.Artiflcial intelligence holds the potential to alleviate this speciflc challenge.This study employs CGAN to generate comprehensive village layouts based on archetypal traditional villages,while also exploring parameters and network architectures to enhance result quality.The research address on traditional villages in southwestern Hubei,reflning generative factors,introducing image-based geographic scales,and employing machine vision to address data scarcity.The key flndings of this study includes:1)The research explores a class of AI-generated evaluation metrics suitable for village layout generation.2)It conflrms that the combination of the Unet_256 generator with the LSGAN architecture yields the best results in image generation.3)It is observed that the optimal generation results are achieved when the equivalent geographic scale of the image is 150 m×150 m.The study validates that GANs can be effectively applied in the village layout,producing layout results that incorporate traditional local experiences.This provides a novel approach to village layout. 展开更多
关键词 generative adversarial network Traditional village layout structure design generate result optimization Deep learning Space planning problem
原文传递
Unified deep learning model for predicting fundus fluorescein angiography image from fundus structure image 被引量:8
7
作者 Yiwei Chen Yi He +3 位作者 Hong Ye Lina Xing Xin Zhang Guohua Shi 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第3期105-113,共9页
The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera im... The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error. 展开更多
关键词 Fundus fluorescein angiography image fundus structure image image translation unified deep learning model generative adversarial networks
原文传递
Lightweight and Efficient Attention-Based Superresolution Generative Adversarial Networks
8
作者 Shushu Yin Hefan Li +3 位作者 Yu Sang Tianjiao Ma Tie Li Mei Jia 《国际计算机前沿大会会议论文集》 EI 2023年第1期165-181,共17页
To address the problems of lack of high-frequency information and texture details and unstable training in superresolution generative adversarial net-works,this paper optimizes the generator and discriminator based on... To address the problems of lack of high-frequency information and texture details and unstable training in superresolution generative adversarial net-works,this paper optimizes the generator and discriminator based on the SRGAN model.First,the residual dense block is used as the basic structural unit of the gen-erator to improve the network’s feature extraction capability.Second,enhanced lightweight coordinate attention is incorporated to help the network more precisely concentrate on high-frequency location information,thereby allowing the gener-ator to produce more realistic image reconstruction results.Then,we propose a symmetric and efficient pyramidal segmentation attention discriminator network in which the attention mechanism is capable of derivingfiner-grained multiscale spatial information and creating long-term dependencies between multiscale chan-nel attentions,thus enhancing the discriminative ability of the network.Finally,a Charbonnier loss function and a gradient variance loss function with improved robustness are used to better realize the image’s texture structure and enhance the model’s stability.Thefindings from the experiments reveal that the reconstructed image quality enhances the average peak signal-to-noise ratio(PSNR)by 1.59 dB and the structural similarity index(SSIM)by 0.045 when compared to SRGAN on the three test sets.Compared with the state-of-the-art methods,the reconstructed images have a clearer texture structure,richer high-frequency details,and better visual effects. 展开更多
关键词 SUPERRESOLUTION generative adversarial networks Attention mechanism Texture structure Residual dense blocks
原文传递
AI-driven generative and reinforcement learning for mechanical optimization of 2D patterned hollow structures
9
作者 Yicheng Shan Leitao Cao +4 位作者 Yu Wang Jing Ren Chen Huang Wenli Gao Shengjie Ling 《Materials Futures》 2025年第3期426-442,共17页
2D patterned hollow structures have emerged as advanced materials with exceptional mechanical properties and lightweight characteristics,making them ideal for high-performance applications in aerospace and automotive ... 2D patterned hollow structures have emerged as advanced materials with exceptional mechanical properties and lightweight characteristics,making them ideal for high-performance applications in aerospace and automotive industries.However,optimizing their structural design to achieve uniform stress distribution and minimize stress concentration remains a significant challenge due to the complex interplay between geometric patterns and mechanical performance.In this study,we develop an integrated framework combining conditional generative adversarial networks(cGANs)and deep Q-networks(DQNs)to predict and optimize the stress fields of 2D-PHS.We generated a comprehensive dataet comprising 1000 samples across five distinct density classes using a custom grid pattern generation algorithm,ensuring a wide range of structural variations.The cGAN accurately predicts stress distributions,achieving a high correlation with finite element analysis(FEA)results while reducing computational time from approximately 40 s(FEA)to just 1-2 s per prediction.Concurrently,the DQN optimizes design parameters through scaling and rotation operations,enhancing structural performance based on predicted stress metrics.Our approach resulted in a 4.3%improvement in average stress uniformity and a 23.1%reduction in maximum stress concentration.These improvements were validated through FEA simulations and experimental tensile tests on 3D-printed thermoplastic polyurethane samples.The tensile strength of the optimized samples increased from an initial average of 5.9-6.6 MPa under 100%strain,demonstrating enhanced mechanical resilience.This study demonstrates the efficacy of combining advanced AI techniques for rapid and precise material design optimization,providing a scalable and cost-effective solution for developing superior lightweight materials with tailored mechanical properties for critical engineering applications. 展开更多
关键词 2D patterned hollow structures mechanical property generative adversarial networks deep reinforcement learning
在线阅读 下载PDF
Adversarial network embedding using structural similarity 被引量:1
10
作者 Zihan ZHOU Yu GU Ge YU 《Frontiers of Computer Science》 SCIE EI CSCD 2021年第1期223-232,共10页
Network embedding which aims to embed a given network into a low-dimensional vector space has been proved effective in various network analysis and mining tasks such as node classification,link prediction and network ... Network embedding which aims to embed a given network into a low-dimensional vector space has been proved effective in various network analysis and mining tasks such as node classification,link prediction and network visualization.The emerging network embedding methods have shifted of emphasis in utilizing mature deep learning models.The neural-network based network embedding has become a mainstream solution because of its high eficiency and capability of preserv-ing the nonlinear characteristics of the network.In this paper,we propose Adversarial Network Embedding using Structural Similarity(ANESS),a novel,versatile,low-complexity GAN-based network embedding model which utilizes the inherent vertex-to-vertex structural similarity attribute of the network.ANESS learns robustness and ffective vertex embeddings via a adversarial training procedure.Specifically,our method aims to exploit the strengths of generative adversarial networks in generating high-quality samples and utilize the structural similarity identity of vertexes to learn the latent representations of a network.Meanwhile,ANESS can dynamically update the strategy of generating samples during each training iteration.The extensive experiments have been conducted on the several benchmark network datasets,and empirical results demon-strate that ANESS significantly outperforms other state-of-theart network embedding methods. 展开更多
关键词 network embedding structural similarity generative adversarial network
原文传递
基于生成式对抗网络的轻钢别墅墙体结构设计
11
作者 陆亮 张嘉龙 王孝伟 《自动化应用》 2025年第20期211-217,共7页
建筑结构设计主要是“人+计算机辅助设计”模式,尽管大大提高了绘图效率,但设计过程依赖于人工,仍存在设计效率低、周期长等缺点。为探索建筑结构的智能设计方法,提出了一种基于生成式对抗网络的结构设计方法。该方法以高度结构化、模... 建筑结构设计主要是“人+计算机辅助设计”模式,尽管大大提高了绘图效率,但设计过程依赖于人工,仍存在设计效率低、周期长等缺点。为探索建筑结构的智能设计方法,提出了一种基于生成式对抗网络的结构设计方法。该方法以高度结构化、模块化的轻钢别墅为设计对象,通过图像识别、墙体语义化与图像翻译,实现了从建筑平面图到建筑墙体、楼板及楼梯的自动化设计。结果表明,该设计方法可在75 s内实现单层轻钢别墅的三维结构设计,提高了设计效率。 展开更多
关键词 轻钢别墅 生成式对抗网络 图像翻译 墙体结构设计 三维结构设计
在线阅读 下载PDF
基于半监督学习双模型结构的注塑产品异常检测 被引量:2
12
作者 陈昱 项薇 +3 位作者 林文文 龚川 张怀志 虞任豪 《中国机械工程》 北大核心 2025年第3期576-583,共8页
质量数据分布的不平衡及分类边界的模糊性限制了传统分类器的性能,阻碍了企业智能生产决策的高效实施。为此,提出了一种基于双模型结构的深度生成模型异常检测方法,根据尺寸数据分布将合格产品等级进行二分类,即优秀及次优,分别用于训... 质量数据分布的不平衡及分类边界的模糊性限制了传统分类器的性能,阻碍了企业智能生产决策的高效实施。为此,提出了一种基于双模型结构的深度生成模型异常检测方法,根据尺寸数据分布将合格产品等级进行二分类,即优秀及次优,分别用于训练两个深度生成模型,考虑数据分布特点设计加权集成,基于计算的异常分数对产品进行合格性判定。以变分自编码器(VAE)、Wasserstein生成对抗网络(WGAN)为子模型开发了两个双模型结构,测试结果显示,相较于单模型结构,基于双模型的VAE和WGAN在测试集上的分类准确率分别提高了4.5%和6%。 展开更多
关键词 产品质量 异常检测 变分自编码器 Wasserstein生成对抗网络 双模型结构
在线阅读 下载PDF
基于生成对抗网络的框架结构平面整体布置方法
13
作者 钟燕 雷昕 +2 位作者 龙丹冰 方长建 康永君 《工程科学与技术》 北大核心 2025年第3期72-81,共10页
建筑改建或增建时的结构设计是房屋结构设计中不容忽视的内容。本文面向建筑初步设计阶段,针对部分结构已确定的情况提出了基于生成对抗网络的框架结构平面整体布置方法,在建筑和部分结构双重约束条件下进行框架结构设计。该方法的核心... 建筑改建或增建时的结构设计是房屋结构设计中不容忽视的内容。本文面向建筑初步设计阶段,针对部分结构已确定的情况提出了基于生成对抗网络的框架结构平面整体布置方法,在建筑和部分结构双重约束条件下进行框架结构设计。该方法的核心为框架结构平面整体布置模型。在有限数据样本下,为减少模型训练参数,凝练样本特征,达到更好的模型训练效果,提出了建筑信息表达方法用于表达与结构特征有强关联性的建筑特征;提出了框架梁信息表达方法用于在平面图形中表达梁截面特征;提出框架柱信息表达方法用于在平面图形中表达柱截面特征。通过叠加特征图、裁剪和增广等手段,构造了用于训练生成式算法模型的5120对数据作为数据集。同时,除沿用交并比评价指标外,为更合理地评价模型的“设计”能力,基于框架结构设计规则提出了原柱率、不合理指数和综合指标,并依据指标确定了最佳的框架结构平面整体布置模型。使用时将建筑和部分结构特征图输入最佳模型,即可生成框架结构平面布置图。最后,通过案例分析论证了本文提出的框架结构平面整体布置方法能快速地生成布置合理且满足经验要求的结构设计。 展开更多
关键词 框架结构 生成对抗网络 智能生成式设计
在线阅读 下载PDF
基于生成对抗网络的页岩孔隙结构参数表征方法——图像数据增强、超分辨率重构和多矿物相分割
14
作者 刘夫贵 杨永飞 +7 位作者 杨海元 陶柳 陶运玮 张凯 孙海 张磊 钟俊杰 姚军 《石油勘探与开发》 北大核心 2025年第5期1118-1130,共13页
为解决现有成像技术无法同时实现高分辨率和大视域、人工进行页岩多矿物相分割的精细度不足等问题,提出一个基于生成对抗网络表征页岩孔隙结构参数的综合框架,该方法包括图像数据增强、超分辨率重构以及多矿物相自动分割。基于真实页岩... 为解决现有成像技术无法同时实现高分辨率和大视域、人工进行页岩多矿物相分割的精细度不足等问题,提出一个基于生成对抗网络表征页岩孔隙结构参数的综合框架,该方法包括图像数据增强、超分辨率重构以及多矿物相自动分割。基于真实页岩二维和三维图像,通过相关函数、熵、孔隙度、孔隙尺寸分布和渗透率等参数对该框架进行了准确性评价。应用结果表明:该框架无需成对的高低分辨率页岩图像,可将三维低分辨率数字岩心的分辨率提高8倍;实现降噪、去模糊以及边缘锐化,重构低分辨率下缺失的细尺度孔隙;训练好的分割模型能有效改善人工多矿物相分割的结果,所获孔隙尺寸分布、渗透率等参数与真实岩心数据高度一致。该框架极大地改进了页岩复杂微观结构的精细表征,同时也适用于碳酸盐岩、煤岩和致密砂岩储层等其他非均质多孔介质。 展开更多
关键词 页岩 孔隙结构参数 生成对抗网络 超分辨率 多矿物相自动分割 多尺度融合
在线阅读 下载PDF
基于语义增强和特征融合的文本生成图像方法
15
作者 吴昊文 王鹏 +3 位作者 李亮亮 邸若海 李晓艳 吕志刚 《计算机工程与应用》 北大核心 2025年第15期229-240,共12页
文本生成图像是机器学习领域中非常具有挑战性的任务,虽然目前已有很大的突破,但仍然存在图像细粒度不够和语义一致性弱的问题,因此提出了一种基于语义增强和特征融合的文本生成图像方法(SEF-GAN)。针对初始特征表征不足问题,提出了空... 文本生成图像是机器学习领域中非常具有挑战性的任务,虽然目前已有很大的突破,但仍然存在图像细粒度不够和语义一致性弱的问题,因此提出了一种基于语义增强和特征融合的文本生成图像方法(SEF-GAN)。针对初始特征表征不足问题,提出了空间交叉重建模块,对不同信息量特征图进行分离与交叉重建,获得更精细化特征。为了提高文本属性信息的有效利用表征,设计了语义关联注意力模块,提高了文本描述和视觉内容之间的语义一致性。为了充分利用图像区域特征与文本语义标签之间的隐藏联系,构建了通道特征融合模块,将区域图像特征与文本隐层特征进行仿射,对目标区域重构并保留图像中与文本无关内容,并连接反残差结构进一步增强特征表达能力。在CUB和COCO数据集上实验结果表明,相对于现有先进方法,该方法将IS指标分别提高了18.8%和6.3%,FID指标分别提高了33.9%和14.6%,RP指标分别提高了10.9%和3.3%。证实所提方法能有效生成细节更丰富的图像,与文本描述更加吻合。 展开更多
关键词 文本生成图像 生成对抗网络 属性特征学习 图像语义融合 反残差结构
在线阅读 下载PDF
不平衡数据集下导管架平台结构损伤识别研究
16
作者 王维刚 田丰 路敬祎 《振动.测试与诊断》 北大核心 2025年第3期527-534,623,共9页
针对导管架平台结构损伤识别中数据不平衡问题,提出了一种基于一维条件生成对抗网络(one-dimensional conditional generative adversarial network,简称1D-CGAN)与长短时记忆(long short-term memory,简称LSTM)网络结合的导管架平台结... 针对导管架平台结构损伤识别中数据不平衡问题,提出了一种基于一维条件生成对抗网络(one-dimensional conditional generative adversarial network,简称1D-CGAN)与长短时记忆(long short-term memory,简称LSTM)网络结合的导管架平台结构损伤识别方法。该方法将采集的一维损伤数据直接输入条件生成对抗网络(conditional generative adversarial network,简称CGAN),通过在判别器和生成器中添加标签信息构建1D-CGAN,利用标签信息控制其生成特定的新损伤样本,从而与完好状态样本组成平衡样本集。在此基础上,将划分的训练集输入到LSTM进行模型训练和损伤识别。实验结果表明:随着不平衡程度降低,所提出方法的识别准确率不断提高,当数据集达到平衡时,识别准确率能够达到92.5%;与其他方法相比,所提出方法的识别准确率和精确率均有明显的提高。该方法提高了模型的分类性能,为不平衡数据下海洋结构损伤识别提供了一种新思路。 展开更多
关键词 导管架平台 一维条件生成对抗网络 长短时记忆网络 不平衡问题 结构损伤识别
在线阅读 下载PDF
基于SSIMGAN和时间序列Transformer的内部威胁检测模型
17
作者 冯克俊 黄晓芳 +1 位作者 宋鲁华 殷明勇 《信息安全研究》 北大核心 2025年第12期1108-1116,共9页
内部威胁检测是信息安全的重要环节,旨在保护企业网络和数据安全,避免因内部人员不当行为导致的破坏.基于CERT4.2数据集提出了一种新的内部威胁检测模型,首先构建了相应的多变量时间序列数据,提出了引入结构相似度指数的辅助分类器生成... 内部威胁检测是信息安全的重要环节,旨在保护企业网络和数据安全,避免因内部人员不当行为导致的破坏.基于CERT4.2数据集提出了一种新的内部威胁检测模型,首先构建了相应的多变量时间序列数据,提出了引入结构相似度指数的辅助分类器生成对抗网络(SSIM结合ACGAN,简称SSIMGAN)对威胁数据按照不同场景进行增强,针对CERT4.2数据集中样本不平衡问题,生成更贴近原始数据分布的样本.然后,采用Focal Loss作为损失函数的时间序列Transformer(time series Transformer,TST)模型进行分类任务,使得模型更能注意到那些难分类的数据和少数样本的数据.最后,以精确率、召回率和F 1值作为模型性能的评价指标进行测试.实验结果表明,相较于其他模型,该方法在CERT4.2数据集上将召回率提升至96.22%,F 1值达到94.22%,验证了其在应对数据不均衡和降低漏报风险方面的有效性. 展开更多
关键词 内部威胁检测 生成对抗网络 TRANSFORMER 结构相似度指数 数据增强
在线阅读 下载PDF
基于局部属性生成对抗网络的目标检测对抗攻击算法
18
作者 许佳诺 邵伟 张道强 《模式识别与人工智能》 北大核心 2025年第8期727-739,共13页
现有针对目标检测模型的对抗攻击算法大多无法在取得高攻击成功率的同时保证对抗样本的隐蔽性,削弱其在医学领域应用中的有效性.为此,文中提出基于局部属性生成对抗网络的目标检测对抗攻击算法,旨在优化对抗样本质量的同时提升攻击效果... 现有针对目标检测模型的对抗攻击算法大多无法在取得高攻击成功率的同时保证对抗样本的隐蔽性,削弱其在医学领域应用中的有效性.为此,文中提出基于局部属性生成对抗网络的目标检测对抗攻击算法,旨在优化对抗样本质量的同时提升攻击效果.首先,通过图像块划分构建图像的图结构,引入基于图结构的局部属性差异损失,增强对抗样本的视觉隐蔽性.然后,加入目标误定位攻击损失,引导检测模型产生错误的目标定位,增强攻击的有效性.最后,结合上述两种损失,通过反向传播更新生成对抗网络.在BCCD、LISC两个公开的血液细胞数据集上的实验表明,文中算法针对Faster-RCNN生成的对抗样本在攻击成功率和隐蔽性方面均较优,拥有良好的攻击迁移性. 展开更多
关键词 对抗攻击 目标检测 生成对抗网络 图结构
在线阅读 下载PDF
基于GAN&CNN的物联网环境下入侵检测研究
19
作者 卢志成 徐海峰 潘巨龙 《传感技术学报》 北大核心 2025年第10期1853-1861,共9页
随着科技进步,网络入侵手段也越来越多样,给物联网环境下边缘设备的安全带来了严峻挑战。针对目前物联网环境下传统入侵检测模型检测性能普遍较差以及不适配边缘设备资源受限、计算能力较低等特点,提出一种基于生成对抗网络GAN和卷积神... 随着科技进步,网络入侵手段也越来越多样,给物联网环境下边缘设备的安全带来了严峻挑战。针对目前物联网环境下传统入侵检测模型检测性能普遍较差以及不适配边缘设备资源受限、计算能力较低等特点,提出一种基于生成对抗网络GAN和卷积神经网络CNN的轻量化模型用于检测物联网环境下的入侵行为。首先,采用生成对抗网络技术解决数据不平衡问题;其次,使用基于跨阶段局部结构的轻量化卷积神经网络提取流量特征,并选择HSwish作为激活函数,以减少模型计算量和提高计算效率;最后,通过Softmax对流量数据进行分类。新算法在UNSW-NB15和CICIDS2018入侵检测数据集上进行实验,模型检测入侵行为的准确率分别达到99.64%和96.65%,精确率分别达到99.55%和99.35%,召回率分别达到99.61%和99.64%,F1分数分别达到99.58%和99.49%,大小控制在21KB~32KB左右。结果表明,所提出的模型在保证模型入侵检测精度的同时,减少了模型的大小和计算量,满足条件苛刻的物联网环境下高精度的入侵检测需求。 展开更多
关键词 入侵检测 物联网 生成对抗网络 卷积神经网络 跨阶段局部结构
在线阅读 下载PDF
数据驱动的车辆爆炸防护结构优化设计方法
20
作者 肖杉雨 孙晓旺 +5 位作者 秦伟伟 王利辉 王显会 李明星 付条奇 张强 《爆炸与冲击》 北大核心 2025年第11期184-200,共17页
针对车辆爆炸防护结构优化中数据来源匮乏、代理模型精度低、优化效率低和可靠性不足的问题,提出了一种数据增广方法结合半监督回归的数据驱动方法。通过改进生成对抗网络(generative adversarial network,GAN),提出了Gaussian密度估算... 针对车辆爆炸防护结构优化中数据来源匮乏、代理模型精度低、优化效率低和可靠性不足的问题,提出了一种数据增广方法结合半监督回归的数据驱动方法。通过改进生成对抗网络(generative adversarial network,GAN),提出了Gaussian密度估算-对抗生成网络(Gaussian density estimation-Wasserstein generative adversarial network,GDE-WGAN);分别采用GDE-WGAN、Gaussian模型、最优拉丁超立方方法,并结合半监督支持向量回归,对原始数据集进行增广,通过对比不同方法的数据增广效果,验证了GDE-WGAN的可行性和优越性;通过多目标优化分别求解数据增广前后代理模型的最优解,并通过有限元仿真验证比较。结果表明,GDE-WGAN结合半监督回归的方法可以显著提升代理模型的拟合精度,2个输出变量的决定系数R2分别提升了16.7%和4.2%。结合半监督回归的数据增广优化方法在准确性和优化效率方面具有较大提升。 展开更多
关键词 爆炸防护结构 对抗生成网络 半监督支持向量回归 多目标优化
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部