The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.De...The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.Despite their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant challenges.These challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy leakage.Previous works often conflated safety issues with security concerns.In contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of LLMs.Building on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in LLMs.Additionally,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats.展开更多
Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, ...Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, software testing and analysis are two of the critical methods, which significantly benefit from the advancements in deep learning technologies. Due to the successful use of deep learning in software security, recently,researchers have explored the potential of using large language models(LLMs) in this area. In this paper, we systematically review the results focusing on LLMs in software security. We analyze the topics of fuzzing, unit test, program repair, bug reproduction, data-driven bug detection, and bug triage. We deconstruct these techniques into several stages and analyze how LLMs can be used in the stages. We also discuss the future directions of using LLMs in software security, including the future directions for the existing use of LLMs and extensions from conventional deep learning research.展开更多
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential sec...ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential security risks that need to be carefully evaluated and addressed. In this survey, we provide an overview of the current state of research on security of using ChatGPT, with aspects of bias, disinformation, ethics, misuse,attacks and privacy. We review and discuss the literature on these topics and highlight open research questions and future directions.Through this survey, we aim to contribute to the academic discourse on AI security, enriching the understanding of potential risks and mitigations. We anticipate that this survey will be valuable for various stakeholders involved in AI development and usage, including AI researchers, developers, policy makers, and end-users.展开更多
Recently,the 2025 Central Conference on Work Related to Neighboring Countries was held in Beijing.As an important theoretical innovation,the conference emphasized for the first time pursuing“the model of security for...Recently,the 2025 Central Conference on Work Related to Neighboring Countries was held in Beijing.As an important theoretical innovation,the conference emphasized for the first time pursuing“the model of security for Asia that features sharing weal and woe,seeking common ground while shelving differences,and prioritizing dialogue and consultation.”1 This fully demonstrates that China prioritizes neighborhood on its diplomatic agenda,regards security and stability in its neighborhood as a core strategic support,and is ready to collaborate with neighboring countries for a future of shared peace,development,and prosperity.展开更多
In response to the current gaps in ef-fective proactive defense methods within applica-tion security and the limited integration of security components with applications,this paper proposes a biomimetic security model...In response to the current gaps in ef-fective proactive defense methods within applica-tion security and the limited integration of security components with applications,this paper proposes a biomimetic security model,called NeuroShield,specifically designed for web applications.Inspired by the“perception-strategy-effect-feedback”mechanism of the human nervous control system,the model inte-grates biomimetic elements akin of neural receptors and effectors into applications.This integration fa-cilitates a multifaceted approach to security:enabling data introspection for detailed perception and regula-tion of application behavior,providing proactive de-fense capabilities to detect and block security risks in real-time,and incorporating feedback optimization to continuously adjust and enhance security strategies based on prevailing conditions.Experimental results affirm the efficacy of this neural control mechanism-based biomimetic security model,demonstrating a proactive defense success rate exceeding 95%,thereby offering a theoretical and structural foundation for biomimetic immunity in web applications.展开更多
Security is the cor nerstone of a country's peace and stability and the prerequisite for its survival and development.All countries around the world regard security as their top priority.Since most Asian countries...Security is the cor nerstone of a country's peace and stability and the prerequisite for its survival and development.All countries around the world regard security as their top priority.Since most Asian countries suffered from colonial aggression and plundering for a long time in history,they as a whole attach special importance to national security.展开更多
Processing police incident data in public security involves complex natural language processing(NLP)tasks,including information extraction.This data contains extensive entity information—such as people,locations,and ...Processing police incident data in public security involves complex natural language processing(NLP)tasks,including information extraction.This data contains extensive entity information—such as people,locations,and events—while also involving reasoning tasks like personnel classification,relationship judgment,and implicit inference.Moreover,utilizing models for extracting information from police incident data poses a significant challenge—data scarcity,which limits the effectiveness of traditional rule-based and machine-learning methods.To address these,we propose TIPS.In collaboration with public security experts,we used de-identified police incident data to create templates that enable large language models(LLMs)to populate data slots and generate simulated data,enhancing data density and diversity.We then designed schemas to efficiently manage complex extraction and reasoning tasks,constructing a high-quality dataset and fine-tuning multiple open-source LLMs.Experiments showed that the fine-tuned ChatGLM-4-9B model achieved an F1 score of 87.14%,nearly 30%higher than the base model,significantly reducing error rates.Manual corrections further improved performance by 9.39%.This study demonstrates that combining largescale pre-trained models with limited high-quality domain-specific data can greatly enhance information extraction in low-resource environments,offering a new approach for intelligent public security applications.展开更多
Large models,such as large language models(LLMs),vision-language models(VLMs),and multimodal agents,have become key elements in artificial intelli⁃gence(AI)systems.Their rapid development has greatly improved percepti...Large models,such as large language models(LLMs),vision-language models(VLMs),and multimodal agents,have become key elements in artificial intelli⁃gence(AI)systems.Their rapid development has greatly improved perception,generation,and decision-making in various fields.However,their vast scale and complexity bring about new security challenges.Issues such as backdoor vulnerabilities during training,jailbreaking in multimodal rea⁃soning,and data provenance and copyright auditing have made security a critical focus for both academia and industry.展开更多
As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods ge...As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes.展开更多
Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematica...Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematical and computer modeling of a novel two-dimensional(2D)chaotic system for secure key generation in quantum image encryption(QIE).The proposed map employs trigonometric perturbations in conjunction with rational-saturation functions and hence,named as Trigonometric-Rational-Saturation(TRS)map.Through rigorous mathematical analysis and computational simulations,the map is extensively evaluated for bifurcation behaviour,chaotic trajectories,and Lyapunov exponents.The security evaluation validates the map’s non-linearity,unpredictability,and sensitive dependence on initial conditions.In addition,the proposed TRS map has further been tested by integrating it in a QIE scheme.The QIE scheme first quantum-encodes the classic image using the Novel Enhanced Quantum Representation(NEQR)technique,the TRS map is used for the generation of secure diffusion key,which is XOR-ed with the quantum-ready image to obtain the encrypted images.The security evaluation of the QIE scheme demonstrates superior security of the encrypted images in terms of statistical security attacks and also against Differential attacks.The encrypted images exhibit zero correlation and maximum entropy with demonstrating strong resilience due to 99.62%and 33.47%results for Number of Pixels Change Rate(NPCR)and Unified Average Changing Intensity(UACI).The results validate the effectiveness of TRS-based quantum encryption scheme in securing digital images against emerging quantum threats,making it suitable for secure image encryption in IoT and edge-based applications.展开更多
This paper reviews the history and lessons of global oil crises while exploring the establishment of a quantitative evaluation model for oil security with Chinese characteristics.Using principal component analysis,it ...This paper reviews the history and lessons of global oil crises while exploring the establishment of a quantitative evaluation model for oil security with Chinese characteristics.Using principal component analysis,it constructs an oil security evaluation indicator system for China with two main-level indicators:foreign oil dependency and its impacts,and market intervention and security assurance.展开更多
Traditional steganography conceals information by modifying cover data,but steganalysis tools easily detect such alterations.While deep learning-based steganography often involves high training costs and complex deplo...Traditional steganography conceals information by modifying cover data,but steganalysis tools easily detect such alterations.While deep learning-based steganography often involves high training costs and complex deployment.Diffusion model-based methods face security vulnerabilities,particularly due to potential information leakage during generation.We propose a fixed neural network image steganography framework based on secure diffu-sion models to address these challenges.Unlike conventional approaches,our method minimizes cover modifications through neural network optimization,achieving superior steganographic performance in human visual perception and computer vision analyses.The cover images are generated in an anime style using state-of-the-art diffusion models,ensuring the transmitted images appear more natural.This study introduces fixed neural network technology that allows senders to transmit only minimal critical information alongside stego-images.Recipients can accurately reconstruct secret images using this compact data,significantly reducing transmission overhead compared to conventional deep steganography.Furthermore,our framework innovatively integrates ElGamal,a cryptographic algorithm,to protect critical information during transmission,enhancing overall system security and ensuring end-to-end information protection.This dual optimization of payload reduction and cryptographic reinforcement establishes a new paradigm for secure and efficient image steganography.展开更多
The rapid integration of artificial intelligence(AI)into software development,driven by large language models(LLMs),is reshaping the role of programmers from traditional coders into strategic collaborators within Indu...The rapid integration of artificial intelligence(AI)into software development,driven by large language models(LLMs),is reshaping the role of programmers from traditional coders into strategic collaborators within Industry 4.0 ecosystems.This qualitative study employs a hermeneutic phenomenological approach to explore the lived experiences of Information Technology(IT)professionals as they navigate a dynamic technological landscape marked by intelligent automation,shifting professional identities,and emerging ethical concerns.Findings indicate that developers are actively adapting to AI-augmented environments by engaging in continuous upskilling,prompt engineering,interdisciplinary collaboration,and heightened ethical awareness.However,participants also voiced growing concerns about the reliability and security of AI-generated code,noting that these tools can introduce hidden vulnerabilities and reduce critical engagement due to automation bias.Many described instances of flawed logic,insecure patterns,or syntactically correct but contextually inappropriate suggestions,underscoring the need for rigorous human oversight.Additionally,the study reveals anxieties around job displacement and the gradual erosion of fundamental coding skills,particularly in environments where AI tools dominate routine development tasks.These findings highlight an urgent need for educational reforms,industry standards,and organizational policies that prioritize both technical robustness and the preservation of human expertise.As AI becomes increasingly embedded in software engineering workflows,this research offers timely insights into how developers and organizations can responsibly integrate intelligent systems to promote accountability,resilience,and innovation across the software development lifecycle.展开更多
Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks(WSNs),especially in security-critical,time-sensitive applications.However,most existing protocols degrade...Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks(WSNs),especially in security-critical,time-sensitive applications.However,most existing protocols degrade substantially under malicious interference.We introduce iSTSP,an Intelligent and Secure Time Synchronization Protocol that implements a four-stage defense pipeline to ensure robust,precise synchronization even in hostile environments:(1)trust preprocessing that filters node participation using behavioral trust scoring;(2)anomaly isolation employing a lightweight autoencoder to detect and excise malicious nodes in real time;(3)reliability-weighted consensus that prioritizes high-trust nodes during time aggregation;and(4)convergence-optimized synchronization that dynamically adjusts parameters using theoretical stability bounds.We provide rigorous convergence analysis including a closed-form expression for convergence time,and validate the protocol through both simulations and realworld experiments on a controlled 16-node testbed.Under Sybil attacks with five malicious nodes within this testbed,iSTSP maintains synchronization error increases under 12%and achieves a rapid convergence.Compared to state-ofthe-art protocols like TPSN,SE-FTSP,and MMAR-CTS,iSTSP offers 60%faster detection,broader threat coverage,and more than 7 times lower synchronization error,with a modest 9.3%energy overhead over 8 h.We argue this is an acceptable trade-off for mission-critical deployments requiring guaranteed security.These findings demonstrate iSTSP’s potential as a reliable solution for secure WSN synchronization and motivate future work on large-scale IoT deployments and integration with energy-efficient communication protocols.展开更多
Today, the advent of quantum computers and algorithms is calling into question the semantic security of symmetrical and asymmetrical cryptosystems. The security of objects connected to the network, which must provide ...Today, the advent of quantum computers and algorithms is calling into question the semantic security of symmetrical and asymmetrical cryptosystems. The security of objects connected to the network, which must provide a security service and protect the privacy of users by providing protection against attacks such as identity theft, denial of service, eavesdropping and unauthorised access to personal and sensitive data. It is therefore necessary to find a robust method of using the key that is effective in protecting and preventing data tampering. In this paper, we design and implement a security and data protection method using a key generated on the basis of electromagnetic wave propagation theories. Modelling and implementation of a data security and protection method using a key generated on the basis of electromagnetic wave propagation theories.展开更多
Traditional multi-level security(MLS)systems have the defect of centralizing authorized facilities,which is difficult to meet the security requirements of modern distributed peer-to-peer network architecture.Blockchai...Traditional multi-level security(MLS)systems have the defect of centralizing authorized facilities,which is difficult to meet the security requirements of modern distributed peer-to-peer network architecture.Blockchain is widely used in the field of access control with its decentralization,traceability and non-defective modification.Combining the blockchain technology and the Bell-LaPadula model,we propose a new access control model,named BCBLPM,for MLS environment.The“multi-chain”blockchain architecture is used for dividing resources into isolated access domains,providing a fine-grained data protection mechanism.The access control policies are implemented by smart contracts deployed in each access domain,so that the side chains of different access domains storage access records from outside and maintain the integrity of the records.Finally,we implement the BC-BLPM prototype system using the Hyperledger Fabric.The experimental and analytical results show that the model can adapt well to the needs of multi-level security environment,and it has the feasibility of application in actual scenarios.展开更多
The differences among the extended Canetti & Krawezyk 2007 model (ECK2007) and other four models, i.e., the Bellare & Rogaway (1993, 1995)models (BR93,BR95), the Bellare, Pointcheval & Rogaway (2000) model ...The differences among the extended Canetti & Krawezyk 2007 model (ECK2007) and other four models, i.e., the Bellare & Rogaway (1993, 1995)models (BR93,BR95), the Bellare, Pointcheval & Rogaway (2000) model (BPR2000) and the Canetti & Krawczyk (2001) model (CK2001) are given. The relative strength of security among these models is analyzed. To support the implication or non-implication relation among these models, the formal proof or the counter-example is provided.展开更多
This paper is a continuation of our last paper [1] which describes the theory of Virt-BLP model. Based on Virt-BLP model,this paper implements a mandatory access control(MAC) framework applicable to multi-level securi...This paper is a continuation of our last paper [1] which describes the theory of Virt-BLP model. Based on Virt-BLP model,this paper implements a mandatory access control(MAC) framework applicable to multi-level security(MLS) in Xen. The Virt-BLP model is the theoretical basis of this MAC framework,and this MAC framework is the implementation of Virt-BLP model. Our last paper focuses on Virt-BLP model,while this paper concentrates on the design and implementation of MAC framework. For there is no MAC framework applicable to MLS in virtual machine system at present,our MAC framework fills the blank by applying Virt-BLP model to Xen,which is better than current researches to guarantee the security of communication between virtual machines(VMs) . The experimental results show that our MAC framework is effective to manage the communication between VMs.展开更多
Ecological security is a vital problem that people all over the world today have to face and solve, and the situation of ecological security is getting more and more severe and has begun to impede heavily the sustaina...Ecological security is a vital problem that people all over the world today have to face and solve, and the situation of ecological security is getting more and more severe and has begun to impede heavily the sustainable development of social economy. Ecological environment pre-warning has become a hotspot for the modern environment science. This paper introduces the theories of ecological security pre-warning and tries to constitute a pre-warning model of ecological security. In terms of pressure-state-response model, the pre-warning guide line of ecological security is constructed while the pre-warning degree judging model of ecological security is established based on fuzzy optimization. As a case, the model is used to assess the present condition pre-warning of the ecological security of Anhui Province. The result is in correspondence with the real condition: the ecological security situations of 8 cities are dangerous and 9 cities are secure. The result shows that this model is scientific and effective for regional ecological security pre-warning.展开更多
Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when ...Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data.展开更多
基金supported by the National Key R&D Program of China under Grant No.2022YFB3103500the National Natural Science Foundation of China under Grants No.62402087 and No.62020106013+3 种基金the Sichuan Science and Technology Program under Grant No.2023ZYD0142the Chengdu Science and Technology Program under Grant No.2023-XT00-00002-GXthe Fundamental Research Funds for Chinese Central Universities under Grants No.ZYGX2020ZB027 and No.Y030232063003002the Postdoctoral Innovation Talents Support Program under Grant No.BX20230060.
文摘The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.Despite their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant challenges.These challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy leakage.Previous works often conflated safety issues with security concerns.In contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of LLMs.Building on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in LLMs.Additionally,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats.
文摘Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, software testing and analysis are two of the critical methods, which significantly benefit from the advancements in deep learning technologies. Due to the successful use of deep learning in software security, recently,researchers have explored the potential of using large language models(LLMs) in this area. In this paper, we systematically review the results focusing on LLMs in software security. We analyze the topics of fuzzing, unit test, program repair, bug reproduction, data-driven bug detection, and bug triage. We deconstruct these techniques into several stages and analyze how LLMs can be used in the stages. We also discuss the future directions of using LLMs in software security, including the future directions for the existing use of LLMs and extensions from conventional deep learning research.
文摘ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential security risks that need to be carefully evaluated and addressed. In this survey, we provide an overview of the current state of research on security of using ChatGPT, with aspects of bias, disinformation, ethics, misuse,attacks and privacy. We review and discuss the literature on these topics and highlight open research questions and future directions.Through this survey, we aim to contribute to the academic discourse on AI security, enriching the understanding of potential risks and mitigations. We anticipate that this survey will be valuable for various stakeholders involved in AI development and usage, including AI researchers, developers, policy makers, and end-users.
文摘Recently,the 2025 Central Conference on Work Related to Neighboring Countries was held in Beijing.As an important theoretical innovation,the conference emphasized for the first time pursuing“the model of security for Asia that features sharing weal and woe,seeking common ground while shelving differences,and prioritizing dialogue and consultation.”1 This fully demonstrates that China prioritizes neighborhood on its diplomatic agenda,regards security and stability in its neighborhood as a core strategic support,and is ready to collaborate with neighboring countries for a future of shared peace,development,and prosperity.
基金The Fundamental Research Funds for the Central Universities(No.2242022k60005)Purple Mountain Laboratories for Network and Communication Security,and National Science Foundation(No.62233003).
文摘In response to the current gaps in ef-fective proactive defense methods within applica-tion security and the limited integration of security components with applications,this paper proposes a biomimetic security model,called NeuroShield,specifically designed for web applications.Inspired by the“perception-strategy-effect-feedback”mechanism of the human nervous control system,the model inte-grates biomimetic elements akin of neural receptors and effectors into applications.This integration fa-cilitates a multifaceted approach to security:enabling data introspection for detailed perception and regula-tion of application behavior,providing proactive de-fense capabilities to detect and block security risks in real-time,and incorporating feedback optimization to continuously adjust and enhance security strategies based on prevailing conditions.Experimental results affirm the efficacy of this neural control mechanism-based biomimetic security model,demonstrating a proactive defense success rate exceeding 95%,thereby offering a theoretical and structural foundation for biomimetic immunity in web applications.
文摘Security is the cor nerstone of a country's peace and stability and the prerequisite for its survival and development.All countries around the world regard security as their top priority.Since most Asian countries suffered from colonial aggression and plundering for a long time in history,they as a whole attach special importance to national security.
文摘Processing police incident data in public security involves complex natural language processing(NLP)tasks,including information extraction.This data contains extensive entity information—such as people,locations,and events—while also involving reasoning tasks like personnel classification,relationship judgment,and implicit inference.Moreover,utilizing models for extracting information from police incident data poses a significant challenge—data scarcity,which limits the effectiveness of traditional rule-based and machine-learning methods.To address these,we propose TIPS.In collaboration with public security experts,we used de-identified police incident data to create templates that enable large language models(LLMs)to populate data slots and generate simulated data,enhancing data density and diversity.We then designed schemas to efficiently manage complex extraction and reasoning tasks,constructing a high-quality dataset and fine-tuning multiple open-source LLMs.Experiments showed that the fine-tuned ChatGLM-4-9B model achieved an F1 score of 87.14%,nearly 30%higher than the base model,significantly reducing error rates.Manual corrections further improved performance by 9.39%.This study demonstrates that combining largescale pre-trained models with limited high-quality domain-specific data can greatly enhance information extraction in low-resource environments,offering a new approach for intelligent public security applications.
文摘Large models,such as large language models(LLMs),vision-language models(VLMs),and multimodal agents,have become key elements in artificial intelli⁃gence(AI)systems.Their rapid development has greatly improved perception,generation,and decision-making in various fields.However,their vast scale and complexity bring about new security challenges.Issues such as backdoor vulnerabilities during training,jailbreaking in multimodal rea⁃soning,and data provenance and copyright auditing have made security a critical focus for both academia and industry.
基金National Natural Science Foundation of China(Nos.42301473,42271424,42171397)Chinese Postdoctoral Innovation Talents Support Program(No.BX20230299)+2 种基金China Postdoctoral Science Foundation(No.2023M742884)Natural Science Foundation of Sichuan Province(Nos.24NSFSC2264,2025ZNSFSC0322)Key Research and Development Project of Sichuan Province(No.24ZDYF0633).
文摘As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes.
基金funded by Deanship of Research and Graduate Studies at King Khalid University.The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Group Project under grant number(RGP.2/556/45).
文摘Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematical and computer modeling of a novel two-dimensional(2D)chaotic system for secure key generation in quantum image encryption(QIE).The proposed map employs trigonometric perturbations in conjunction with rational-saturation functions and hence,named as Trigonometric-Rational-Saturation(TRS)map.Through rigorous mathematical analysis and computational simulations,the map is extensively evaluated for bifurcation behaviour,chaotic trajectories,and Lyapunov exponents.The security evaluation validates the map’s non-linearity,unpredictability,and sensitive dependence on initial conditions.In addition,the proposed TRS map has further been tested by integrating it in a QIE scheme.The QIE scheme first quantum-encodes the classic image using the Novel Enhanced Quantum Representation(NEQR)technique,the TRS map is used for the generation of secure diffusion key,which is XOR-ed with the quantum-ready image to obtain the encrypted images.The security evaluation of the QIE scheme demonstrates superior security of the encrypted images in terms of statistical security attacks and also against Differential attacks.The encrypted images exhibit zero correlation and maximum entropy with demonstrating strong resilience due to 99.62%and 33.47%results for Number of Pixels Change Rate(NPCR)and Unified Average Changing Intensity(UACI).The results validate the effectiveness of TRS-based quantum encryption scheme in securing digital images against emerging quantum threats,making it suitable for secure image encryption in IoT and edge-based applications.
文摘This paper reviews the history and lessons of global oil crises while exploring the establishment of a quantitative evaluation model for oil security with Chinese characteristics.Using principal component analysis,it constructs an oil security evaluation indicator system for China with two main-level indicators:foreign oil dependency and its impacts,and market intervention and security assurance.
基金supported in part by the National Natural Science Foundation of China under Grants 62102450,62272478 and the Independent Research Project of a Certain Unit under Grant ZZKY20243127。
文摘Traditional steganography conceals information by modifying cover data,but steganalysis tools easily detect such alterations.While deep learning-based steganography often involves high training costs and complex deployment.Diffusion model-based methods face security vulnerabilities,particularly due to potential information leakage during generation.We propose a fixed neural network image steganography framework based on secure diffu-sion models to address these challenges.Unlike conventional approaches,our method minimizes cover modifications through neural network optimization,achieving superior steganographic performance in human visual perception and computer vision analyses.The cover images are generated in an anime style using state-of-the-art diffusion models,ensuring the transmitted images appear more natural.This study introduces fixed neural network technology that allows senders to transmit only minimal critical information alongside stego-images.Recipients can accurately reconstruct secret images using this compact data,significantly reducing transmission overhead compared to conventional deep steganography.Furthermore,our framework innovatively integrates ElGamal,a cryptographic algorithm,to protect critical information during transmission,enhancing overall system security and ensuring end-to-end information protection.This dual optimization of payload reduction and cryptographic reinforcement establishes a new paradigm for secure and efficient image steganography.
文摘The rapid integration of artificial intelligence(AI)into software development,driven by large language models(LLMs),is reshaping the role of programmers from traditional coders into strategic collaborators within Industry 4.0 ecosystems.This qualitative study employs a hermeneutic phenomenological approach to explore the lived experiences of Information Technology(IT)professionals as they navigate a dynamic technological landscape marked by intelligent automation,shifting professional identities,and emerging ethical concerns.Findings indicate that developers are actively adapting to AI-augmented environments by engaging in continuous upskilling,prompt engineering,interdisciplinary collaboration,and heightened ethical awareness.However,participants also voiced growing concerns about the reliability and security of AI-generated code,noting that these tools can introduce hidden vulnerabilities and reduce critical engagement due to automation bias.Many described instances of flawed logic,insecure patterns,or syntactically correct but contextually inappropriate suggestions,underscoring the need for rigorous human oversight.Additionally,the study reveals anxieties around job displacement and the gradual erosion of fundamental coding skills,particularly in environments where AI tools dominate routine development tasks.These findings highlight an urgent need for educational reforms,industry standards,and organizational policies that prioritize both technical robustness and the preservation of human expertise.As AI becomes increasingly embedded in software engineering workflows,this research offers timely insights into how developers and organizations can responsibly integrate intelligent systems to promote accountability,resilience,and innovation across the software development lifecycle.
基金this project under Geran Putra Inisiatif(GPI)with reference of GP-GPI/2023/976210。
文摘Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks(WSNs),especially in security-critical,time-sensitive applications.However,most existing protocols degrade substantially under malicious interference.We introduce iSTSP,an Intelligent and Secure Time Synchronization Protocol that implements a four-stage defense pipeline to ensure robust,precise synchronization even in hostile environments:(1)trust preprocessing that filters node participation using behavioral trust scoring;(2)anomaly isolation employing a lightweight autoencoder to detect and excise malicious nodes in real time;(3)reliability-weighted consensus that prioritizes high-trust nodes during time aggregation;and(4)convergence-optimized synchronization that dynamically adjusts parameters using theoretical stability bounds.We provide rigorous convergence analysis including a closed-form expression for convergence time,and validate the protocol through both simulations and realworld experiments on a controlled 16-node testbed.Under Sybil attacks with five malicious nodes within this testbed,iSTSP maintains synchronization error increases under 12%and achieves a rapid convergence.Compared to state-ofthe-art protocols like TPSN,SE-FTSP,and MMAR-CTS,iSTSP offers 60%faster detection,broader threat coverage,and more than 7 times lower synchronization error,with a modest 9.3%energy overhead over 8 h.We argue this is an acceptable trade-off for mission-critical deployments requiring guaranteed security.These findings demonstrate iSTSP’s potential as a reliable solution for secure WSN synchronization and motivate future work on large-scale IoT deployments and integration with energy-efficient communication protocols.
文摘Today, the advent of quantum computers and algorithms is calling into question the semantic security of symmetrical and asymmetrical cryptosystems. The security of objects connected to the network, which must provide a security service and protect the privacy of users by providing protection against attacks such as identity theft, denial of service, eavesdropping and unauthorised access to personal and sensitive data. It is therefore necessary to find a robust method of using the key that is effective in protecting and preventing data tampering. In this paper, we design and implement a security and data protection method using a key generated on the basis of electromagnetic wave propagation theories. Modelling and implementation of a data security and protection method using a key generated on the basis of electromagnetic wave propagation theories.
文摘Traditional multi-level security(MLS)systems have the defect of centralizing authorized facilities,which is difficult to meet the security requirements of modern distributed peer-to-peer network architecture.Blockchain is widely used in the field of access control with its decentralization,traceability and non-defective modification.Combining the blockchain technology and the Bell-LaPadula model,we propose a new access control model,named BCBLPM,for MLS environment.The“multi-chain”blockchain architecture is used for dividing resources into isolated access domains,providing a fine-grained data protection mechanism.The access control policies are implemented by smart contracts deployed in each access domain,so that the side chains of different access domains storage access records from outside and maintain the integrity of the records.Finally,we implement the BC-BLPM prototype system using the Hyperledger Fabric.The experimental and analytical results show that the model can adapt well to the needs of multi-level security environment,and it has the feasibility of application in actual scenarios.
文摘The differences among the extended Canetti & Krawezyk 2007 model (ECK2007) and other four models, i.e., the Bellare & Rogaway (1993, 1995)models (BR93,BR95), the Bellare, Pointcheval & Rogaway (2000) model (BPR2000) and the Canetti & Krawczyk (2001) model (CK2001) are given. The relative strength of security among these models is analyzed. To support the implication or non-implication relation among these models, the formal proof or the counter-example is provided.
基金supported by National Key Basic Research and Development Plan (973 Plan) of China (No. 2007CB310900)National Natural Science Foundation of China (No. 90612018, 90715030 and 60970008)
文摘This paper is a continuation of our last paper [1] which describes the theory of Virt-BLP model. Based on Virt-BLP model,this paper implements a mandatory access control(MAC) framework applicable to multi-level security(MLS) in Xen. The Virt-BLP model is the theoretical basis of this MAC framework,and this MAC framework is the implementation of Virt-BLP model. Our last paper focuses on Virt-BLP model,while this paper concentrates on the design and implementation of MAC framework. For there is no MAC framework applicable to MLS in virtual machine system at present,our MAC framework fills the blank by applying Virt-BLP model to Xen,which is better than current researches to guarantee the security of communication between virtual machines(VMs) . The experimental results show that our MAC framework is effective to manage the communication between VMs.
基金Undertheauspicesof China Postdoctoral Science Foundation (No.2004035175), and the Natural Science Founda-tionof Anhui Provincial Bureau of Education (No.2003KJ043ZD)
文摘Ecological security is a vital problem that people all over the world today have to face and solve, and the situation of ecological security is getting more and more severe and has begun to impede heavily the sustainable development of social economy. Ecological environment pre-warning has become a hotspot for the modern environment science. This paper introduces the theories of ecological security pre-warning and tries to constitute a pre-warning model of ecological security. In terms of pressure-state-response model, the pre-warning guide line of ecological security is constructed while the pre-warning degree judging model of ecological security is established based on fuzzy optimization. As a case, the model is used to assess the present condition pre-warning of the ecological security of Anhui Province. The result is in correspondence with the real condition: the ecological security situations of 8 cities are dangerous and 9 cities are secure. The result shows that this model is scientific and effective for regional ecological security pre-warning.
基金supported by the National Nature Science Foundation of China(Grant No.71401052)the National Social Science Foundation of China(Grant No.17BGL156)the Key Project of the National Social Science Foundation of China(Grant No.14AZD024)
文摘Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data.