This paper presents an innovative Soft Design Science Methodology for improving information systems security using multi-layered security approach. The study applied Soft Design Science Methodology to address the prob...This paper presents an innovative Soft Design Science Methodology for improving information systems security using multi-layered security approach. The study applied Soft Design Science Methodology to address the problematic situation on how information systems security can be improved. In addition, Soft Design Science Methodology was compounded with mixed research methodology. This holistic approach helped for research methodology triangulation. The study assessed security requirements and developed a framework for improving information systems security. The study carried out maturity level assessment to determine security status quo in the education sector in Tanzania. The study identified security requirements gap (IT security controls, IT security measures) using ISO/IEC 21827: Systems Security Engineering-Capability Maturity Model (SSE-CMM) with a rating scale of 0 - 5. The results of this study show that maturity level across security domain is 0.44 out of 5. The finding shows that the implementation of IT security controls and security measures for ensuring security goals are lacking or conducted in ad-hoc. Thus, for improving the security of information systems, organisations should implement security controls and security measures in each security domain (multi-layer security). This research provides a framework for enhancing information systems security during capturing, processing, storage and transmission of information. This research has several practical contributions. Firstly, it contributes to the body of knowledge of information systems security by providing a set of security requirements for ensuring information systems security. Secondly, it contributes empirical evidence on how information systems security can be improved. Thirdly, it contributes on the applicability of Soft Design Science Methodology on addressing the problematic situation in information systems security. The research findings can be used by decision makers and lawmakers to improve existing cyber security laws, and enact laws for data privacy and sharing of open data.展开更多
This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi...This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi analytical solutions of temperature increment and displacement of multi-layered composite structures are obtained by using the Laplace transform method,upon which the effects of thermal resistance coefficient,partition coefficient,thermal conductivity ratio and heat capacity ratio on the responses are studied.The results show that the generalized imperfect thermal contact model can realistically describe the imperfect thermal contact problem.Accordingly,it may degenerate into other thermal contact models by adjusting the thermal resistance coefficient and partition coefficient.展开更多
A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(...A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(FSS),which is printed on PI using conductive ink.To investigate this absorber,both one-dimensional analogous circuit analysis and three-dimensional full-wave simulation based on a physical model are provided.Various crucial electromagnetic properties,such as absorption,effective impedance,complex permittivity and permeability,electric current distribution and magnetic field distribution at resonant peak points,are studied in detail.Analysis shows that the working frequency of this absorber covers entire S,C,X,Ku,K and Ka bands with a minimum thickness of 0.098λ_(max)(λ_(max) is the maximum wavelength in the absorption band),and the fractional bandwidth(FBW)reaches 181.1%.Moreover,the reflection coefficient is less than-10 dB at 1.998 GHz–40.056 GHz at normal incidence,and the absorptivity of the plane wave is greater than 80%when the incident angle is smaller than 50°.Furthermore,the proposed absorber is experimentally validated,and the experimental results show good agreement with the simulation results,which demonstrates the potential applicability of this absorber at 2 GHz–40 GHz.展开更多
Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory...Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.展开更多
At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-laye...At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components.展开更多
Cardiovascular diseases(CVDs)remain the leading cause of morbidity and mortality worldwide,necessitating innovative diagnostic and prognostic strategies.Traditional biomarkers like C-reactive protein,uric acid,troponi...Cardiovascular diseases(CVDs)remain the leading cause of morbidity and mortality worldwide,necessitating innovative diagnostic and prognostic strategies.Traditional biomarkers like C-reactive protein,uric acid,troponin,and natriuretic peptides play crucial roles in CVD management,yet they are often limited by sensitivity and specificity constraints.This narrative review critically examines the emerging landscape of cardiac biomarkers and advocates for a multiple-marker approach to enhance early detection,prognosis,and risk stratification of CVD.In recent years,several novel biomarkers have shown promise in revolutionizing CVD diagnostics.Gamma-glutamyltransferase,microRNAs,endothelial microparticles,placental growth factor,trimethylamine N-oxide,retinol-binding protein 4,copeptin,heart-type fatty acid-binding protein,galectin-3,growth differentiation factor-15,soluble suppression of tumorigenicity 2,fibroblast growth factor 23,and adrenomedullin have emerged as significant indicators of CV health.These biomarkers provide insights into various pathophysiological processes,such as oxidative stress,endothelial dysfunction,inflammation,metabolic disturbances,and myocardial injury.The integration of these novel biomarkers with traditional ones offers a more comprehensive understanding of CVD mechanisms.This multiple-marker approach can improve diagnostic accuracy,allowing for better risk stratification and more personalized treatment strategies.This review underscores the need for continued research to validate the clinical utility of these biomarkers and their potential incorporation into routine clinical practice.By leveraging the strengths of both traditional and novel biomarkers,precise therapeutic plans can be developed,thereby improving the management and prognosis of patients with CVDs.The ongoing exploration and validation of these biomarkers are crucial for advancing CV care and addressing the limitations of current diagnostic tools.展开更多
The progressive loss of dopaminergic neurons in affected patient brains is one of the pathological features of Parkinson's disease,the second most common human neurodegenerative disease.Although the detailed patho...The progressive loss of dopaminergic neurons in affected patient brains is one of the pathological features of Parkinson's disease,the second most common human neurodegenerative disease.Although the detailed pathogenesis accounting for dopaminergic neuron degeneration in Parkinson's disease is still unclear,the advancement of stem cell approaches has shown promise for Parkinson's disease research and therapy.The induced pluripotent stem cells have been commonly used to generate dopaminergic neurons,which has provided valuable insights to improve our understanding of Parkinson's disease pathogenesis and contributed to anti-Parkinson's disease therapies.The current review discusses the practical approaches and potential applications of induced pluripotent stem cell techniques for generating and differentiating dopaminergic neurons from induced pluripotent stem cells.The benefits of induced pluripotent stem cell-based research are highlighted.Various dopaminergic neuron differentiation protocols from induced pluripotent stem cells are compared.The emerging three-dimension-based brain organoid models compared with conventional two-dimensional cell culture are evaluated.Finally,limitations,challenges,and future directions of induced pluripotent stem cell–based approaches are analyzed and proposed,which will be significant to the future application of induced pluripotent stem cell-related techniques for Parkinson's disease.展开更多
This article provides a comprehensive analysis of the study by Hou et al,focusing on the complex interplay between psychological and physical factors in the postoperative recovery(POR)of patients with perianal disease...This article provides a comprehensive analysis of the study by Hou et al,focusing on the complex interplay between psychological and physical factors in the postoperative recovery(POR)of patients with perianal diseases.The study sheds light on how illness perception,anxiety,and depression significantly influence recovery outcomes.Hou et al developed a predictive model that demonstrated high accuracy in identifying patients at risk of poor recovery.The article explores the critical role of pre-operative psychological assessment,highlighting the need for mental health support and personalized recovery plans in enhancing POR quality.A multidisciplinary approach,integrating mental health professionals with surgeons,anesthesiologists,and other specialists,is emphasized to ensure comprehensive care for patients.The study’s findings serve as a call to integrate psychological care into surgical practice to optimize outcomes for patients with perianal diseases.展开更多
Objective: To explore the effect of Health Action Process Approach (HAPA) theory in patients with type D personality psoriasis. Methods: A total of 66 patients with type D personality psoriasis admitted to the dermato...Objective: To explore the effect of Health Action Process Approach (HAPA) theory in patients with type D personality psoriasis. Methods: A total of 66 patients with type D personality psoriasis admitted to the dermatology department of a top-three hospital in Jingzhou City from November 2022 to July 2023 were selected and divided into control group and test group with 33 cases in each group by random number table method. The control group received routine health education, and the experimental group received health education based on the HAPA theory. Chronic disease self-efficacy scale, hospital anxiety and depression scale and skin disease quality of life scale were used to evaluate the effect of intervention. Results: After 3 months of intervention, the scores of self-efficacy in experimental group were higher than those in control group (P P Conclusion: Health education based on the theory of HAPA can enhance the self-efficacy of patients with type D personality psoriasis, relieve negative emotions and improve their quality of life.展开更多
The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging at...The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems.展开更多
BACKGROUND The root of mesentery dissection is one of the critical maneuvers,especially in borderline resectable pancreatic head cancer.Intra-abdominal chyle leak(CL)including chylous ascites may ensue in up to 10%of ...BACKGROUND The root of mesentery dissection is one of the critical maneuvers,especially in borderline resectable pancreatic head cancer.Intra-abdominal chyle leak(CL)including chylous ascites may ensue in up to 10%of patients after pancreatic resections.Globally recognized superior mesenteric artery(SMA)first approaches are invariably performed.The mesenteric dissection through the inferior infracolic approach has been discussed in this study emphasizing its post-operative impact on CL which is the cornerstone of this study.AIM To assess incidence,risk factors,clinical impact of CL following root of mesentery dissection,and the different treatment modalities.METHODS This is a retrospective study incorporating the patients who underwent dissection of the root of mesentery with inferior infracolic SMA first approach pancreat-oduodenectomy for the ventral body and uncinate mass of pancreas in the Department of Gastrointestinal and General Surgery of Kathmandu Medical College and Teaching Hospital from January 1,2021 to February 28,2024.Intraop-erative findings and postoperative outcomes were analyzed.RESULTS In three years,ten patients underwent root of mesentery dissection with inferior infracolic SMA first approach pancreatoduodenectomy.The mean age was 67.6 years with a male-to-female ratio of 4:5.CL was seen in four patients.With virtue of CL,Clavien-Dindo grade Ⅱ or higher morbidity was observed in four patients.Two patients had a hospital stay of more than 20 days with the former having a delayed gastric emptying and the latter with long-term total parenteral nutrition requirement.The mean operative time was 330 minutes.Curative resection was achieved in 100%of the patients.The mean duration of the intensive care unit and hospital stay were 2.55±1.45 days and 15.7±5.32 days,respectively.CONCLUSION Root of mesentery dissection with lymphadenectomy and vascular resection correlated with occurrence of CL.After complete curative resection,these were managed with total parenteral nutrition without adversely impacting outcome.展开更多
In response to the common problems in college English writing teaching,such as the separation of learning and application,students’low interest in writing,and difficulties in expression,this paper,based on the theore...In response to the common problems in college English writing teaching,such as the separation of learning and application,students’low interest in writing,and difficulties in expression,this paper,based on the theoretical framework of the production-oriented approach(POA)proposed by Professor Wen Qiufang,designed and implemented a set of IELTS writing teaching plan.This plan takes“motivating,enabling,and assessing”as the core teaching process,and selects typical IELTS argumentative essay topics(such as food diversity)to create real communication scenarios.In the motivating stage,diverse inputs are used to stimulate students’interest and expose their language weaknesses;in the enabling stage,language knowledge,viewpoint generation,and text structure are focused on for targeted input and training;in the assessing stage,a combination of teacher-student cooperation and peer evaluation is adopted to guide students to identify and correct deficiencies in language use.The research results show that the POA model can effectively enhance students’writing interest,active learning awareness,and writing ability,particularly in overcoming vocabulary poverty and material shortages,as well as improving language accuracy and expression richness.This provides an operational theoretical basis and practical path for improving the teaching effect of IELTS writing.展开更多
Background:Dorsal approach is the potentially effective strategy for minimally invasive liver resection.This study aimed to compare the outcomes between robot-assisted and laparoscopic hemihepatectomy through dorsal a...Background:Dorsal approach is the potentially effective strategy for minimally invasive liver resection.This study aimed to compare the outcomes between robot-assisted and laparoscopic hemihepatectomy through dorsal approach.Methods:We compared the patients who underwent robot-assisted hemihepatectomy(Rob-HH)and who had laparoscopic hemihepatectomy(Lap-HH)through dorsal approach between January 2020 and December 2022.A 1:1 propensity score-matching(PSM)analysis was performed to minimize bias and confounding factors.Results:Ninety-six patients were included,41 with Rob-HH and 55 with Lap-HH.Among them,58 underwent left hemihepatectomy(LHH)and 38 underwent right hemihepatectomy(RHH).Compared with LapHH group,patients with Rob-HH had less estimated blood loss(median:100.0 vs.300.0 m L,P=0.016),lower blood transfusion rates(4.9%vs.29.1%,P=0.003)and postoperative complication rates(26.8%vs.54.5%,P=0.016).These significant differences consistently existed after PSM and in the LHH subgroups.Furthermore,robot-assisted LHH was associated with decreased Pringle duration(45 vs.60 min,P=0.047).RHH subgroup analysis showed that compared with Lap-RHH,Rob-RHH was associated with less estimated blood loss(200.0 vs.400.0 m L,P=0.013).No significant differences were found in other perioperative outcomes among pre-and post-PSM cohorts,such as Pringle duration,operative time,and hospital stay.Conclusions:The dorsal approach was a safe and feasible strategy for hemi-hepatectomy with favorable outcomes under robot-assisted system in reducing intraoperative blood loss,transfusion,and postoperative complications.展开更多
Enhancing the mechanical properties is crucial for polyimide films,but the mechanical properties(Young's modulus,tensile strength,and elongation at break)mutually constrain each other,complicating simultaneous enh...Enhancing the mechanical properties is crucial for polyimide films,but the mechanical properties(Young's modulus,tensile strength,and elongation at break)mutually constrain each other,complicating simultaneous enhancement via traditional trial-and-error methods.In this work,we proposed a materials genome approach to design and screen phenylethynyl-terminated polyimides for films with enhanced mechani-cal properties.We first established machine learning models to predict Young's modulus,tensile strength,and elongation at break to explore the chemical space containing thousands of candidate structures.The accuracies of the machine learning models were verified by molecular dynamics simulations on screened polyimides and experimental testing on three representative polyimide films.The performance advantages of the best-selected polyimides were analyzed by comparing well-known polyimides based on molecular dynamics simulations,and the structural rationale was revealed by"gene"analysis and feature importance evaluation.This work provides a cost-effective strategy for designing polyimide films withenhancedmechanical properties.展开更多
In recent years,the production-oriented approach has been applied in the field of teaching Chinese as a foreign language,providing a new perspective for language and cultural instruction.Currently,several issues exist...In recent years,the production-oriented approach has been applied in the field of teaching Chinese as a foreign language,providing a new perspective for language and cultural instruction.Currently,several issues exist in cultural teaching,such as the lack of in-depth cultural input,insufficient training in cross-cultural communication skills,and the over-stylization of cultural teaching in the classroom.The production-oriented approach offers a solution to these challenges.This paper seeks to introduce the production-oriented method into the teaching of Chinese culture as a foreign language,using silk culture as a case study for teaching design.The aim is to implement cultural teaching through a new instructional model and to promote the spread of Chinese silk culture.展开更多
Pelvic fractures are rare but severe injuries that severely affect patients’quality of life.Treatment of these fractures often involves invasive approaches with high risk of injuries to nervous structures,particularl...Pelvic fractures are rare but severe injuries that severely affect patients’quality of life.Treatment of these fractures often involves invasive approaches with high risk of injuries to nervous structures,particularly lumbosacral plexus.The introduction of minimally invasive surgical approaches,such as the lateral rectus approach,not only contributes to preserving lumbar plexus integrity in operated patients but also positively impacts their psychological well-being.Patients treated by surgical reduction of pelvic fractures with lumbosacral plexus injury often experience states of anxiety and depression.The lateral rectus approach is associated with lower levels of anxiety and depression compared to more invasive surgical techniques used for similar fractures.展开更多
This study explores the application of Production-Oriented Approach(POA)in teaching German to nursing students in colleges and universities.Focusing on the requirements of the German B1 exam,the study takes the themat...This study explores the application of Production-Oriented Approach(POA)in teaching German to nursing students in colleges and universities.Focusing on the requirements of the German B1 exam,the study takes the thematic unit of“Movement”as an example,and designs the teaching through the links of“drive-enable-evaluate”.The results show that POA effectively improves students’speaking and writing output,but there are still deficiencies in reading and listening.Accordingly,this study has proposed the strategies of“vocabulary in-depth facilitation”and“accurate matching of listening and writing”to optimize the input materials and skills training,achieve the goal of“learning and using”,and provide a practical path for teaching German for Special Purposes.This provides a practical path for the teaching of German for special purposes.展开更多
Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed ...Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed satellites,ground users now can be covered by multiple visible satellites,but also face complex handover issues with such massive high-mobility satellites in multi-layer.The end-to-end routing is also affected by the handover behavior.In this paper,we propose an intelligent handover strategy dedicated to multi-layer LEO mega-constellation networks.Firstly,an analytic model is utilized to rapidly estimate the end-to-end propagation latency as a key handover factor to construct a multi-objective optimization model.Subsequently,an intelligent handover strategy is proposed by employing the Dueling Double Deep Q Network(D3QN)-based deep reinforcement learning algorithm for single-layer constellations.Moreover,an optimal crosslayer handover scheme is proposed by predicting the latency-jitter and minimizing the cross-layer overhead.Simulation results demonstrate the superior performance of the proposed method in the multi-layer LEO mega-constellation,showcasing reductions of up to 8.2%and 59.5%in end-to-end latency and jitter respectively,when compared to the existing handover strategies.展开更多
This paper focuses on the numerical solution of a tumor growth model under a data-driven approach.Based on the inherent laws of the data and reasonable assumptions,an ordinary differential equation model for tumor gro...This paper focuses on the numerical solution of a tumor growth model under a data-driven approach.Based on the inherent laws of the data and reasonable assumptions,an ordinary differential equation model for tumor growth is established.Nonlinear fitting is employed to obtain the optimal parameter estimation of the mathematical model,and the numerical solution is carried out using the Matlab software.By comparing the clinical data with the simulation results,a good agreement is achieved,which verifies the rationality and feasibility of the model.展开更多
A structured method to generate conformal finite element(FE)mesh for realistic 3D woven textile reinforced composite is proposed.It is based on a voxel structure mesh reconstruction framework and aims to provide accur...A structured method to generate conformal finite element(FE)mesh for realistic 3D woven textile reinforced composite is proposed.It is based on a voxel structure mesh reconstruction framework and aims to provide accurate composite model at yarn level with material properties ready for use in commercial FE software.The textile representative volume element(RVE)is generated at filament level implementing the digital element method.Yarn structure is determined by filament bundle with variant cross-section shapes along its path.Yarn surface is then extracted using the Delaunay triangulation algorithm and a surface mesh is initiated.Then,the mesh domain is defined and constructed by voxel structure.Periodic boundary conditions,inter-yarn,and yarnmatrix interfaces are eliminated by re-mesh and mesh optimization.An element splitting rule is established to split the voxel unit into sub-elements to create smooth interface.A 3D orthogonal weave fabric reinforced composite is generated and simulated under compressive load.The composite structure and damage morphology are in good agreement with those of the experiment.展开更多
文摘This paper presents an innovative Soft Design Science Methodology for improving information systems security using multi-layered security approach. The study applied Soft Design Science Methodology to address the problematic situation on how information systems security can be improved. In addition, Soft Design Science Methodology was compounded with mixed research methodology. This holistic approach helped for research methodology triangulation. The study assessed security requirements and developed a framework for improving information systems security. The study carried out maturity level assessment to determine security status quo in the education sector in Tanzania. The study identified security requirements gap (IT security controls, IT security measures) using ISO/IEC 21827: Systems Security Engineering-Capability Maturity Model (SSE-CMM) with a rating scale of 0 - 5. The results of this study show that maturity level across security domain is 0.44 out of 5. The finding shows that the implementation of IT security controls and security measures for ensuring security goals are lacking or conducted in ad-hoc. Thus, for improving the security of information systems, organisations should implement security controls and security measures in each security domain (multi-layer security). This research provides a framework for enhancing information systems security during capturing, processing, storage and transmission of information. This research has several practical contributions. Firstly, it contributes to the body of knowledge of information systems security by providing a set of security requirements for ensuring information systems security. Secondly, it contributes empirical evidence on how information systems security can be improved. Thirdly, it contributes on the applicability of Soft Design Science Methodology on addressing the problematic situation in information systems security. The research findings can be used by decision makers and lawmakers to improve existing cyber security laws, and enact laws for data privacy and sharing of open data.
基金Projects(42477162,52108347,52178371,52168046,52178321,52308383)supported by the National Natural Science Foundation of ChinaProjects(2023C03143,2022C01099,2024C01219,2022C03151)supported by the Zhejiang Key Research and Development Plan,China+6 种基金Project(LQ22E080010)supported by the Exploring Youth Project of Zhejiang Natural Science Foundation,ChinaProject(LR21E080005)supported by the Outstanding Youth Project of Natural Science Foundation of Zhejiang Province,ChinaProject(2022M712964)supported by the Postdoctoral Science Foundation of ChinaProject(2023AFB008)supported by the Natural Science Foundation of Hubei Province for Youth,ChinaProject(202203)supported by Engineering Research Centre of Rock-Soil Drilling&Excavation and Protection,Ministry of Education,ChinaProject(202305-2)supported by the Science and Technology Project of Zhejiang Provincial Communication Department,ChinaProject(2021K256)supported by the Construction Research Founds of Department of Housing and Urban-Rural Development of Zhejiang Province,China。
文摘This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi analytical solutions of temperature increment and displacement of multi-layered composite structures are obtained by using the Laplace transform method,upon which the effects of thermal resistance coefficient,partition coefficient,thermal conductivity ratio and heat capacity ratio on the responses are studied.The results show that the generalized imperfect thermal contact model can realistically describe the imperfect thermal contact problem.Accordingly,it may degenerate into other thermal contact models by adjusting the thermal resistance coefficient and partition coefficient.
基金Project supported by the China Post-doctoral Science Foundation(Grant No.2020M671834)the Anhui Province Post-doctoral Science Foundation,China(Grant No.2020A397).
文摘A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(FSS),which is printed on PI using conductive ink.To investigate this absorber,both one-dimensional analogous circuit analysis and three-dimensional full-wave simulation based on a physical model are provided.Various crucial electromagnetic properties,such as absorption,effective impedance,complex permittivity and permeability,electric current distribution and magnetic field distribution at resonant peak points,are studied in detail.Analysis shows that the working frequency of this absorber covers entire S,C,X,Ku,K and Ka bands with a minimum thickness of 0.098λ_(max)(λ_(max) is the maximum wavelength in the absorption band),and the fractional bandwidth(FBW)reaches 181.1%.Moreover,the reflection coefficient is less than-10 dB at 1.998 GHz–40.056 GHz at normal incidence,and the absorptivity of the plane wave is greater than 80%when the incident angle is smaller than 50°.Furthermore,the proposed absorber is experimentally validated,and the experimental results show good agreement with the simulation results,which demonstrates the potential applicability of this absorber at 2 GHz–40 GHz.
文摘Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.
基金supported by the National Key Research and Development Program of China(No.2022YFB3404700)the National Natural Science Foundation of China(Nos.52105313 and 52275299)+2 种基金the Research and Development Program of Beijing Municipal Education Commission,China(No.KM202210005036)the Natural Science Foundation of Chongqing,China(No.CSTB2023NSCQ-MSX0701)the National Defense Basic Research Projects of China(No.JCKY2022405C002).
文摘At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components.
文摘Cardiovascular diseases(CVDs)remain the leading cause of morbidity and mortality worldwide,necessitating innovative diagnostic and prognostic strategies.Traditional biomarkers like C-reactive protein,uric acid,troponin,and natriuretic peptides play crucial roles in CVD management,yet they are often limited by sensitivity and specificity constraints.This narrative review critically examines the emerging landscape of cardiac biomarkers and advocates for a multiple-marker approach to enhance early detection,prognosis,and risk stratification of CVD.In recent years,several novel biomarkers have shown promise in revolutionizing CVD diagnostics.Gamma-glutamyltransferase,microRNAs,endothelial microparticles,placental growth factor,trimethylamine N-oxide,retinol-binding protein 4,copeptin,heart-type fatty acid-binding protein,galectin-3,growth differentiation factor-15,soluble suppression of tumorigenicity 2,fibroblast growth factor 23,and adrenomedullin have emerged as significant indicators of CV health.These biomarkers provide insights into various pathophysiological processes,such as oxidative stress,endothelial dysfunction,inflammation,metabolic disturbances,and myocardial injury.The integration of these novel biomarkers with traditional ones offers a more comprehensive understanding of CVD mechanisms.This multiple-marker approach can improve diagnostic accuracy,allowing for better risk stratification and more personalized treatment strategies.This review underscores the need for continued research to validate the clinical utility of these biomarkers and their potential incorporation into routine clinical practice.By leveraging the strengths of both traditional and novel biomarkers,precise therapeutic plans can be developed,thereby improving the management and prognosis of patients with CVDs.The ongoing exploration and validation of these biomarkers are crucial for advancing CV care and addressing the limitations of current diagnostic tools.
基金supported by Singapore National Medical Research Council(NMRC)grants,including CS-IRG,HLCA2022(to ZDZ),STaR,OF LCG 000207(to EKT)a Clinical Translational Research Programme in Parkinson's DiseaseDuke-Duke-NUS collaboration pilot grant(to ZDZ)。
文摘The progressive loss of dopaminergic neurons in affected patient brains is one of the pathological features of Parkinson's disease,the second most common human neurodegenerative disease.Although the detailed pathogenesis accounting for dopaminergic neuron degeneration in Parkinson's disease is still unclear,the advancement of stem cell approaches has shown promise for Parkinson's disease research and therapy.The induced pluripotent stem cells have been commonly used to generate dopaminergic neurons,which has provided valuable insights to improve our understanding of Parkinson's disease pathogenesis and contributed to anti-Parkinson's disease therapies.The current review discusses the practical approaches and potential applications of induced pluripotent stem cell techniques for generating and differentiating dopaminergic neurons from induced pluripotent stem cells.The benefits of induced pluripotent stem cell-based research are highlighted.Various dopaminergic neuron differentiation protocols from induced pluripotent stem cells are compared.The emerging three-dimension-based brain organoid models compared with conventional two-dimensional cell culture are evaluated.Finally,limitations,challenges,and future directions of induced pluripotent stem cell–based approaches are analyzed and proposed,which will be significant to the future application of induced pluripotent stem cell-related techniques for Parkinson's disease.
基金Supported by National Research Foundation of Korea,No.NRF-2021S1A5A8062526.
文摘This article provides a comprehensive analysis of the study by Hou et al,focusing on the complex interplay between psychological and physical factors in the postoperative recovery(POR)of patients with perianal diseases.The study sheds light on how illness perception,anxiety,and depression significantly influence recovery outcomes.Hou et al developed a predictive model that demonstrated high accuracy in identifying patients at risk of poor recovery.The article explores the critical role of pre-operative psychological assessment,highlighting the need for mental health support and personalized recovery plans in enhancing POR quality.A multidisciplinary approach,integrating mental health professionals with surgeons,anesthesiologists,and other specialists,is emphasized to ensure comprehensive care for patients.The study’s findings serve as a call to integrate psychological care into surgical practice to optimize outcomes for patients with perianal diseases.
文摘Objective: To explore the effect of Health Action Process Approach (HAPA) theory in patients with type D personality psoriasis. Methods: A total of 66 patients with type D personality psoriasis admitted to the dermatology department of a top-three hospital in Jingzhou City from November 2022 to July 2023 were selected and divided into control group and test group with 33 cases in each group by random number table method. The control group received routine health education, and the experimental group received health education based on the HAPA theory. Chronic disease self-efficacy scale, hospital anxiety and depression scale and skin disease quality of life scale were used to evaluate the effect of intervention. Results: After 3 months of intervention, the scores of self-efficacy in experimental group were higher than those in control group (P P Conclusion: Health education based on the theory of HAPA can enhance the self-efficacy of patients with type D personality psoriasis, relieve negative emotions and improve their quality of life.
基金Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2025R319)Riyadh,Saudi Arabia and Prince Sultan University for covering the article processing charges(APC)associated with this publication.Special acknowledgement to Automated Systems&Soft Computing Lab(ASSCL),Prince Sultan University,Riyadh,Saudi Arabia.
文摘The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems.
文摘BACKGROUND The root of mesentery dissection is one of the critical maneuvers,especially in borderline resectable pancreatic head cancer.Intra-abdominal chyle leak(CL)including chylous ascites may ensue in up to 10%of patients after pancreatic resections.Globally recognized superior mesenteric artery(SMA)first approaches are invariably performed.The mesenteric dissection through the inferior infracolic approach has been discussed in this study emphasizing its post-operative impact on CL which is the cornerstone of this study.AIM To assess incidence,risk factors,clinical impact of CL following root of mesentery dissection,and the different treatment modalities.METHODS This is a retrospective study incorporating the patients who underwent dissection of the root of mesentery with inferior infracolic SMA first approach pancreat-oduodenectomy for the ventral body and uncinate mass of pancreas in the Department of Gastrointestinal and General Surgery of Kathmandu Medical College and Teaching Hospital from January 1,2021 to February 28,2024.Intraop-erative findings and postoperative outcomes were analyzed.RESULTS In three years,ten patients underwent root of mesentery dissection with inferior infracolic SMA first approach pancreatoduodenectomy.The mean age was 67.6 years with a male-to-female ratio of 4:5.CL was seen in four patients.With virtue of CL,Clavien-Dindo grade Ⅱ or higher morbidity was observed in four patients.Two patients had a hospital stay of more than 20 days with the former having a delayed gastric emptying and the latter with long-term total parenteral nutrition requirement.The mean operative time was 330 minutes.Curative resection was achieved in 100%of the patients.The mean duration of the intensive care unit and hospital stay were 2.55±1.45 days and 15.7±5.32 days,respectively.CONCLUSION Root of mesentery dissection with lymphadenectomy and vascular resection correlated with occurrence of CL.After complete curative resection,these were managed with total parenteral nutrition without adversely impacting outcome.
文摘In response to the common problems in college English writing teaching,such as the separation of learning and application,students’low interest in writing,and difficulties in expression,this paper,based on the theoretical framework of the production-oriented approach(POA)proposed by Professor Wen Qiufang,designed and implemented a set of IELTS writing teaching plan.This plan takes“motivating,enabling,and assessing”as the core teaching process,and selects typical IELTS argumentative essay topics(such as food diversity)to create real communication scenarios.In the motivating stage,diverse inputs are used to stimulate students’interest and expose their language weaknesses;in the enabling stage,language knowledge,viewpoint generation,and text structure are focused on for targeted input and training;in the assessing stage,a combination of teacher-student cooperation and peer evaluation is adopted to guide students to identify and correct deficiencies in language use.The research results show that the POA model can effectively enhance students’writing interest,active learning awareness,and writing ability,particularly in overcoming vocabulary poverty and material shortages,as well as improving language accuracy and expression richness.This provides an operational theoretical basis and practical path for improving the teaching effect of IELTS writing.
基金supported by grants from the National Nat-ural Science Foundation of China(82173129)the Innova-tive and Entrepreneurial Talent Doctor of Jiangsu Province,China(JSSCBS20221872)。
文摘Background:Dorsal approach is the potentially effective strategy for minimally invasive liver resection.This study aimed to compare the outcomes between robot-assisted and laparoscopic hemihepatectomy through dorsal approach.Methods:We compared the patients who underwent robot-assisted hemihepatectomy(Rob-HH)and who had laparoscopic hemihepatectomy(Lap-HH)through dorsal approach between January 2020 and December 2022.A 1:1 propensity score-matching(PSM)analysis was performed to minimize bias and confounding factors.Results:Ninety-six patients were included,41 with Rob-HH and 55 with Lap-HH.Among them,58 underwent left hemihepatectomy(LHH)and 38 underwent right hemihepatectomy(RHH).Compared with LapHH group,patients with Rob-HH had less estimated blood loss(median:100.0 vs.300.0 m L,P=0.016),lower blood transfusion rates(4.9%vs.29.1%,P=0.003)and postoperative complication rates(26.8%vs.54.5%,P=0.016).These significant differences consistently existed after PSM and in the LHH subgroups.Furthermore,robot-assisted LHH was associated with decreased Pringle duration(45 vs.60 min,P=0.047).RHH subgroup analysis showed that compared with Lap-RHH,Rob-RHH was associated with less estimated blood loss(200.0 vs.400.0 m L,P=0.013).No significant differences were found in other perioperative outcomes among pre-and post-PSM cohorts,such as Pringle duration,operative time,and hospital stay.Conclusions:The dorsal approach was a safe and feasible strategy for hemi-hepatectomy with favorable outcomes under robot-assisted system in reducing intraoperative blood loss,transfusion,and postoperative complications.
基金supported by the National Key R&D Program of China(No.2022YFB3707302)the National Natural Science Foundation of China(Nos.52394271 , 52394270).
文摘Enhancing the mechanical properties is crucial for polyimide films,but the mechanical properties(Young's modulus,tensile strength,and elongation at break)mutually constrain each other,complicating simultaneous enhancement via traditional trial-and-error methods.In this work,we proposed a materials genome approach to design and screen phenylethynyl-terminated polyimides for films with enhanced mechani-cal properties.We first established machine learning models to predict Young's modulus,tensile strength,and elongation at break to explore the chemical space containing thousands of candidate structures.The accuracies of the machine learning models were verified by molecular dynamics simulations on screened polyimides and experimental testing on three representative polyimide films.The performance advantages of the best-selected polyimides were analyzed by comparing well-known polyimides based on molecular dynamics simulations,and the structural rationale was revealed by"gene"analysis and feature importance evaluation.This work provides a cost-effective strategy for designing polyimide films withenhancedmechanical properties.
文摘In recent years,the production-oriented approach has been applied in the field of teaching Chinese as a foreign language,providing a new perspective for language and cultural instruction.Currently,several issues exist in cultural teaching,such as the lack of in-depth cultural input,insufficient training in cross-cultural communication skills,and the over-stylization of cultural teaching in the classroom.The production-oriented approach offers a solution to these challenges.This paper seeks to introduce the production-oriented method into the teaching of Chinese culture as a foreign language,using silk culture as a case study for teaching design.The aim is to implement cultural teaching through a new instructional model and to promote the spread of Chinese silk culture.
文摘Pelvic fractures are rare but severe injuries that severely affect patients’quality of life.Treatment of these fractures often involves invasive approaches with high risk of injuries to nervous structures,particularly lumbosacral plexus.The introduction of minimally invasive surgical approaches,such as the lateral rectus approach,not only contributes to preserving lumbar plexus integrity in operated patients but also positively impacts their psychological well-being.Patients treated by surgical reduction of pelvic fractures with lumbosacral plexus injury often experience states of anxiety and depression.The lateral rectus approach is associated with lower levels of anxiety and depression compared to more invasive surgical techniques used for similar fractures.
文摘This study explores the application of Production-Oriented Approach(POA)in teaching German to nursing students in colleges and universities.Focusing on the requirements of the German B1 exam,the study takes the thematic unit of“Movement”as an example,and designs the teaching through the links of“drive-enable-evaluate”.The results show that POA effectively improves students’speaking and writing output,but there are still deficiencies in reading and listening.Accordingly,this study has proposed the strategies of“vocabulary in-depth facilitation”and“accurate matching of listening and writing”to optimize the input materials and skills training,achieve the goal of“learning and using”,and provide a practical path for teaching German for Special Purposes.This provides a practical path for the teaching of German for special purposes.
基金supported by the National Natural Science Foundation of China(No.62401597)Natural Science Foundation of Hunan Province,China(No.2024JJ6469)the Research Project of National University of Defense Technology,China(No.ZK22-02).
文摘Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed satellites,ground users now can be covered by multiple visible satellites,but also face complex handover issues with such massive high-mobility satellites in multi-layer.The end-to-end routing is also affected by the handover behavior.In this paper,we propose an intelligent handover strategy dedicated to multi-layer LEO mega-constellation networks.Firstly,an analytic model is utilized to rapidly estimate the end-to-end propagation latency as a key handover factor to construct a multi-objective optimization model.Subsequently,an intelligent handover strategy is proposed by employing the Dueling Double Deep Q Network(D3QN)-based deep reinforcement learning algorithm for single-layer constellations.Moreover,an optimal crosslayer handover scheme is proposed by predicting the latency-jitter and minimizing the cross-layer overhead.Simulation results demonstrate the superior performance of the proposed method in the multi-layer LEO mega-constellation,showcasing reductions of up to 8.2%and 59.5%in end-to-end latency and jitter respectively,when compared to the existing handover strategies.
基金National Natural Science Foundation of China(Project No.:12371428)Projects of the Provincial College Students’Innovation and Training Program in 2024(Project No.:S202413023106,S202413023110)。
文摘This paper focuses on the numerical solution of a tumor growth model under a data-driven approach.Based on the inherent laws of the data and reasonable assumptions,an ordinary differential equation model for tumor growth is established.Nonlinear fitting is employed to obtain the optimal parameter estimation of the mathematical model,and the numerical solution is carried out using the Matlab software.By comparing the clinical data with the simulation results,a good agreement is achieved,which verifies the rationality and feasibility of the model.
基金co-supported by the Chongqing Natural Science Foundation General Project,China(No.CSTB2022NSCQ-MSX1115)。
文摘A structured method to generate conformal finite element(FE)mesh for realistic 3D woven textile reinforced composite is proposed.It is based on a voxel structure mesh reconstruction framework and aims to provide accurate composite model at yarn level with material properties ready for use in commercial FE software.The textile representative volume element(RVE)is generated at filament level implementing the digital element method.Yarn structure is determined by filament bundle with variant cross-section shapes along its path.Yarn surface is then extracted using the Delaunay triangulation algorithm and a surface mesh is initiated.Then,the mesh domain is defined and constructed by voxel structure.Periodic boundary conditions,inter-yarn,and yarnmatrix interfaces are eliminated by re-mesh and mesh optimization.An element splitting rule is established to split the voxel unit into sub-elements to create smooth interface.A 3D orthogonal weave fabric reinforced composite is generated and simulated under compressive load.The composite structure and damage morphology are in good agreement with those of the experiment.