In this paper, we try to systematically study how to perform doctor recommendation in medical social net- works (MSNs). Specifically, employing a real-world medical dataset as the source in our work, we propose iBol...In this paper, we try to systematically study how to perform doctor recommendation in medical social net- works (MSNs). Specifically, employing a real-world medical dataset as the source in our work, we propose iBole, a novel hybrid multi-layer architecture, to solve this problem. First, we mine doctor-patient relationships/ties via a time-constraint probability factor graph model (TPFG). Second, we extract network features for ranking nodes. Finally, we propose RWR- Model, a doctor recommendation model via the random walk with restart method. Our real-world experiments validate the effectiveness of the proposed methods. Experimental results show that we obtain good accuracy in mining doctor-patient relationships from the network, and the doctor recommendation performance is better than that of the baseline algorithms: traditional Ranking SVM (RSVM) and the individual doctor recommendation model (IDR-Model). The results of our RWR-Model are more reasonable and satisfactory than those of the baseline approaches.展开更多
Under the background of the rapid development of ground mobile communication,the advantages of high coverage,survivability,and flexibility of satellite communication provide air support to the construction of space in...Under the background of the rapid development of ground mobile communication,the advantages of high coverage,survivability,and flexibility of satellite communication provide air support to the construction of space information network.According to the requirements of the future space information communication,a software-defined Space-Air-Ground Integrated network architecture was proposed.It consisted of layered structure satellite backbone network,deep space communication network,the stratosphere communication network and the ground network.The Space-Air-Ground Integrated network was supported by the satellite backbone network.It provided data relay for the missions such as deep space exploration and controlled the deep-space spacecraft when needed.In addition,it safeguarded the anti-destructibility of stratospheric communication and assisted the stratosphere to supplement ground network communication.In this paper,algorithm requirements of the congestion control and routing of satellite backbone protocols for heterogeneous users’services were proposed.The algorithm requirements of distinguishing different service objects for the deep space communication and stratospheric communication network protocols were described.Considering the realistic demand for the dynamic coverage of the satellite backbone network and node cost,the multi-layer satellite backbone network architecture was constructed.On this basis,the proposed Software-defined Space-Air-Ground Integrated network architecture could be built as a large,scalable and efficient communication network that could be integrated into space,air,and ground.展开更多
To solve the problem of the information share and services integration in population information system, we propose a multi-layer tree hierarchical architecture. The command (Web Service Call) is recursively muhicas...To solve the problem of the information share and services integration in population information system, we propose a multi-layer tree hierarchical architecture. The command (Web Service Call) is recursively muhicast from top layer of tree to bottom layer of tree and statistical data are gatbered from bottom layer to top layer. We implemented the architecture by using Web Services technology. In our implementation, client program is the requestor of Web Services, and all leaf nodes of the last layer are only the provider of Web Services. For those nodes of intermediate layers, every node is not only the provider of Web Services, but also the dispatcher of Web Services. We take population census as an cxample to describe the working flow of the architecture.展开更多
At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-laye...At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components.展开更多
With the rapid development of flexible wearable electronics,the demand for stretchable energy storage devices has surged.In this work,a novel gradient-layered architecture was design based on single-pore hollow lignin...With the rapid development of flexible wearable electronics,the demand for stretchable energy storage devices has surged.In this work,a novel gradient-layered architecture was design based on single-pore hollow lignin nanospheres(HLNPs)-intercalated two-dimensional transition metal carbide(Ti_(3)C_(2)T_(x) MXene)for fabricating highly stretchable and durable supercapacitors.By depositing and inserting HLNPs in the MXene layers with a bottom-up decreasing gradient,a multilayered porous MXene structure with smooth ion channels was constructed by reducing the overstacking of MXene lamella.Moreover,the micro-chamber architecture of thin-walled lignin nanospheres effectively extended the contact area between lignin and MXene to improve ion and electron accessibility,thus better utilizing the pseudocapacitive property of lignin.All these strategies effectively enhanced the capacitive performance of the electrodes.In addition,HLNPs,which acted as a protective phase for MXene layer,enhanced mechanical properties of the wrinkled stretchable electrodes by releasing stress through slip and deformation during the stretch-release cycling and greatly improved the structural integrity and capacitive stability of the electrodes.Flexible electrodes and symmetric flexible all-solid-state supercapacitors capable of enduring 600%uniaxial tensile strain were developed with high specific capacitances of 1273 mF cm^(−2)(241 F g^(−1))and 514 mF cm^(−2)(95 F g^(−1)),respectively.Moreover,their capacitances were well preserved after 1000 times of 600%stretch-release cycling.This study showcased new possibilities of incorporating biobased lignin nanospheres in energy storage devices to fabricate stretchable devices leveraging synergies among various two-dimensional nanomaterials.展开更多
Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers ...Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers and lacks theoretical guidance.This paper proposes a concise graph representation method based on graph theory for fuel thermal management systems,which can represent all possible connections between subsystems.A generalized optimization algorithm is proposed for fuel thermal management system architecture to minimize the heat sink.This algorithm can autonomously arrange subsystems with heat production differences and efficiently utilize the architecture of the fuel heat sink.At the same time,two evaluation indices are proposed from the perspective of subsystems.These indices intuitively and clearly show that the reason for the high efficiency of heat sink utilization is the balanced and moderate cooling of each subsystem and verify the rationality of the architecture optimization method.A set of simulations are also conducted,which demonstrate that the fuel tank temperature has no effect on the performance of the architecture.This paper provides a reference for the architectural design of aircraft fuel thermal management systems.The metrics used in this paper can also be utilized to evaluate the existing architecture.展开更多
It’s possible for malicious operators to seize hold of electrical control systems, for instance, the engine control unit of driverless vehicles, from various vectors, e.g. autonomic control system, remote vehicle acc...It’s possible for malicious operators to seize hold of electrical control systems, for instance, the engine control unit of driverless vehicles, from various vectors, e.g. autonomic control system, remote vehicle access, or human drivers. To mitigate potential risks, this paper provides the inauguration study by proposing a theoretical framework in the physical, human and cyber triad. Its goal is to, at each time point, detect adversary control behaviors and protect control systems against malicious operations via integrating a variety of methods. This paper only proposes a theoretical framework which tries to indicate possible threats. With the support of the framework, the security system can lightly reduce the risk. The development and implementation of the system are out of scope.展开更多
Not always climate and cultural contexts are discussed at the forefront of architectural discussions on traditional or vernacular architecture,nevertheless,the construction material also plays a significant part in de...Not always climate and cultural contexts are discussed at the forefront of architectural discussions on traditional or vernacular architecture,nevertheless,the construction material also plays a significant part in defining places’architectural languages.Building from the local materials is an essential ingredient of the local distinctiveness,whilst forming the architectural grand gesture in its context.In Siwa oasis,salt architecture has formed that architectural grand gesture.The vernacular vocabularies adopted by old Bedouins using salt bricks generated Siwa’s unique spirit.In this paper,some examples are illustrated based on a series of site visits to three main sites in Siwa,namely:Old Shali,Abu Shuruf,and Aghourmy.This shows the evolution of Siwa’s vernacular architecture and the role of the architectural language or detrimental effect on the overall quality of architecture.From the site visits,it was observed that building with the traditional technique is now becoming abandoned in Siwa,explained by the local builders to be due to the huge costs required;forcing them to shifting to modern architecture.The influx to building using modern techniques has led to a significant transformation in the urban morphology and spirit of Siwa.Herein lies the scope of this paper:to discuss the impact of the evolution of vernacular architecture on the overall quality of architecture in Siwa and thus identifying the problems which will lead to policy formulation and guidelines for the redevelopment of Siwa in order to“revitalize/resuscitate”its vernacular style accordingly.展开更多
This paper adopts the Global Workspace Theory as a neuro-scientifically plausible theory for developing conscious cognitive architecture.The Global Workspace Theory’s compatibility with the working mechanisms underne...This paper adopts the Global Workspace Theory as a neuro-scientifically plausible theory for developing conscious cognitive architecture.The Global Workspace Theory’s compatibility with the working mechanisms underneath human brains is enhanced by the implementation of different cognitive features based on this framework.Amongst the topics in the literature for intelligent systems,we start with attention,memory and learning mechanisms,and corresponding experiments are summarized here.We also discuss how other topics of cognitive robotics could be developed based on these three basic components,and their correlations.This provides a foundation for future long-term development of cognitive architectures of cognitive robots.The research in this paper follows the incremental research pathway for the architecture implementation,which is consistent with the Biologically Inspired Cognitive Architecture roadmap.展开更多
The aim of this article is to present my interpretation of the holistic-phenomenological worldview in practice.This study demonstrates how this approach,as well as the planning process that I followed(a process fundam...The aim of this article is to present my interpretation of the holistic-phenomenological worldview in practice.This study demonstrates how this approach,as well as the planning process that I followed(a process fundamentally different from conventional ones)was implemented in a residential neighborhood I designed and built in the social,economic,and physical structure of the collective known in Israel as a‘kibbutz’.The intention is to raise a broad public discussion and pose a challenge to 21st-century architecture regarding how to intervene in a moral and human way within an existing environment,urban or natural,which must be respected and preserved,when integrating within it a new contemporary architecture.展开更多
The huge impact kinetic energy cannot be quickly dissipated by the energy-absorbing structure and transferred to the other vehicle through the car body structure,which will cause structural damage and threaten the liv...The huge impact kinetic energy cannot be quickly dissipated by the energy-absorbing structure and transferred to the other vehicle through the car body structure,which will cause structural damage and threaten the lives of the occupants.Therefore,it is necessary to understand the laws of energy conversion,dissipation and transfer during train collisions.This study proposes a multi-layer progressive analysis method of energy flow during train collisions,considering the characteristics of the train.In this method,the train collision system is divided into conversion,dissipation,and transfer layers from the perspective of the train,collision interface,and car body structure to analyze the energy conversion,dissipation and transfer characteristics.Taking the collision process of a rail train as an example,a train collision energy transfer path analysis model was established based on power flow theory.The results show that when the maximum mean acceleration of the vehicle meets the standard requirements,the jerk may exceed the allowable limit of the human body,and there is a risk of injury to the occupants of a secondary collision.The decay rate of the collision energy along the direction of train operation reaches 79%.As the collision progresses,the collision energy gradually converges in the structure with holes,and the structure deforms when the gathered energy is greater than the maximum energy the structure can withstand.The proposed method helps to understand the train collision energy flow law and provides theoretical support for the train crashworthiness design in the future.展开更多
Overview of root system architecture.The plant root system is a highly dynamic and multifunctional organ system composed of primary roots,lateral roots,adventitious roots,and root hairs.Based on topological morphology...Overview of root system architecture.The plant root system is a highly dynamic and multifunctional organ system composed of primary roots,lateral roots,adventitious roots,and root hairs.Based on topological morphology,root systems can be classified as taproot systems or fibrous root systems.Root system architecture(RSA)refers to the spatial distribution and extension patterns of roots within soil,encompassing characteristics such as root length,branching angle,density,and spatial arrangement.RSA not only determines the plant’s capacity to acquire water and nutrients but also influences other root functions,playing a decisive role in overall plant health.展开更多
The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging at...The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems.展开更多
Traditional architecture,as a crucial component of human cultural heritage,conveys significant historical context and cultural significance while reflecting regional traits and national identity.Nevertheless,in the fa...Traditional architecture,as a crucial component of human cultural heritage,conveys significant historical context and cultural significance while reflecting regional traits and national identity.Nevertheless,in the face of rapid modernization,traditional architecture is encountering challenges on an unprecedented scale.This study focuses on examining the strategies for preserving and transforming traditional architecture.By evaluating the importance,issues,and obstacles associated with safeguarding traditional architecture,this paper seeks to propose effective and rational conservation approaches and transformation techniques,ultimately aiming to ensure the sustainable development and cultural continuity of traditional architecture.展开更多
This paper explores the collaborative management model of construction technology and plant beautification strategies in landscape architecture site management.It analyzes the key aspects of construction technology an...This paper explores the collaborative management model of construction technology and plant beautification strategies in landscape architecture site management.It analyzes the key aspects of construction technology and the implementation points of plant beautification strategies,constructs a synergy mechanism between technology and strategy,and proposes a dynamic adjustment and multi-professional collaboration model.The effectiveness of this model is verified through practical case studies,providing theoretical support and practical references for the refined construction of landscape architecture.展开更多
This paper introduces a computational cognitive architecture that serves as a comprehensive computational theory of the human mind,from cognitive science and computational psychology.The cognitive architecture(named C...This paper introduces a computational cognitive architecture that serves as a comprehensive computational theory of the human mind,from cognitive science and computational psychology.The cognitive architecture(named Clarion)has been justified by,and validated against,psychological data,findings,and theoretical constructs.One important theoretical background for it is the dual-process theories,which led to its overall two-level structuring in a hybrid neuro-symbolic way.Furthermore,given the recent advances in AI and computing technology,LLMs are being incorporated into the model to better capture human intuition and instinct(and implicit processes in general),in order to further enhance Clarion.Integrating Clarion and LLMs can also help to develop AI systems that are more capable,more reliable,and more human-like.Overall,the paper advocates a multidisciplinary approach towards developing better models for cognitive science and for AI.展开更多
The aim of this article is to present a unique interpretation of the holistic worldview,both in theory and in practice.It explores how this approach,along with a planning process fundamentally different from conventio...The aim of this article is to present a unique interpretation of the holistic worldview,both in theory and in practice.It explores how this approach,along with a planning process fundamentally different from conventional methods,was implemented in the design and construction of the Music Center and Library in the city of Tel Aviv.This process forms a coherent representation of a complete worldview:a humanistic,holistic worldview developed and adopted through more than five decades of architectural practice across all scales of design.In this approach,a building is not regarded as a collection of isolated design elements,but as one hierarchical language,in which the building,its interior,and its ornamented details down to the handle of the door is one continuous system.Within this system,the building,its interior spaces,and even the smallest ornamental details,down to the door handles,are conceived as parts of a single,continuous whole.This worldview aligns with contemporary scientific discourse in fields such as cosmology,neurobiology,psychology,complexity theory,and Buddhist philosophy,disciplines with which this body of work is closely associated.展开更多
In the context of the new era,deepening education reform and improving the quality of talent cultivation are important measures for universities to align with industry trends and the development needs of students.With...In the context of the new era,deepening education reform and improving the quality of talent cultivation are important measures for universities to align with industry trends and the development needs of students.With the continuous growth of the economy,the construction industry is undergoing rapid development and transformation,and there is an increasing demand for high-quality and high-level applied talents,which poses certain challenges to the architecture majors in universities.Therefore,universities should actively follow the industry development trends and the characteristics of talents,clarify the talent cultivation objectives,optimize the professional teaching system,and promote the high-quality development of education.The cultivation of applied talents in the architecture major of universities is not only an internal requirement for the development of the construction industry but also an important part of the country’s innovation-driven development strategy.It is of great significance for promoting scientific and technological progress,enhancing cultural confidence,and promoting the comprehensive development of the economy and society.展开更多
Modern air battlefield operations are characterized by flexibility and change, and the battlefield evolves rapidly and intricately. However, traditional air target intent recognition methods, which mainly rely on manu...Modern air battlefield operations are characterized by flexibility and change, and the battlefield evolves rapidly and intricately. However, traditional air target intent recognition methods, which mainly rely on manually designed neural network models, find it difficult to maintain sustained and excellent performance in such a complex and changing environment. To address the problem of the adaptability of neural network models in complex environments, we propose a lightweight Transformer model(TransATIR) with a strong adaptive adjustment capability, based on the characteristics of air target intent recognition and the neural network architecture search technique. After conducting extensive experiments, it has been proved that TransATIR can efficiently extract the deep feature information from battlefield situation data by utilizing the neural architecture search algorithm, in order to quickly and accurately identify the real intention of the target. The experimental results indicate that TransATIR significantly improves recognition accuracy compared to the existing state-of-the-art methods, and also effectively reduces the computational complexity of the model.展开更多
With the continuous advancement of electronic devices,flexible thin films with both thermal manage-ment functions and excellent electromagnetic interference(EMI)shielding properties have received much attention.Hence,...With the continuous advancement of electronic devices,flexible thin films with both thermal manage-ment functions and excellent electromagnetic interference(EMI)shielding properties have received much attention.Hence,inspired by Janus,a CNF/MXene/ZnFe2O4@PANI composite film with an asymmetric gradient alternating structure was successfully prepared by adjusting the filler content of the conduc-tive and magnetic layers using a vacuum-assisted filtration method.Benefiting from the magnetic reso-nance and hysteresis loss of ZnFe2O4@PANI,conductive loss and dipole polarization of MXene,as well as the exclusive"absorption-reflection-reabsorption"shielding feature in the alternating multilayered films,CM&CZFP-4 G film has superior EMI shielding performance,with an EMI SE of up to 45.75 dB and shield-ing effectiveness of 99.99%.Surprisingly,the composite film maintains reliable EMI shielding properties even after prolonged erosion in harsh environments such as high/low temperatures,high humidity,acids and alkalis.Furthermore,the CM&CZFP-4 G responded quickly within about 50 s and reached a maximum steady-state temperature of 235.8℃ at an applied voltage of 9.0 V,indicating the obtained film acquired outstanding and controllable Joule heating performance.This result was attributed to the homogeneous dispersion of MXene to build up a conductive network and endow the CNF/MXene with high conduc-tivity.Meanwhile,the fire resistance of CM&CZFP-4 G was significantly improved compared to pure CNF,which guaranteed fire safety during its application.Additionally,contributed by long fiber entanglement of CNF,extensive hydrogen-bonding interactions and multilayer structural design,the CM&CZFP-4 G film exhibits excellent mechanical characteristics,with the tensile strength and fracture strain of 27.74 MPa and 6.21%,separately.This work offers a creative avenue to prepare multifunctional composite films with electromagnetic shielding and Joule heating for various application environments.展开更多
基金the the National High Technology Research and Development 863 Program of China under Grant No. 2015AA124102, the Hebei Natural Science Foundation of China under Grant No. F2015203280, and the National Natural Science Foundation of China under Grant Nos. 61303130, 61272466, and 61303233.
文摘In this paper, we try to systematically study how to perform doctor recommendation in medical social net- works (MSNs). Specifically, employing a real-world medical dataset as the source in our work, we propose iBole, a novel hybrid multi-layer architecture, to solve this problem. First, we mine doctor-patient relationships/ties via a time-constraint probability factor graph model (TPFG). Second, we extract network features for ranking nodes. Finally, we propose RWR- Model, a doctor recommendation model via the random walk with restart method. Our real-world experiments validate the effectiveness of the proposed methods. Experimental results show that we obtain good accuracy in mining doctor-patient relationships from the network, and the doctor recommendation performance is better than that of the baseline algorithms: traditional Ranking SVM (RSVM) and the individual doctor recommendation model (IDR-Model). The results of our RWR-Model are more reasonable and satisfactory than those of the baseline approaches.
基金This work is supported by Fundamental Research Funds for the Central Universities of China(328201911)C.G.(Chao Guo),the Open Project Program of National Engineering Laboratory for Agri-product Quality Traceability,C.G.(Chao Guo)+2 种基金Beijing Technology and Business University(BTBU)No.AQT-2018Y-B4,C.G.(Chao Guo)Higher Education Department of the Ministry of Education Industry-university Cooperative Education Project,C.G.(Chao Guo)Education and Teaching Reform Project of Beijing Electronic and Technology Institute,C.G.(Chao Guo).
文摘Under the background of the rapid development of ground mobile communication,the advantages of high coverage,survivability,and flexibility of satellite communication provide air support to the construction of space information network.According to the requirements of the future space information communication,a software-defined Space-Air-Ground Integrated network architecture was proposed.It consisted of layered structure satellite backbone network,deep space communication network,the stratosphere communication network and the ground network.The Space-Air-Ground Integrated network was supported by the satellite backbone network.It provided data relay for the missions such as deep space exploration and controlled the deep-space spacecraft when needed.In addition,it safeguarded the anti-destructibility of stratospheric communication and assisted the stratosphere to supplement ground network communication.In this paper,algorithm requirements of the congestion control and routing of satellite backbone protocols for heterogeneous users’services were proposed.The algorithm requirements of distinguishing different service objects for the deep space communication and stratospheric communication network protocols were described.Considering the realistic demand for the dynamic coverage of the satellite backbone network and node cost,the multi-layer satellite backbone network architecture was constructed.On this basis,the proposed Software-defined Space-Air-Ground Integrated network architecture could be built as a large,scalable and efficient communication network that could be integrated into space,air,and ground.
基金Supported by the National High-Tech Researchand Development Plan of China (863 Plan 2003AA132080) theResearch Foundationfor Outstanding Young Teachers ,China Univer-sity of Geosciences (CUGQNL0506)
文摘To solve the problem of the information share and services integration in population information system, we propose a multi-layer tree hierarchical architecture. The command (Web Service Call) is recursively muhicast from top layer of tree to bottom layer of tree and statistical data are gatbered from bottom layer to top layer. We implemented the architecture by using Web Services technology. In our implementation, client program is the requestor of Web Services, and all leaf nodes of the last layer are only the provider of Web Services. For those nodes of intermediate layers, every node is not only the provider of Web Services, but also the dispatcher of Web Services. We take population census as an cxample to describe the working flow of the architecture.
基金supported by the National Key Research and Development Program of China(No.2022YFB3404700)the National Natural Science Foundation of China(Nos.52105313 and 52275299)+2 种基金the Research and Development Program of Beijing Municipal Education Commission,China(No.KM202210005036)the Natural Science Foundation of Chongqing,China(No.CSTB2023NSCQ-MSX0701)the National Defense Basic Research Projects of China(No.JCKY2022405C002).
文摘At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components.
基金supported by Natural Science and Engineering Research Council of Canada(RGPIN-2017-06737)Canada Research Chairs program,the National Key Research and Development Program of China(2017YFD0601005,2022YFD0904201)+1 种基金the National Natural Science Foundation of China(51203075)the China Scholarship Council(Grant No.CSC202208320361).
文摘With the rapid development of flexible wearable electronics,the demand for stretchable energy storage devices has surged.In this work,a novel gradient-layered architecture was design based on single-pore hollow lignin nanospheres(HLNPs)-intercalated two-dimensional transition metal carbide(Ti_(3)C_(2)T_(x) MXene)for fabricating highly stretchable and durable supercapacitors.By depositing and inserting HLNPs in the MXene layers with a bottom-up decreasing gradient,a multilayered porous MXene structure with smooth ion channels was constructed by reducing the overstacking of MXene lamella.Moreover,the micro-chamber architecture of thin-walled lignin nanospheres effectively extended the contact area between lignin and MXene to improve ion and electron accessibility,thus better utilizing the pseudocapacitive property of lignin.All these strategies effectively enhanced the capacitive performance of the electrodes.In addition,HLNPs,which acted as a protective phase for MXene layer,enhanced mechanical properties of the wrinkled stretchable electrodes by releasing stress through slip and deformation during the stretch-release cycling and greatly improved the structural integrity and capacitive stability of the electrodes.Flexible electrodes and symmetric flexible all-solid-state supercapacitors capable of enduring 600%uniaxial tensile strain were developed with high specific capacitances of 1273 mF cm^(−2)(241 F g^(−1))and 514 mF cm^(−2)(95 F g^(−1)),respectively.Moreover,their capacitances were well preserved after 1000 times of 600%stretch-release cycling.This study showcased new possibilities of incorporating biobased lignin nanospheres in energy storage devices to fabricate stretchable devices leveraging synergies among various two-dimensional nanomaterials.
文摘Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers and lacks theoretical guidance.This paper proposes a concise graph representation method based on graph theory for fuel thermal management systems,which can represent all possible connections between subsystems.A generalized optimization algorithm is proposed for fuel thermal management system architecture to minimize the heat sink.This algorithm can autonomously arrange subsystems with heat production differences and efficiently utilize the architecture of the fuel heat sink.At the same time,two evaluation indices are proposed from the perspective of subsystems.These indices intuitively and clearly show that the reason for the high efficiency of heat sink utilization is the balanced and moderate cooling of each subsystem and verify the rationality of the architecture optimization method.A set of simulations are also conducted,which demonstrate that the fuel tank temperature has no effect on the performance of the architecture.This paper provides a reference for the architectural design of aircraft fuel thermal management systems.The metrics used in this paper can also be utilized to evaluate the existing architecture.
文摘It’s possible for malicious operators to seize hold of electrical control systems, for instance, the engine control unit of driverless vehicles, from various vectors, e.g. autonomic control system, remote vehicle access, or human drivers. To mitigate potential risks, this paper provides the inauguration study by proposing a theoretical framework in the physical, human and cyber triad. Its goal is to, at each time point, detect adversary control behaviors and protect control systems against malicious operations via integrating a variety of methods. This paper only proposes a theoretical framework which tries to indicate possible threats. With the support of the framework, the security system can lightly reduce the risk. The development and implementation of the system are out of scope.
文摘Not always climate and cultural contexts are discussed at the forefront of architectural discussions on traditional or vernacular architecture,nevertheless,the construction material also plays a significant part in defining places’architectural languages.Building from the local materials is an essential ingredient of the local distinctiveness,whilst forming the architectural grand gesture in its context.In Siwa oasis,salt architecture has formed that architectural grand gesture.The vernacular vocabularies adopted by old Bedouins using salt bricks generated Siwa’s unique spirit.In this paper,some examples are illustrated based on a series of site visits to three main sites in Siwa,namely:Old Shali,Abu Shuruf,and Aghourmy.This shows the evolution of Siwa’s vernacular architecture and the role of the architectural language or detrimental effect on the overall quality of architecture.From the site visits,it was observed that building with the traditional technique is now becoming abandoned in Siwa,explained by the local builders to be due to the huge costs required;forcing them to shifting to modern architecture.The influx to building using modern techniques has led to a significant transformation in the urban morphology and spirit of Siwa.Herein lies the scope of this paper:to discuss the impact of the evolution of vernacular architecture on the overall quality of architecture in Siwa and thus identifying the problems which will lead to policy formulation and guidelines for the redevelopment of Siwa in order to“revitalize/resuscitate”its vernacular style accordingly.
基金Supported by the European Union’s Horizon Europe research and innovation program(101120727-PRIMI).
文摘This paper adopts the Global Workspace Theory as a neuro-scientifically plausible theory for developing conscious cognitive architecture.The Global Workspace Theory’s compatibility with the working mechanisms underneath human brains is enhanced by the implementation of different cognitive features based on this framework.Amongst the topics in the literature for intelligent systems,we start with attention,memory and learning mechanisms,and corresponding experiments are summarized here.We also discuss how other topics of cognitive robotics could be developed based on these three basic components,and their correlations.This provides a foundation for future long-term development of cognitive architectures of cognitive robots.The research in this paper follows the incremental research pathway for the architecture implementation,which is consistent with the Biologically Inspired Cognitive Architecture roadmap.
文摘The aim of this article is to present my interpretation of the holistic-phenomenological worldview in practice.This study demonstrates how this approach,as well as the planning process that I followed(a process fundamentally different from conventional ones)was implemented in a residential neighborhood I designed and built in the social,economic,and physical structure of the collective known in Israel as a‘kibbutz’.The intention is to raise a broad public discussion and pose a challenge to 21st-century architecture regarding how to intervene in a moral and human way within an existing environment,urban or natural,which must be respected and preserved,when integrating within it a new contemporary architecture.
基金Supported by the National Natural Science Foundation of China(Grant No.52172409)Postdoctoral Innovation Talents Support Program(Grant No.BX20240298)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.2682024GF023)Heilongjiang Province Postdoctoral Foundation Project(Grant No.LBH-Z23041).
文摘The huge impact kinetic energy cannot be quickly dissipated by the energy-absorbing structure and transferred to the other vehicle through the car body structure,which will cause structural damage and threaten the lives of the occupants.Therefore,it is necessary to understand the laws of energy conversion,dissipation and transfer during train collisions.This study proposes a multi-layer progressive analysis method of energy flow during train collisions,considering the characteristics of the train.In this method,the train collision system is divided into conversion,dissipation,and transfer layers from the perspective of the train,collision interface,and car body structure to analyze the energy conversion,dissipation and transfer characteristics.Taking the collision process of a rail train as an example,a train collision energy transfer path analysis model was established based on power flow theory.The results show that when the maximum mean acceleration of the vehicle meets the standard requirements,the jerk may exceed the allowable limit of the human body,and there is a risk of injury to the occupants of a secondary collision.The decay rate of the collision energy along the direction of train operation reaches 79%.As the collision progresses,the collision energy gradually converges in the structure with holes,and the structure deforms when the gathered energy is greater than the maximum energy the structure can withstand.The proposed method helps to understand the train collision energy flow law and provides theoretical support for the train crashworthiness design in the future.
文摘Overview of root system architecture.The plant root system is a highly dynamic and multifunctional organ system composed of primary roots,lateral roots,adventitious roots,and root hairs.Based on topological morphology,root systems can be classified as taproot systems or fibrous root systems.Root system architecture(RSA)refers to the spatial distribution and extension patterns of roots within soil,encompassing characteristics such as root length,branching angle,density,and spatial arrangement.RSA not only determines the plant’s capacity to acquire water and nutrients but also influences other root functions,playing a decisive role in overall plant health.
基金Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2025R319)Riyadh,Saudi Arabia and Prince Sultan University for covering the article processing charges(APC)associated with this publication.Special acknowledgement to Automated Systems&Soft Computing Lab(ASSCL),Prince Sultan University,Riyadh,Saudi Arabia.
文摘The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems.
文摘Traditional architecture,as a crucial component of human cultural heritage,conveys significant historical context and cultural significance while reflecting regional traits and national identity.Nevertheless,in the face of rapid modernization,traditional architecture is encountering challenges on an unprecedented scale.This study focuses on examining the strategies for preserving and transforming traditional architecture.By evaluating the importance,issues,and obstacles associated with safeguarding traditional architecture,this paper seeks to propose effective and rational conservation approaches and transformation techniques,ultimately aiming to ensure the sustainable development and cultural continuity of traditional architecture.
文摘This paper explores the collaborative management model of construction technology and plant beautification strategies in landscape architecture site management.It analyzes the key aspects of construction technology and the implementation points of plant beautification strategies,constructs a synergy mechanism between technology and strategy,and proposes a dynamic adjustment and multi-professional collaboration model.The effectiveness of this model is verified through practical case studies,providing theoretical support and practical references for the refined construction of landscape architecture.
文摘This paper introduces a computational cognitive architecture that serves as a comprehensive computational theory of the human mind,from cognitive science and computational psychology.The cognitive architecture(named Clarion)has been justified by,and validated against,psychological data,findings,and theoretical constructs.One important theoretical background for it is the dual-process theories,which led to its overall two-level structuring in a hybrid neuro-symbolic way.Furthermore,given the recent advances in AI and computing technology,LLMs are being incorporated into the model to better capture human intuition and instinct(and implicit processes in general),in order to further enhance Clarion.Integrating Clarion and LLMs can also help to develop AI systems that are more capable,more reliable,and more human-like.Overall,the paper advocates a multidisciplinary approach towards developing better models for cognitive science and for AI.
文摘The aim of this article is to present a unique interpretation of the holistic worldview,both in theory and in practice.It explores how this approach,along with a planning process fundamentally different from conventional methods,was implemented in the design and construction of the Music Center and Library in the city of Tel Aviv.This process forms a coherent representation of a complete worldview:a humanistic,holistic worldview developed and adopted through more than five decades of architectural practice across all scales of design.In this approach,a building is not regarded as a collection of isolated design elements,but as one hierarchical language,in which the building,its interior,and its ornamented details down to the handle of the door is one continuous system.Within this system,the building,its interior spaces,and even the smallest ornamental details,down to the door handles,are conceived as parts of a single,continuous whole.This worldview aligns with contemporary scientific discourse in fields such as cosmology,neurobiology,psychology,complexity theory,and Buddhist philosophy,disciplines with which this body of work is closely associated.
文摘In the context of the new era,deepening education reform and improving the quality of talent cultivation are important measures for universities to align with industry trends and the development needs of students.With the continuous growth of the economy,the construction industry is undergoing rapid development and transformation,and there is an increasing demand for high-quality and high-level applied talents,which poses certain challenges to the architecture majors in universities.Therefore,universities should actively follow the industry development trends and the characteristics of talents,clarify the talent cultivation objectives,optimize the professional teaching system,and promote the high-quality development of education.The cultivation of applied talents in the architecture major of universities is not only an internal requirement for the development of the construction industry but also an important part of the country’s innovation-driven development strategy.It is of great significance for promoting scientific and technological progress,enhancing cultural confidence,and promoting the comprehensive development of the economy and society.
基金co-supported by the National Natural Science Foundation of China(Nos.61806219,61876189 and 61703426)the Young Talent Fund of University Association for Science and Technology in Shaanxi,China(Nos.20190108 and 20220106)the Innovation Talent Supporting Project of Shaanxi,China(No.2020KJXX-065).
文摘Modern air battlefield operations are characterized by flexibility and change, and the battlefield evolves rapidly and intricately. However, traditional air target intent recognition methods, which mainly rely on manually designed neural network models, find it difficult to maintain sustained and excellent performance in such a complex and changing environment. To address the problem of the adaptability of neural network models in complex environments, we propose a lightweight Transformer model(TransATIR) with a strong adaptive adjustment capability, based on the characteristics of air target intent recognition and the neural network architecture search technique. After conducting extensive experiments, it has been proved that TransATIR can efficiently extract the deep feature information from battlefield situation data by utilizing the neural architecture search algorithm, in order to quickly and accurately identify the real intention of the target. The experimental results indicate that TransATIR significantly improves recognition accuracy compared to the existing state-of-the-art methods, and also effectively reduces the computational complexity of the model.
基金supported by the National Natural Science Foundation of China(Nos.22005277,52474256 and 52074247)the Natural Science Foundation of Hubei Province(No.2024AFB662)+1 种基金the Young Top-notch Talent Cultivation Program of Hubei Province,Opening Foundation of State Key Laboratory of Organic-Inorganic Composites,Beijing University of Chemical Technology(No.oic-202401012)the Fundamental Research Funds for National Universities,China University of Geosciences(No.2024XLA93).
文摘With the continuous advancement of electronic devices,flexible thin films with both thermal manage-ment functions and excellent electromagnetic interference(EMI)shielding properties have received much attention.Hence,inspired by Janus,a CNF/MXene/ZnFe2O4@PANI composite film with an asymmetric gradient alternating structure was successfully prepared by adjusting the filler content of the conduc-tive and magnetic layers using a vacuum-assisted filtration method.Benefiting from the magnetic reso-nance and hysteresis loss of ZnFe2O4@PANI,conductive loss and dipole polarization of MXene,as well as the exclusive"absorption-reflection-reabsorption"shielding feature in the alternating multilayered films,CM&CZFP-4 G film has superior EMI shielding performance,with an EMI SE of up to 45.75 dB and shield-ing effectiveness of 99.99%.Surprisingly,the composite film maintains reliable EMI shielding properties even after prolonged erosion in harsh environments such as high/low temperatures,high humidity,acids and alkalis.Furthermore,the CM&CZFP-4 G responded quickly within about 50 s and reached a maximum steady-state temperature of 235.8℃ at an applied voltage of 9.0 V,indicating the obtained film acquired outstanding and controllable Joule heating performance.This result was attributed to the homogeneous dispersion of MXene to build up a conductive network and endow the CNF/MXene with high conduc-tivity.Meanwhile,the fire resistance of CM&CZFP-4 G was significantly improved compared to pure CNF,which guaranteed fire safety during its application.Additionally,contributed by long fiber entanglement of CNF,extensive hydrogen-bonding interactions and multilayer structural design,the CM&CZFP-4 G film exhibits excellent mechanical characteristics,with the tensile strength and fracture strain of 27.74 MPa and 6.21%,separately.This work offers a creative avenue to prepare multifunctional composite films with electromagnetic shielding and Joule heating for various application environments.