期刊文献+
共找到131篇文章
< 1 2 7 >
每页显示 20 50 100
Multi-Label Machine Learning Classification of Cardiovascular Diseases
1
作者 Chih-Ta Yen Jung-Ren Wong Chia-Hsang Chang 《Computers, Materials & Continua》 2025年第7期347-363,共17页
In its 2023 global health statistics,the World Health Organization noted that noncommunicable diseases(NCDs)remain the leading cause of disease burden worldwide,with cardiovascular diseases(CVDs)resulting in more deat... In its 2023 global health statistics,the World Health Organization noted that noncommunicable diseases(NCDs)remain the leading cause of disease burden worldwide,with cardiovascular diseases(CVDs)resulting in more deaths than the three other major NCDs combined.In this study,we developed a method that can comprehensively detect which CVDs are present in a patient.Specifically,we propose a multi-label classification method that utilizes photoplethysmography(PPG)signals and physiological characteristics from public datasets to classify four types of CVDs and related conditions:hypertension,diabetes,cerebral infarction,and cerebrovascular disease.Our approach to multi-disease classification of cardiovascular diseases(CVDs)using PPG signals achieves the highest classification performance when encompassing the broadest range of disease categories,thereby offering a more comprehensive assessment of human health.We employ a multi-label classification strategy to simultaneously predict the presence or absence of multiple diseases.Specifically,we first apply the Savitzky-Golay(S-G)filter to the PPG signals to reduce noise and then transform into statistical features.We integrate processed PPG signals with individual physiological features as a multimodal input,thereby expanding the learned feature space.Notably,even with a simple machine learning method,this approach can achieve relatively high accuracy.The proposed method achieved a maximum F1-score of 0.91,minimum Hamming loss of 0.04,and an accuracy of 0.95.Thus,our method represents an effective and rapid solution for detecting multiple diseases simultaneously,which is beneficial for comprehensively managing CVDs. 展开更多
关键词 PHOTOPLETHYSMOGRAPHY machine learning health management multi-label classification cardiovascu-lar disease
在线阅读 下载PDF
Multi-Label Movie Genre Classification with Attention Mechanism on Movie Plots
2
作者 Faheem Shaukat Naveed Ejaz +3 位作者 Rashid Kamal Tamim Alkhalifah Sheraz Aslam Mu Mu 《Computers, Materials & Continua》 2025年第6期5595-5622,共28页
Automated and accurate movie genre classification is crucial for content organization,recommendation systems,and audience targeting in the film industry.Although most existing approaches focus on audiovisual features ... Automated and accurate movie genre classification is crucial for content organization,recommendation systems,and audience targeting in the film industry.Although most existing approaches focus on audiovisual features such as trailers and posters,the text-based classification remains underexplored despite its accessibility and semantic richness.This paper introduces the Genre Attention Model(GAM),a deep learning architecture that integrates transformer models with a hierarchical attention mechanism to extract and leverage contextual information from movie plots formulti-label genre classification.In order to assess its effectiveness,we assessmultiple transformer-based models,including Bidirectional Encoder Representations fromTransformers(BERT),ALite BERT(ALBERT),Distilled BERT(DistilBERT),Robustly Optimized BERT Pretraining Approach(RoBERTa),Efficiently Learning an Encoder that Classifies Token Replacements Accurately(ELECTRA),eXtreme Learning Network(XLNet)and Decodingenhanced BERT with Disentangled Attention(DeBERTa).Experimental results demonstrate the superior performance of DeBERTa-based GAM,which employs a two-tier hierarchical attention mechanism:word-level attention highlights key terms,while sentence-level attention captures critical narrative segments,ensuring a refined and interpretable representation of movie plots.Evaluated on three benchmark datasets Trailers12K,Large Movie Trailer Dataset-9(LMTD-9),and MovieLens37K.GAM achieves micro-average precision scores of 83.63%,83.32%,and 83.34%,respectively,surpassing state-of-the-artmodels.Additionally,GAMis computationally efficient,requiring just 6.10Giga Floating Point Operations Per Second(GFLOPS),making it a scalable and cost-effective solution.These results highlight the growing potential of text-based deep learning models in genre classification and GAM’s effectiveness in improving predictive accuracy while maintaining computational efficiency.With its robust performance,GAM offers a versatile and scalable framework for content recommendation,film indexing,and media analytics,providing an interpretable alternative to traditional audiovisual-based classification techniques. 展开更多
关键词 multi-label classification artificial intelligence movie genre classification hierarchical attention mechanisms natural language processing content recommendation text-based genre classification explainable AI(Artificial Intelligence) transformer models BERT
在线阅读 下载PDF
Boosting Adaptive Weighted Broad Learning System for Multi-Label Learning
3
作者 Yuanxin Lin Zhiwen Yu +2 位作者 Kaixiang Yang Ziwei Fan C.L.Philip Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第11期2204-2219,共16页
Multi-label classification is a challenging problem that has attracted significant attention from researchers, particularly in the domain of image and text attribute annotation. However, multi-label datasets are prone... Multi-label classification is a challenging problem that has attracted significant attention from researchers, particularly in the domain of image and text attribute annotation. However, multi-label datasets are prone to serious intra-class and inter-class imbalance problems, which can significantly degrade the classification performance. To address the above issues, we propose the multi-label weighted broad learning system(MLW-BLS) from the perspective of label imbalance weighting and label correlation mining. Further, we propose the multi-label adaptive weighted broad learning system(MLAW-BLS) to adaptively adjust the specific weights and values of labels of MLW-BLS and construct an efficient imbalanced classifier set. Extensive experiments are conducted on various datasets to evaluate the effectiveness of the proposed model, and the results demonstrate its superiority over other advanced approaches. 展开更多
关键词 Broad learning system label correlation mining label imbalance weighting multi-label imbalance
在线阅读 下载PDF
Learning Label Correlations for Multi-Label Online Passive Aggressive Classification Algorithm
4
作者 ZHANG Yongwei 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第1期51-58,共8页
Label correlations are an essential technique for data mining that solves the possible correlation problem between different labels in multi-label classification.Although this technique is widely used in multi-label c... Label correlations are an essential technique for data mining that solves the possible correlation problem between different labels in multi-label classification.Although this technique is widely used in multi-label classification problems,batch learning deals with most issues,which consumes a lot of time and space resources.Unlike traditional batch learning methods,online learning represents a promising family of efficient and scalable machine learning algorithms for large-scale datasets.However,existing online learning research has done little to consider correlations between labels.On the basis of existing research,this paper proposes a multi-label online learning algorithm based on label correlations by maximizing the interval between related labels and unrelated labels in multi-label samples.We evaluate the performance of the proposed algorithm on several public datasets.Experiments show the effectiveness of our algorithm. 展开更多
关键词 label correlations passive aggressive multi-label classification online learning
原文传递
A Novel Framework for Learning and Classifying the Imbalanced Multi-Label Data
5
作者 P.K.A.Chitra S.Appavu alias Balamurugan +3 位作者 S.Geetha Seifedine Kadry Jungeun Kim Keejun Han 《Computer Systems Science & Engineering》 2024年第5期1367-1385,共19页
A generalization of supervised single-label learning based on the assumption that each sample in a dataset may belong to more than one class simultaneously is called multi-label learning.The main objective of this wor... A generalization of supervised single-label learning based on the assumption that each sample in a dataset may belong to more than one class simultaneously is called multi-label learning.The main objective of this work is to create a novel framework for learning and classifying imbalancedmulti-label data.This work proposes a framework of two phases.The imbalanced distribution of themulti-label dataset is addressed through the proposed Borderline MLSMOTE resampling method in phase 1.Later,an adaptive weighted l21 norm regularized(Elastic-net)multilabel logistic regression is used to predict unseen samples in phase 2.The proposed Borderline MLSMOTE resampling method focuses on samples with concurrent high labels in contrast to conventional MLSMOTE.The minority labels in these samples are called difficult minority labels and are more prone to penalize classification performance.The concurrentmeasure is considered borderline,and labels associated with samples are regarded as borderline labels in the decision boundary.In phase II,a novel adaptive l21 norm regularized weighted multi-label logistic regression is used to handle balanced data with different weighted synthetic samples.Experimentation on various benchmark datasets shows the outperformance of the proposed method and its powerful predictive performances over existing conventional state-of-the-art multi-label methods. 展开更多
关键词 multi-label imbalanced data multi-label learning Borderline MLSMOTE concurrent multi-label adaptive weighted multi-label elastic net difficult minority label
在线阅读 下载PDF
Multi-Label Image Classification Based on Object Detection and Dynamic Graph Convolutional Networks
6
作者 Xiaoyu Liu Yong Hu 《Computers, Materials & Continua》 SCIE EI 2024年第9期4413-4432,共20页
Multi-label image classification is recognized as an important task within the field of computer vision,a discipline that has experienced a significant escalation in research endeavors in recent years.The widespread a... Multi-label image classification is recognized as an important task within the field of computer vision,a discipline that has experienced a significant escalation in research endeavors in recent years.The widespread adoption of convolutional neural networks(CNNs)has catalyzed the remarkable success of architectures such as ResNet-101 within the domain of image classification.However,inmulti-label image classification tasks,it is crucial to consider the correlation between labels.In order to improve the accuracy and performance of multi-label classification and fully combine visual and semantic features,many existing studies use graph convolutional networks(GCN)for modeling.Object detection and multi-label image classification exhibit a degree of conceptual overlap;however,the integration of these two tasks within a unified framework has been relatively underexplored in the existing literature.In this paper,we come up with Object-GCN framework,a model combining object detection network YOLOv5 and graph convolutional network,and we carry out a thorough experimental analysis using a range of well-established public datasets.The designed framework Object-GCN achieves significantly better performance than existing studies in public datasets COCO2014,VOC2007,VOC2012.The final results achieved are 86.9%,96.7%,and 96.3%mean Average Precision(mAP)across the three datasets. 展开更多
关键词 Deep learning multi-label image recognition object detection graph convolution networks
在线阅读 下载PDF
Multi-Label Feature Selection Based on Improved Ant Colony Optimization Algorithm with Dynamic Redundancy and Label Dependence
7
作者 Ting Cai Chun Ye +5 位作者 Zhiwei Ye Ziyuan Chen Mengqing Mei Haichao Zhang Wanfang Bai Peng Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1157-1175,共19页
The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challengi... The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features.The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection,because of its simplicity,efficiency,and similarity to reinforcement learning.Nevertheless,existing methods do not consider crucial correlation information,such as dynamic redundancy and label correlation.To tackle these concerns,the paper proposes a multi-label feature selection technique based on ant colony optimization algorithm(MFACO),focusing on dynamic redundancy and label correlation.Initially,the dynamic redundancy is assessed between the selected feature subset and potential features.Meanwhile,the ant colony optimization algorithm extracts label correlation from the label set,which is then combined into the heuristic factor as label weights.Experimental results demonstrate that our proposed strategies can effectively enhance the optimal search ability of ant colony,outperforming the other algorithms involved in the paper. 展开更多
关键词 multi-label feature selection ant colony optimization algorithm dynamic redundancy high-dimensional data label correlation
在线阅读 下载PDF
Inverse design of nonlinear phononic crystal configurations based on multi-label classification learning neural networks
8
作者 Kunqi Huang Yiran Lin +1 位作者 Yun Lai Xiaozhou Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期295-301,共7页
Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic feature... Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic features exhibit potential applications in acoustic frequency conversion,non-reciprocal wave propagation,and non-destructive testing.Precisely manipulating the harmonic band structure presents a major challenge in the design of nonlinear phononic crystals.Traditional design approaches based on parameter adjustments to meet specific application requirements are inefficient and often yield suboptimal performance.Therefore,this paper develops a design methodology using Softmax logistic regression and multi-label classification learning to inversely design the material distribution of nonlinear phononic crystals by exploiting information from harmonic transmission spectra.The results demonstrate that the neural network-based inverse design method can effectively tailor nonlinear phononic crystals with desired functionalities.This work establishes a mapping relationship between the band structure and the material distribution within phononic crystals,providing valuable insights into the inverse design of metamaterials. 展开更多
关键词 multi-label classification learning nonlinear phononic crystals inverse design
原文传递
Classification research of TCM pulse conditions based on multi-label voice analysis
9
作者 Haoran Shen Junjie Cao +5 位作者 Lin Zhang Jing Li Jianghong Liu Zhiyuan Chu Shifeng Wang Yanjiang Qiao 《Journal of Traditional Chinese Medical Sciences》 CAS 2024年第2期172-179,共8页
Objective:To explore the feasibility of remotely obtaining complex information on traditional Chinese medicine(TCM)pulse conditions through voice signals.Methods: We used multi-label pulse conditions as the entry poin... Objective:To explore the feasibility of remotely obtaining complex information on traditional Chinese medicine(TCM)pulse conditions through voice signals.Methods: We used multi-label pulse conditions as the entry point and modeled and analyzed TCM pulse diagnosis by combining voice analysis and machine learning.Audio features were extracted from voice recordings in the TCM pulse condition dataset.The obtained features were combined with information from tongue and facial diagnoses.A multi-label pulse condition voice classification DNN model was built using 10-fold cross-validation,and the modeling methods were validated using publicly available datasets.Results: The analysis showed that the proposed method achieved an accuracy of 92.59%on the public dataset.The accuracies of the three single-label pulse manifestation models in the test set were 94.27%,96.35%,and 95.39%.The absolute accuracy of the multi-label model was 92.74%.Conclusion: Voice data analysis may serve as a remote adjunct to the TCM diagnostic method for pulse condition assessment. 展开更多
关键词 Pulse conditions TCM pulse diagnosis Voice analysis multi-label classification Machine learning
在线阅读 下载PDF
多标签情感计算中的TSK模糊系统与域适应方法研究
10
作者 何欣润 李毅轩 +2 位作者 傅中正 伍冬睿 黄剑 《自动化学报》 北大核心 2025年第7期1546-1561,共16页
情感计算作为人机交互领域的一个重要学科分支,是实现和谐、自然的人机交互体验的关键保障.如何利用便于获得的生理信号进行准确的情绪识别已成为其中的热门话题.广泛使用的情绪模型通常从愉悦维、唤醒维、支配维等多个维度描述情绪,但... 情感计算作为人机交互领域的一个重要学科分支,是实现和谐、自然的人机交互体验的关键保障.如何利用便于获得的生理信号进行准确的情绪识别已成为其中的热门话题.广泛使用的情绪模型通常从愉悦维、唤醒维、支配维等多个维度描述情绪,但现有情绪识别方法大多将不同维度分别考虑,忽略维度间的相关性关系,并且在可解释性方面存在局限.多标签TSK模糊系统虽然能够弥补以上不足,但仍面临高维输入下模糊规则构建困难、训练效率低下的问题.此外,多模态生理信号具有较大的个体差异性,严重影响跨用户情绪识别的准确性.鉴于此,首先提出规则降维的多标签TSK(RDRMLTSK)模糊系统,以优化模糊系统结构和训练效率;进一步提出多标签模糊域适应算法实现多源域迁移学习,提高RDRMLTSK的泛化性能.在DEAP和DECAF两个公开数据集上的实验结果表明,所提出的方法能够有效提高情绪识别的准确率,与经典和先进的方法相比具有更好的性能. 展开更多
关键词 情感计算 多标签学习 TSK模糊系统 领域自适应
在线阅读 下载PDF
Multi-Scale Feature Fusion and Advanced Representation Learning for Multi Label Image Classification
11
作者 Naikang Zhong Xiao Lin +1 位作者 Wen Du Jin Shi 《Computers, Materials & Continua》 2025年第3期5285-5306,共22页
Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feat... Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feature representation.However,existing methods often rely on the single-scale deep feature,neglecting shallow and deeper layer features,which poses challenges when predicting objects of varying scales within the same image.Although some studies have explored multi-scale features,they rarely address the flow of information between scales or efficiently obtain class-specific precise representations for features at different scales.To address these issues,we propose a two-stage,three-branch Transformer-based framework.The first stage incorporates multi-scale image feature extraction and hierarchical scale attention.This design enables the model to consider objects at various scales while enhancing the flow of information across different feature scales,improving the model’s generalization to diverse object scales.The second stage includes a global feature enhancement module and a region selection module.The global feature enhancement module strengthens interconnections between different image regions,mitigating the issue of incomplete represen-tations,while the region selection module models the cross-modal relationships between image features and labels.Together,these components enable the efficient acquisition of class-specific precise feature representations.Extensive experiments on public datasets,including COCO2014,VOC2007,and VOC2012,demonstrate the effectiveness of our proposed method.Our approach achieves consistent performance gains of 0.3%,0.4%,and 0.2%over state-of-the-art methods on the three datasets,respectively.These results validate the reliability and superiority of our approach for multi-label image classification. 展开更多
关键词 Image classification multi-label multi scale attention mechanisms feature fusion
在线阅读 下载PDF
Diagnostic Method for Load Deviation in Ultra-Supercritical Units Based on MLNaNBDOS
12
作者 Mingzhu Tang YujieHuang +1 位作者 Dongxu Ji Hao Yu 《Frontiers in Heat and Mass Transfer》 2025年第1期95-129,共35页
Load deviations between the output of ultra-supercritical(USC)coal-fired power units and automatic generation control(AGC)commands can adversely affect the safe and stable operation of these units and grid load dispat... Load deviations between the output of ultra-supercritical(USC)coal-fired power units and automatic generation control(AGC)commands can adversely affect the safe and stable operation of these units and grid load dispatching.Data-driven diagnostic methods often fail to account for the imbalanced distribution of data samples,leading to reduced classification performance in diagnosing load deviations in USC units.To address the class imbalance issue in USC load deviation datasets,this study proposes a diagnostic method based on the multi-label natural neighbor boundary oversampling technique(MLNaNBDOS).The method is articulated in three phases.Initially,the traditional binary oversampling strategy is improved by constructing a binary multi-label relationship for the load deviations in coal-fired units.Subsequently,an adaptive adjustment of the oversampling factor is implemented to determine the oversampling weight for each sample class.Finally,the generation of new instances is refined by dynamically evaluating the similarity between new cases and natural neighbors through a random factor,ensuring precise control over the instance generation process.In comparisons with nine benchmark methods across three imbalanced USC load deviation datasets,the proposed method demonstrates superior performance on several key evaluation metrics,including Micro-F1,Micro-G-mean,and Hamming Loss,with average values of 0.8497,0.9150,and 0.1503,respectively.These results substantiate the effectiveness of the proposed method in accurately diagnosing the sources of load deviations in USC units. 展开更多
关键词 Ultra-supercritical units load deviation multi-label learning class imbalance data oversampling
在线阅读 下载PDF
PKME-MLM:A Novel Multimodal Large Model for Sarcasm Detection
13
作者 Jian Luo Yaling Li +1 位作者 Xueyu Li Xuliang Hu 《Computers, Materials & Continua》 2025年第4期877-896,共20页
Sarcasm detection in Natural Language Processing(NLP)has become increasingly important,partic-ularly with the rise of social media and non-textual emotional expressions,such as images.Existing methods often rely on se... Sarcasm detection in Natural Language Processing(NLP)has become increasingly important,partic-ularly with the rise of social media and non-textual emotional expressions,such as images.Existing methods often rely on separate image and text modalities,which may not fully utilize the information available from both sources.To address this limitation,we propose a novel multimodal large model,i.e.,the PKME-MLM(Prior Knowledge and Multi-label Emotion analysis based Multimodal Large Model for sarcasm detection).The PKME-MLM aims to enhance sarcasm detection by integrating prior knowledge to extract useful textual information from images,which is then combined with text data for deeper analysis.This method improves the integration of image and text data,addressing the limitation of previous models that process these modalities separately.Additionally,we incorporate multi-label sentiment analysis,refining sentiment labels to improve sarcasm recognition accuracy.This design overcomes the limitations of prior models that treated sentiment classification as a single-label problem,thereby improving sarcasm recognition by distinguishing subtle emotional cues from the text.Experimental results demonstrate that our approach achieves significant performance improvements in multimodal sarcasm detection tasks,with an accuracy(Acc.)of 94.35%,and Macro-Average Precision and Recall reaching 93.92%and 94.21%,respectively.These results highlight the potential of multimodal models in improving sarcasm detection and suggest that further integration of modalities could advance future research.This work also paves the way for incorporating multimodal sentiment analysis into sarcasm detection. 展开更多
关键词 Sarcasm detection multimodal large model prior knowledge multi-label fusion
在线阅读 下载PDF
A low-consumption multiple nuclides identification algorithm for portable gamma spectrometer
14
作者 Xi Huang Yong-Gang Yuan +3 位作者 Yu-Xuan Zhu Hua Chen Jin-Hui Qu Zhao-Yi Tan 《Nuclear Science and Techniques》 2025年第7期100-112,共13页
The multiple nuclides identification algorithm with low consumption and strong robustness is crucial for rapid radioactive source searching.This study investigates the design of a low-consumption multiple nuclides ide... The multiple nuclides identification algorithm with low consumption and strong robustness is crucial for rapid radioactive source searching.This study investigates the design of a low-consumption multiple nuclides identification algorithm for portable gamma spectrometers.First,the gamma spectra of 12 target nuclides(including the background case)were measured to create training datasets.The characteristic energies,obtained through energy calibration and full-energy peak addresses,are utilized as input features for a neural network.A large number of single-and multiple-nuclide training datasets are generated using random combinations and small-range drifting.Subsequently,a multi-label classification neural network based on a binary cross-entropy loss function is applied to export the existence probability of certain nuclides.The designed algorithm effectively reduces the computation time and storage space required by the neural network and has been successfully implemented in a portable gamma spectrometer with a running time of t_(r)<2 s.Results show that,in both validation and actual tests,the identification accuracy of the designed algorithm reaches 94.8%,for gamma spectra with a dose rate of d≈0.5μSv∕h and a measurement time t_(m)=60 s.This improves the ability to perform rapid on-site nuclide identification at important sites. 展开更多
关键词 Multiple nuclides identification Low consumption Portable gamma spectrometer multi-label classification
在线阅读 下载PDF
面向金融交易系统的HADES异常检测优化
15
作者 徐烨翎 戴祎 +3 位作者 张春熙 刘凯 林征 吴承荣 《计算机系统应用》 2025年第11期151-161,共11页
为解决传统金融交易系统异常检测机制难以适应动态负载和复杂故障模式的问题,本文提出面向金融基础设施的智能化异常检测模型的优化方法,旨在提升早期预警能力与故障定位效率,保障系统稳定性.针对金融交易系统的数据特性与业务场景,本... 为解决传统金融交易系统异常检测机制难以适应动态负载和复杂故障模式的问题,本文提出面向金融基础设施的智能化异常检测模型的优化方法,旨在提升早期预警能力与故障定位效率,保障系统稳定性.针对金融交易系统的数据特性与业务场景,本文调整了指标和日志的融合权重,优先利用高频连续的系统指标构建早期预警基线.同时,设计了多标签异常分类机制,通过预定义典型故障场景,实现复合型异常的精准识别与类型标记.实验结果表明,优化后的模型在模拟金融交易场景中表现稳定,准确率保持在95%以上,具有较高的适用性. 展开更多
关键词 异常检测 金融交易系统 融合权重 多标签分类 交叉注意力机制
在线阅读 下载PDF
南海疆维权文献证据知识元价值体系与多标签自动分类研究
16
作者 王燕红 杨海平 +2 位作者 程为 彭玉芳 朱梦蝶 《情报杂志》 北大核心 2025年第5期174-181,共8页
[研究目的]解决南海疆维权证据价值多重语义分类问题,实现证据知识元价值的多标签自动分类,填补南海疆维权文献中对证据知识价值揭示的不足,丰富面向南海问题研究和南海维权知识服务的南海疆维权证据自动分类研究。[研究方法]深入文献... [研究目的]解决南海疆维权证据价值多重语义分类问题,实现证据知识元价值的多标签自动分类,填补南海疆维权文献中对证据知识价值揭示的不足,丰富面向南海问题研究和南海维权知识服务的南海疆维权证据自动分类研究。[研究方法]深入文献内容到知识元层面对细粒度的证据知识从语用价值层面进行分类,深度揭示文献中证据知识的价值,构建南海疆维权文献证据知识元价值体系,并利用ALBERT实现证据知识元多标签自动分类。[研究结果/结论]实现南海疆维权文献证据知识元价值的多重语义分类,有助于南海疆维权文献知识发现场景中的语义检索与关联,服务于南海维权战略。 展开更多
关键词 南海疆维权文献 价值体系 证据知识元 多标签 文本分类
在线阅读 下载PDF
Radar emitter multi-label recognition based on residual network 被引量:13
17
作者 Yu Hong-hai Yan Xiao-peng +2 位作者 Liu Shao-kun Li Ping Hao Xin-hong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第3期410-417,共8页
In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and... In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and recognition method for multiple radar-emitter modulation types based on a residual network.This method can quickly perform parallel classification and recognition of multi-modulation radar time-domain aliasing signals under low SNRs.First,we perform time-frequency analysis on the received signal to extract the normalized time-frequency image through the short-time Fourier transform(STFT).The time-frequency distribution image is then denoised using a deep normalized convolutional neural network(DNCNN).Secondly,the multi-label classification and recognition model for multi-modulation radar emitter time-domain aliasing signals is established,and learning the characteristics of radar signal time-frequency distribution image dataset to achieve the purpose of training model.Finally,time-frequency image is recognized and classified through the model,thus completing the automatic classification and recognition of the time-domain aliasing signal.Simulation results show that the proposed method can classify and recognize radar emitter signals of different modulation types in parallel under low SNRs. 展开更多
关键词 Radar emitter recognition Image processing PARALLEL Residual network multi-label
在线阅读 下载PDF
Feature Selection for Multi-label Classification Using Neighborhood Preservation 被引量:12
18
作者 Zhiling Cai William Zhu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期320-330,共11页
Multi-label learning deals with data associated with a set of labels simultaneously. Dimensionality reduction is an important but challenging task in multi-label learning. Feature selection is an efficient technique f... Multi-label learning deals with data associated with a set of labels simultaneously. Dimensionality reduction is an important but challenging task in multi-label learning. Feature selection is an efficient technique for dimensionality reduction to search an optimal feature subset preserving the most relevant information. In this paper, we propose an effective feature evaluation criterion for multi-label feature selection, called neighborhood relationship preserving score. This criterion is inspired by similarity preservation, which is widely used in single-label feature selection. It evaluates each feature subset by measuring its capability in preserving neighborhood relationship among samples. Unlike similarity preservation, we address the order of sample similarities which can well express the neighborhood relationship among samples, not just the pairwise sample similarity. With this criterion, we also design one ranking algorithm and one greedy algorithm for feature selection problem. The proposed algorithms are validated in six publicly available data sets from machine learning repository. Experimental results demonstrate their superiorities over the compared state-of-the-art methods. 展开更多
关键词 Feature selection multi-label learning neighborhood relationship preserving sample similarity
在线阅读 下载PDF
Multi-label dimensionality reduction and classification with extreme learning machines 被引量:9
19
作者 Lin Feng Jing Wang +1 位作者 Shenglan Liu Yao Xiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第3期502-513,共12页
In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the researc... In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the research of multi-label classification algorithms. Considering the fact that the high dimensionality of the multi-label datasets may cause the curse of dimensionality and wil hamper the classification process, a dimensionality reduction algorithm, named multi-label kernel discriminant analysis (MLKDA), is proposed to reduce the dimensionality of multi-label datasets. MLKDA, with the kernel trick, processes the multi-label integrally and realizes the nonlinear dimensionality reduction with the idea similar with linear discriminant analysis (LDA). In the classification process of multi-label data, the extreme learning machine (ELM) is an efficient algorithm in the premise of good accuracy. MLKDA, combined with ELM, shows a good performance in multi-label learning experiments with several datasets. The experiments on both static data and data stream show that MLKDA outperforms multi-label dimensionality reduction via dependence maximization (MDDM) and multi-label linear discriminant analysis (MLDA) in cases of balanced datasets and stronger correlation between tags, and ELM is also a good choice for multi-label classification. 展开更多
关键词 multi-label dimensionality reduction kernel trick classification.
在线阅读 下载PDF
Multi-label learning algorithm with SVM based association 被引量:4
20
作者 Feng Pan Qin Danyang +3 位作者 Ji Ping Ma Jingya Zhang Yan Yang Songxiang 《High Technology Letters》 EI CAS 2019年第1期97-104,共8页
Multi-label learning is an active research area which plays an important role in machine learning. Traditional learning algorithms, however, have to depend on samples with complete labels. The existing learning algori... Multi-label learning is an active research area which plays an important role in machine learning. Traditional learning algorithms, however, have to depend on samples with complete labels. The existing learning algorithms with missing labels do not consider the relevance of labels, resulting in label estimation errors of new samples. A new multi-label learning algorithm with support vector machine(SVM) based association(SVMA) is proposed to estimate missing labels by constructing the association between different labels. SVMA will establish a mapping function to minimize the number of samples in the margin while ensuring the margin large enough as well as minimizing the misclassification probability. To evaluate the performance of SVMA in the condition of missing labels, four typical data sets are adopted with the integrity of the labels being handled manually. Simulation results show the superiority of SVMA in dealing with the samples with missing labels compared with other models in image classification. 展开更多
关键词 multi-label learning missing labels ASSOCIATION support vector machine(SVM)
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部