In its 2023 global health statistics,the World Health Organization noted that noncommunicable diseases(NCDs)remain the leading cause of disease burden worldwide,with cardiovascular diseases(CVDs)resulting in more deat...In its 2023 global health statistics,the World Health Organization noted that noncommunicable diseases(NCDs)remain the leading cause of disease burden worldwide,with cardiovascular diseases(CVDs)resulting in more deaths than the three other major NCDs combined.In this study,we developed a method that can comprehensively detect which CVDs are present in a patient.Specifically,we propose a multi-label classification method that utilizes photoplethysmography(PPG)signals and physiological characteristics from public datasets to classify four types of CVDs and related conditions:hypertension,diabetes,cerebral infarction,and cerebrovascular disease.Our approach to multi-disease classification of cardiovascular diseases(CVDs)using PPG signals achieves the highest classification performance when encompassing the broadest range of disease categories,thereby offering a more comprehensive assessment of human health.We employ a multi-label classification strategy to simultaneously predict the presence or absence of multiple diseases.Specifically,we first apply the Savitzky-Golay(S-G)filter to the PPG signals to reduce noise and then transform into statistical features.We integrate processed PPG signals with individual physiological features as a multimodal input,thereby expanding the learned feature space.Notably,even with a simple machine learning method,this approach can achieve relatively high accuracy.The proposed method achieved a maximum F1-score of 0.91,minimum Hamming loss of 0.04,and an accuracy of 0.95.Thus,our method represents an effective and rapid solution for detecting multiple diseases simultaneously,which is beneficial for comprehensively managing CVDs.展开更多
Automated and accurate movie genre classification is crucial for content organization,recommendation systems,and audience targeting in the film industry.Although most existing approaches focus on audiovisual features ...Automated and accurate movie genre classification is crucial for content organization,recommendation systems,and audience targeting in the film industry.Although most existing approaches focus on audiovisual features such as trailers and posters,the text-based classification remains underexplored despite its accessibility and semantic richness.This paper introduces the Genre Attention Model(GAM),a deep learning architecture that integrates transformer models with a hierarchical attention mechanism to extract and leverage contextual information from movie plots formulti-label genre classification.In order to assess its effectiveness,we assessmultiple transformer-based models,including Bidirectional Encoder Representations fromTransformers(BERT),ALite BERT(ALBERT),Distilled BERT(DistilBERT),Robustly Optimized BERT Pretraining Approach(RoBERTa),Efficiently Learning an Encoder that Classifies Token Replacements Accurately(ELECTRA),eXtreme Learning Network(XLNet)and Decodingenhanced BERT with Disentangled Attention(DeBERTa).Experimental results demonstrate the superior performance of DeBERTa-based GAM,which employs a two-tier hierarchical attention mechanism:word-level attention highlights key terms,while sentence-level attention captures critical narrative segments,ensuring a refined and interpretable representation of movie plots.Evaluated on three benchmark datasets Trailers12K,Large Movie Trailer Dataset-9(LMTD-9),and MovieLens37K.GAM achieves micro-average precision scores of 83.63%,83.32%,and 83.34%,respectively,surpassing state-of-the-artmodels.Additionally,GAMis computationally efficient,requiring just 6.10Giga Floating Point Operations Per Second(GFLOPS),making it a scalable and cost-effective solution.These results highlight the growing potential of text-based deep learning models in genre classification and GAM’s effectiveness in improving predictive accuracy while maintaining computational efficiency.With its robust performance,GAM offers a versatile and scalable framework for content recommendation,film indexing,and media analytics,providing an interpretable alternative to traditional audiovisual-based classification techniques.展开更多
Automated cartoon character recognition is crucial for applications in content indexing,filtering,and copyright protection,yet it faces a significant challenge in animated media due to high intra-class visual variabil...Automated cartoon character recognition is crucial for applications in content indexing,filtering,and copyright protection,yet it faces a significant challenge in animated media due to high intra-class visual variability,where characters frequently alter their appearance.To address this problem,we introduce the novel Kral Sakir dataset,a public benchmark of 16,725 images specifically curated for the task of multi-label cartoon character classification under these varied conditions.This paper conducts a comprehensive benchmark study,evaluating the performance of state-of-the-art pretrained Convolutional Neural Networks(CNNs),including DenseNet,ResNet,and VGG,against a custom baseline model trained from scratch.Our experiments,evaluated using metrics of F1-Score,accuracy,and Area Under the ROC Curve(AUC),demonstrate that fine-tuning pretrained models is a highly effective strategy.The best-performing model,DenseNet121,achieved an F1-Score of 0.9890 and an accuracy of 0.9898,significantly outperforming our baseline CNN(F1-Score of 0.9545).The findings validate the power of transfer learning for this domain and establish a strong performance benchmark.The introduced dataset provides a valuable resource for future research into developing robust and accurate character recognition systems.展开更多
In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and...In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and recognition method for multiple radar-emitter modulation types based on a residual network.This method can quickly perform parallel classification and recognition of multi-modulation radar time-domain aliasing signals under low SNRs.First,we perform time-frequency analysis on the received signal to extract the normalized time-frequency image through the short-time Fourier transform(STFT).The time-frequency distribution image is then denoised using a deep normalized convolutional neural network(DNCNN).Secondly,the multi-label classification and recognition model for multi-modulation radar emitter time-domain aliasing signals is established,and learning the characteristics of radar signal time-frequency distribution image dataset to achieve the purpose of training model.Finally,time-frequency image is recognized and classified through the model,thus completing the automatic classification and recognition of the time-domain aliasing signal.Simulation results show that the proposed method can classify and recognize radar emitter signals of different modulation types in parallel under low SNRs.展开更多
Multi-label learning deals with data associated with a set of labels simultaneously. Dimensionality reduction is an important but challenging task in multi-label learning. Feature selection is an efficient technique f...Multi-label learning deals with data associated with a set of labels simultaneously. Dimensionality reduction is an important but challenging task in multi-label learning. Feature selection is an efficient technique for dimensionality reduction to search an optimal feature subset preserving the most relevant information. In this paper, we propose an effective feature evaluation criterion for multi-label feature selection, called neighborhood relationship preserving score. This criterion is inspired by similarity preservation, which is widely used in single-label feature selection. It evaluates each feature subset by measuring its capability in preserving neighborhood relationship among samples. Unlike similarity preservation, we address the order of sample similarities which can well express the neighborhood relationship among samples, not just the pairwise sample similarity. With this criterion, we also design one ranking algorithm and one greedy algorithm for feature selection problem. The proposed algorithms are validated in six publicly available data sets from machine learning repository. Experimental results demonstrate their superiorities over the compared state-of-the-art methods.展开更多
In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the researc...In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the research of multi-label classification algorithms. Considering the fact that the high dimensionality of the multi-label datasets may cause the curse of dimensionality and wil hamper the classification process, a dimensionality reduction algorithm, named multi-label kernel discriminant analysis (MLKDA), is proposed to reduce the dimensionality of multi-label datasets. MLKDA, with the kernel trick, processes the multi-label integrally and realizes the nonlinear dimensionality reduction with the idea similar with linear discriminant analysis (LDA). In the classification process of multi-label data, the extreme learning machine (ELM) is an efficient algorithm in the premise of good accuracy. MLKDA, combined with ELM, shows a good performance in multi-label learning experiments with several datasets. The experiments on both static data and data stream show that MLKDA outperforms multi-label dimensionality reduction via dependence maximization (MDDM) and multi-label linear discriminant analysis (MLDA) in cases of balanced datasets and stronger correlation between tags, and ELM is also a good choice for multi-label classification.展开更多
Multi-label learning is an active research area which plays an important role in machine learning. Traditional learning algorithms, however, have to depend on samples with complete labels. The existing learning algori...Multi-label learning is an active research area which plays an important role in machine learning. Traditional learning algorithms, however, have to depend on samples with complete labels. The existing learning algorithms with missing labels do not consider the relevance of labels, resulting in label estimation errors of new samples. A new multi-label learning algorithm with support vector machine(SVM) based association(SVMA) is proposed to estimate missing labels by constructing the association between different labels. SVMA will establish a mapping function to minimize the number of samples in the margin while ensuring the margin large enough as well as minimizing the misclassification probability. To evaluate the performance of SVMA in the condition of missing labels, four typical data sets are adopted with the integrity of the labels being handled manually. Simulation results show the superiority of SVMA in dealing with the samples with missing labels compared with other models in image classification.展开更多
Aiming at the problem of multi-label classification, a multi-label classification algorithm based on label-specific features is proposed in this paper. In this algorithm, we compute feature density on the positive and...Aiming at the problem of multi-label classification, a multi-label classification algorithm based on label-specific features is proposed in this paper. In this algorithm, we compute feature density on the positive and negative instances set of each class firstly and then select mk features of high density from the positive and negative instances set of each class, respectively; the intersec- tion is taken as the label-specific features of the corresponding class. Finally, multi-label data are classified on the basis of la- bel-specific features. The algorithm can show the label-specific features of each class. Experiments show that our proposed method, the MLSF algorithm, performs significantly better than the other state-of-the-art multi-label learning approaches.展开更多
In recent years,multi-label learning has received a lot of attention.However,most of the existing methods only consider global label correlation or local label correlation.In fact,on the one hand,both global and local...In recent years,multi-label learning has received a lot of attention.However,most of the existing methods only consider global label correlation or local label correlation.In fact,on the one hand,both global and local label correlations can appear in real-world situation at same time.On the other hand,we should not be limited to pairwise labels while ignoring the high-order label correlation.In this paper,we propose a novel and effective method called GLLCBN for multi-label learning.Firstly,we obtain the global label correlation by exploiting label semantic similarity.Then,we analyze the pairwise labels in the label space of the data set to acquire the local correlation.Next,we build the original version of the label dependency model by global and local label correlations.After that,we use graph theory,probability theory and Bayesian networks to eliminate redundant dependency structure in the initial version model,so as to get the optimal label dependent model.Finally,we obtain the feature extraction model by adjusting the Inception V3 model of convolution neural network and combine it with the GLLCBN model to achieve the multi-label learning.The experimental results show that our proposed model has better performance than other multi-label learning methods in performance evaluating.展开更多
The Internet of Medical Things(IoMT)will come to be of great importance in the mediation of medical disputes,as it is emerging as the core of intelligent medical treatment.First,IoMT can track the entire medical treat...The Internet of Medical Things(IoMT)will come to be of great importance in the mediation of medical disputes,as it is emerging as the core of intelligent medical treatment.First,IoMT can track the entire medical treatment process in order to provide detailed trace data in medical dispute resolution.Second,IoMT can infiltrate the ongoing treatment and provide timely intelligent decision support to medical staff.This information includes recommendation of similar historical cases,guidance for medical treatment,alerting of hired dispute profiteers etc.The multi-label classification of medical dispute documents(MDDs)plays an important role as a front-end process for intelligent decision support,especially in the recommendation of similar historical cases.However,MDDs usually appear as long texts containing a large amount of redundant information,and there is a serious distribution imbalance in the dataset,which directly leads to weaker classification performance.Accordingly,in this paper,a multi-label classification method based on key sentence extraction is proposed for MDDs.The method is divided into two parts.First,the attention-based hierarchical bi-directional long short-term memory(BiLSTM)model is used to extract key sentences from documents;second,random comprehensive sampling Bagging(RCS-Bagging),which is an ensemble multi-label classification model,is employed to classify MDDs based on key sentence sets.The use of this approach greatly improves the classification performance.Experiments show that the performance of the two models proposed in this paper is remarkably better than that of the baseline methods.展开更多
Multi-label text categorization refers to the problem of categorizing text througha multi-label learning algorithm. Text classification for Asian languages such as Chinese isdifferent from work for other languages suc...Multi-label text categorization refers to the problem of categorizing text througha multi-label learning algorithm. Text classification for Asian languages such as Chinese isdifferent from work for other languages such as English which use spaces to separate words.Before classifying text, it is necessary to perform a word segmentation operation to converta continuous language into a list of separate words and then convert it into a vector of acertain dimension. Generally, multi-label learning algorithms can be divided into twocategories, problem transformation methods and adapted algorithms. This work will usecustomer's comments about some hotels as a training data set, which contains labels for allaspects of the hotel evaluation, aiming to analyze and compare the performance of variousmulti-label learning algorithms on Chinese text classification. The experiment involves threebasic methods of problem transformation methods: Support Vector Machine, Random Forest,k-Nearest-Neighbor;and one adapted algorithm of Convolutional Neural Network. Theexperimental results show that the Support Vector Machine has better performance.展开更多
Purpose:Many science,technology and innovation(STI)resources are attached with several different labels.To assign automatically the resulting labels to an interested instance,many approaches with good performance on t...Purpose:Many science,technology and innovation(STI)resources are attached with several different labels.To assign automatically the resulting labels to an interested instance,many approaches with good performance on the benchmark datasets have been proposed for multi-label classification task in the literature.Furthermore,several open-source tools implementing these approaches have also been developed.However,the characteristics of real-world multi-label patent and publication datasets are not completely in line with those of benchmark ones.Therefore,the main purpose of this paper is to evaluate comprehensively seven multi-label classification methods on real-world datasets.Research limitations:Three real-world datasets differ in the following aspects:statement,data quality,and purposes.Additionally,open-source tools designed for multi-label classification also have intrinsic differences in their approaches for data processing and feature selection,which in turn impacts the performance of a multi-label classification approach.In the near future,we will enhance experimental precision and reinforce the validity of conclusions by employing more rigorous control over variables through introducing expanded parameter settings.Practical implications:The observed Macro F1 and Micro F1 scores on real-world datasets typically fall short of those achieved on benchmark datasets,underscoring the complexity of real-world multi-label classification tasks.Approaches leveraging deep learning techniques offer promising solutions by accommodating the hierarchical relationships and interdependencies among labels.With ongoing enhancements in deep learning algorithms and large-scale models,it is expected that the efficacy of multi-label classification tasks will be significantly improved,reaching a level of practical utility in the foreseeable future.Originality/value:(1)Seven multi-label classification methods are comprehensively compared on three real-world datasets.(2)The TextCNN and TextRCNN models perform better on small-scale datasets with more complex hierarchical structure of labels and more balanced document-label distribution.(3)The MLkNN method works better on the larger-scale dataset with more unbalanced document-label distribution.展开更多
Multi-label learning deals with objects associated with multiple class labels,and aims to induce a predictive model which can assign a set of relevant class labels for an unseen instance.Since each class might possess...Multi-label learning deals with objects associated with multiple class labels,and aims to induce a predictive model which can assign a set of relevant class labels for an unseen instance.Since each class might possess its own characteristics,the strategy of extracting label-specific features has been widely employed to improve the discrimination process in multi-label learning,where the predictive model is induced based on tailored features specific to each class label instead of the identical instance representations.As a representative approach,LIFT generates label-specific features by conducting clustering analysis.However,its performance may be degraded due to the inherent instability of the single clustering algorithm.To improve this,a novel multi-label learning approach named SENCE(stable label-Specific features gENeration for multi-label learning via mixture-based Clustering Ensemble)is proposed,which stabilizes the generation process of label-specific features via clustering ensemble techniques.Specifically,more stable clustering results are obtained by firstly augmenting the original instance repre-sentation with cluster assignments from base clusters and then fitting a mixture model via the expectation-maximization(EM)algorithm.Extensive experiments on eighteen benchmark data sets show that SENCE performs better than LIFT and other well-established multi-label learning algorithms.展开更多
To prevent irreversible damage to one’s eyesight,ocular diseases(ODs)need to be recognized and treated immediately.Color fundus imaging(CFI)is a screening technology that is both effective and economical.According to...To prevent irreversible damage to one’s eyesight,ocular diseases(ODs)need to be recognized and treated immediately.Color fundus imaging(CFI)is a screening technology that is both effective and economical.According to CFIs,the early stages of the disease are characterized by a paucity of observable symptoms,which necessitates the prompt creation of automated and robust diagnostic algorithms.The traditional research focuses on image-level diagnostics that attend to the left and right eyes in isolation without making use of pertinent correlation data between the two sets of eyes.In addition,they usually only target one or a few different kinds of eye diseases at the same time.In this study,we design a patient-level multi-label OD(PLML_ODs)classification model that is based on a spatial correlation network(SCNet).This model takes into consideration the relevance of patient-level diagnosis combining bilateral eyes and multi-label ODs classification.PLML_ODs is made up of three parts:a backbone convolutional neural network(CNN)for feature extraction i.e.,DenseNet-169,a SCNet for feature correlation,and a classifier for the development of classification scores.The DenseNet-169 is responsible for retrieving two separate sets of attributes,one from each of the left and right CFI.After then,the SCNet will record the correlations between the two feature sets on a pixel-by-pixel basis.After the attributes have been analyzed,they are integrated to provide a representation at the patient level.Throughout the whole process of ODs categorization,the patient-level representation will be used.The efficacy of the PLML_ODs is examined using a soft margin loss on a dataset that is readily accessible to the public,and the results reveal that the classification performance is significantly improved when compared to several baseline approaches.展开更多
It is a key challenge to exploit the label coupling relationship in multi-label classification(MLC)problems.Most previous work focused on label pairwise relations,in which generally only global statistical informati...It is a key challenge to exploit the label coupling relationship in multi-label classification(MLC)problems.Most previous work focused on label pairwise relations,in which generally only global statistical information is used to analyze the coupled label relationship.In this work,firstly Bayesian and hypothesis testing methods are applied to predict the label set size of testing samples within their k nearest neighbor samples,which combines global and local statistical information,and then apriori algorithm is used to mine the label coupling relationship among multiple labels rather than pairwise labels,which can exploit the label coupling relations more accurately and comprehensively.The experimental results on text,biology and audio datasets shown that,compared with the state-of-the-art algorithm,the proposed algorithm can obtain better performance on 5 common criteria.展开更多
Road congestion,air pollution,and accident rates have all increased as a result of rising traffic density andworldwide population growth.Over the past ten years,the total number of automobiles has increased significan...Road congestion,air pollution,and accident rates have all increased as a result of rising traffic density andworldwide population growth.Over the past ten years,the total number of automobiles has increased significantly over the world.In this paper,a novel method for intelligent traffic surveillance is presented.The proposed model is based on multilabel semantic segmentation using a random forest classifier which classifies the images into five classes.To improve the results,mean-shift clustering was applied to the segmented images.Afterward,the pixels given the label for the vehicle were extracted and blob detection was applied to mark each vehicle.For the validation of each detection,a vehicle verification method based on the structural similarity index is proposed.The tracking of vehicles across the image frames is done using the Identifier(ID)assignment technique and particle filter.Also,vehicle counting in each frame along with trajectory estimation was done for each object.Our proposed system demonstrated a remarkable vehicle detection rate of 0.83 over Vehicle Aerial Imaging from Drone(VAID),0.86 over AU-AIR,and 0.75 over the Unmanned Aerial Vehicle Benchmark Object Detection and Tracking(UAVDT)dataset during the experimental evaluation.The proposed system can be used for several purposes,such as vehicle identification in traffic,traffic density estimation at intersections,and traffic congestion sensing on a road.展开更多
In the realm of Multi-Label Text Classification(MLTC),the dual challenges of extracting rich semantic features from text and discerning inter-label relationships have spurred innovative approaches.Many studies in sema...In the realm of Multi-Label Text Classification(MLTC),the dual challenges of extracting rich semantic features from text and discerning inter-label relationships have spurred innovative approaches.Many studies in semantic feature extraction have turned to external knowledge to augment the model’s grasp of textual content,often overlooking intrinsic textual cues such as label statistical features.In contrast,these endogenous insights naturally align with the classification task.In our paper,to complement this focus on intrinsic knowledge,we introduce a novel Gate-Attention mechanism.This mechanism adeptly integrates statistical features from the text itself into the semantic fabric,enhancing the model’s capacity to understand and represent the data.Additionally,to address the intricate task of mining label correlations,we propose a Dual-end enhancement mechanism.This mechanism effectively mitigates the challenges of information loss and erroneous transmission inherent in traditional long short term memory propagation.We conducted an extensive battery of experiments on the AAPD and RCV1-2 datasets.These experiments serve the dual purpose of confirming the efficacy of both the Gate-Attention mechanism and the Dual-end enhancement mechanism.Our final model unequivocally outperforms the baseline model,attesting to its robustness.These findings emphatically underscore the imperativeness of taking into account not just external knowledge but also the inherent intricacies of textual data when crafting potent MLTC models.展开更多
The recent worldwide spreading of pneumonia-causing virus, such as Coronavirus, COVID-19, and H1N1, has been endangering the life of human beings all around the world. To provide useful clues for developing antiviral ...The recent worldwide spreading of pneumonia-causing virus, such as Coronavirus, COVID-19, and H1N1, has been endangering the life of human beings all around the world. To provide useful clues for developing antiviral drugs, information of anatomical therapeutic chemicals is vitally important. In view of this, a CNN based predictor called “iATC_Deep-mISF” has been developed. The predictor is particularly useful in dealing with the multi-label systems in which some chemicals may occur in two or more different classes. To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/iATC_Deep-mISF/, which will become a very powerful tool for developing effective drugs to fight pandemic coronavirus and save the mankind of this planet.展开更多
In this paper a novel coupled attribute similarity learning method is proposed with the basis on the multi-label categorical data(CASonMLCD).The CASonMLCD method not only computes the correlations between different ...In this paper a novel coupled attribute similarity learning method is proposed with the basis on the multi-label categorical data(CASonMLCD).The CASonMLCD method not only computes the correlations between different attributes and multi-label sets using information gain,which can be regarded as the important degree of each attribute in the attribute learning method,but also further analyzes the intra-coupled and inter-coupled interactions between an attribute value pair for different attributes and multiple labels.The paper compared the CASonMLCD method with the OF distance and Jaccard similarity,which is based on the MLKNN algorithm according to 5common evaluation criteria.The experiment results demonstrated that the CASonMLCD method can mine the similarity relationship more accurately and comprehensively,it can obtain better performance than compared methods.展开更多
Quantification of behaviors in macaques provides crucial support for various scientific disciplines,including pharmacology,neuroscience,and ethology.Despite recent advancements in the analysis of macaque behavior,rese...Quantification of behaviors in macaques provides crucial support for various scientific disciplines,including pharmacology,neuroscience,and ethology.Despite recent advancements in the analysis of macaque behavior,research on multi-label behavior detection in socially housed macaques,including consideration of interactions among them,remains scarce.Given the lack of relevant approaches and datasets,we developed the Behavior-Aware Relation Network(BARN)for multi-label behavior detection of socially housed macaques.Our approach models the relationship of behavioral similarity between macaques,guided by a behavior-aware module and novel behavior classifier,which is suitable for multi-label classification.We also constructed a behavior dataset of rhesus macaques using ordinary RGB cameras mounted outside their cages.The dataset included 65?913 labels for19 behaviors and 60?367 proposals,including identities and locations of the macaques.Experimental results showed that BARN significantly improved the baseline SlowFast network and outperformed existing relation networks.In conclusion,we successfully achieved multilabel behavior detection of socially housed macaques with both economic efficiency and high accuracy.展开更多
基金supporting of the National Science and Technology Council NSTC(grant nos.NSTC 112-2221-E-019-023,NSTC 113-2221-E-019-039)Taiwan University of Science and Technology.
文摘In its 2023 global health statistics,the World Health Organization noted that noncommunicable diseases(NCDs)remain the leading cause of disease burden worldwide,with cardiovascular diseases(CVDs)resulting in more deaths than the three other major NCDs combined.In this study,we developed a method that can comprehensively detect which CVDs are present in a patient.Specifically,we propose a multi-label classification method that utilizes photoplethysmography(PPG)signals and physiological characteristics from public datasets to classify four types of CVDs and related conditions:hypertension,diabetes,cerebral infarction,and cerebrovascular disease.Our approach to multi-disease classification of cardiovascular diseases(CVDs)using PPG signals achieves the highest classification performance when encompassing the broadest range of disease categories,thereby offering a more comprehensive assessment of human health.We employ a multi-label classification strategy to simultaneously predict the presence or absence of multiple diseases.Specifically,we first apply the Savitzky-Golay(S-G)filter to the PPG signals to reduce noise and then transform into statistical features.We integrate processed PPG signals with individual physiological features as a multimodal input,thereby expanding the learned feature space.Notably,even with a simple machine learning method,this approach can achieve relatively high accuracy.The proposed method achieved a maximum F1-score of 0.91,minimum Hamming loss of 0.04,and an accuracy of 0.95.Thus,our method represents an effective and rapid solution for detecting multiple diseases simultaneously,which is beneficial for comprehensively managing CVDs.
基金would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025).
文摘Automated and accurate movie genre classification is crucial for content organization,recommendation systems,and audience targeting in the film industry.Although most existing approaches focus on audiovisual features such as trailers and posters,the text-based classification remains underexplored despite its accessibility and semantic richness.This paper introduces the Genre Attention Model(GAM),a deep learning architecture that integrates transformer models with a hierarchical attention mechanism to extract and leverage contextual information from movie plots formulti-label genre classification.In order to assess its effectiveness,we assessmultiple transformer-based models,including Bidirectional Encoder Representations fromTransformers(BERT),ALite BERT(ALBERT),Distilled BERT(DistilBERT),Robustly Optimized BERT Pretraining Approach(RoBERTa),Efficiently Learning an Encoder that Classifies Token Replacements Accurately(ELECTRA),eXtreme Learning Network(XLNet)and Decodingenhanced BERT with Disentangled Attention(DeBERTa).Experimental results demonstrate the superior performance of DeBERTa-based GAM,which employs a two-tier hierarchical attention mechanism:word-level attention highlights key terms,while sentence-level attention captures critical narrative segments,ensuring a refined and interpretable representation of movie plots.Evaluated on three benchmark datasets Trailers12K,Large Movie Trailer Dataset-9(LMTD-9),and MovieLens37K.GAM achieves micro-average precision scores of 83.63%,83.32%,and 83.34%,respectively,surpassing state-of-the-artmodels.Additionally,GAMis computationally efficient,requiring just 6.10Giga Floating Point Operations Per Second(GFLOPS),making it a scalable and cost-effective solution.These results highlight the growing potential of text-based deep learning models in genre classification and GAM’s effectiveness in improving predictive accuracy while maintaining computational efficiency.With its robust performance,GAM offers a versatile and scalable framework for content recommendation,film indexing,and media analytics,providing an interpretable alternative to traditional audiovisual-based classification techniques.
文摘Automated cartoon character recognition is crucial for applications in content indexing,filtering,and copyright protection,yet it faces a significant challenge in animated media due to high intra-class visual variability,where characters frequently alter their appearance.To address this problem,we introduce the novel Kral Sakir dataset,a public benchmark of 16,725 images specifically curated for the task of multi-label cartoon character classification under these varied conditions.This paper conducts a comprehensive benchmark study,evaluating the performance of state-of-the-art pretrained Convolutional Neural Networks(CNNs),including DenseNet,ResNet,and VGG,against a custom baseline model trained from scratch.Our experiments,evaluated using metrics of F1-Score,accuracy,and Area Under the ROC Curve(AUC),demonstrate that fine-tuning pretrained models is a highly effective strategy.The best-performing model,DenseNet121,achieved an F1-Score of 0.9890 and an accuracy of 0.9898,significantly outperforming our baseline CNN(F1-Score of 0.9545).The findings validate the power of transfer learning for this domain and establish a strong performance benchmark.The introduced dataset provides a valuable resource for future research into developing robust and accurate character recognition systems.
基金The authors would like to acknowledge National Natural Science Foundation of China under Grant 61973037 and Grant 61673066 to provide fund for conducting experiments.
文摘In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and recognition method for multiple radar-emitter modulation types based on a residual network.This method can quickly perform parallel classification and recognition of multi-modulation radar time-domain aliasing signals under low SNRs.First,we perform time-frequency analysis on the received signal to extract the normalized time-frequency image through the short-time Fourier transform(STFT).The time-frequency distribution image is then denoised using a deep normalized convolutional neural network(DNCNN).Secondly,the multi-label classification and recognition model for multi-modulation radar emitter time-domain aliasing signals is established,and learning the characteristics of radar signal time-frequency distribution image dataset to achieve the purpose of training model.Finally,time-frequency image is recognized and classified through the model,thus completing the automatic classification and recognition of the time-domain aliasing signal.Simulation results show that the proposed method can classify and recognize radar emitter signals of different modulation types in parallel under low SNRs.
基金supported in part by the National Natural Science Foundation of China(61379049,61772120)
文摘Multi-label learning deals with data associated with a set of labels simultaneously. Dimensionality reduction is an important but challenging task in multi-label learning. Feature selection is an efficient technique for dimensionality reduction to search an optimal feature subset preserving the most relevant information. In this paper, we propose an effective feature evaluation criterion for multi-label feature selection, called neighborhood relationship preserving score. This criterion is inspired by similarity preservation, which is widely used in single-label feature selection. It evaluates each feature subset by measuring its capability in preserving neighborhood relationship among samples. Unlike similarity preservation, we address the order of sample similarities which can well express the neighborhood relationship among samples, not just the pairwise sample similarity. With this criterion, we also design one ranking algorithm and one greedy algorithm for feature selection problem. The proposed algorithms are validated in six publicly available data sets from machine learning repository. Experimental results demonstrate their superiorities over the compared state-of-the-art methods.
基金supported by the National Natural Science Foundation of China(5110505261173163)the Liaoning Provincial Natural Science Foundation of China(201102037)
文摘In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the research of multi-label classification algorithms. Considering the fact that the high dimensionality of the multi-label datasets may cause the curse of dimensionality and wil hamper the classification process, a dimensionality reduction algorithm, named multi-label kernel discriminant analysis (MLKDA), is proposed to reduce the dimensionality of multi-label datasets. MLKDA, with the kernel trick, processes the multi-label integrally and realizes the nonlinear dimensionality reduction with the idea similar with linear discriminant analysis (LDA). In the classification process of multi-label data, the extreme learning machine (ELM) is an efficient algorithm in the premise of good accuracy. MLKDA, combined with ELM, shows a good performance in multi-label learning experiments with several datasets. The experiments on both static data and data stream show that MLKDA outperforms multi-label dimensionality reduction via dependence maximization (MDDM) and multi-label linear discriminant analysis (MLDA) in cases of balanced datasets and stronger correlation between tags, and ELM is also a good choice for multi-label classification.
基金Support by the National High Technology Research and Development Program of China(No.2012AA120802)National Natural Science Foundation of China(No.61771186)+1 种基金Postdoctoral Research Project of Heilongjiang Province(No.LBH-Q15121)Undergraduate University Project of Young Scientist Creative Talent of Heilongjiang Province(No.UNPYSCT-2017125)
文摘Multi-label learning is an active research area which plays an important role in machine learning. Traditional learning algorithms, however, have to depend on samples with complete labels. The existing learning algorithms with missing labels do not consider the relevance of labels, resulting in label estimation errors of new samples. A new multi-label learning algorithm with support vector machine(SVM) based association(SVMA) is proposed to estimate missing labels by constructing the association between different labels. SVMA will establish a mapping function to minimize the number of samples in the margin while ensuring the margin large enough as well as minimizing the misclassification probability. To evaluate the performance of SVMA in the condition of missing labels, four typical data sets are adopted with the integrity of the labels being handled manually. Simulation results show the superiority of SVMA in dealing with the samples with missing labels compared with other models in image classification.
基金Supported by the Opening Fund of Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education (93K-17-2010-K02)the Opening Fund of Key Discipline of Computer Soft-Ware and Theory of Zhejiang Province at Zhejiang Normal University (ZSDZZZZXK05)
文摘Aiming at the problem of multi-label classification, a multi-label classification algorithm based on label-specific features is proposed in this paper. In this algorithm, we compute feature density on the positive and negative instances set of each class firstly and then select mk features of high density from the positive and negative instances set of each class, respectively; the intersec- tion is taken as the label-specific features of the corresponding class. Finally, multi-label data are classified on the basis of la- bel-specific features. The algorithm can show the label-specific features of each class. Experiments show that our proposed method, the MLSF algorithm, performs significantly better than the other state-of-the-art multi-label learning approaches.
文摘In recent years,multi-label learning has received a lot of attention.However,most of the existing methods only consider global label correlation or local label correlation.In fact,on the one hand,both global and local label correlations can appear in real-world situation at same time.On the other hand,we should not be limited to pairwise labels while ignoring the high-order label correlation.In this paper,we propose a novel and effective method called GLLCBN for multi-label learning.Firstly,we obtain the global label correlation by exploiting label semantic similarity.Then,we analyze the pairwise labels in the label space of the data set to acquire the local correlation.Next,we build the original version of the label dependency model by global and local label correlations.After that,we use graph theory,probability theory and Bayesian networks to eliminate redundant dependency structure in the initial version model,so as to get the optimal label dependent model.Finally,we obtain the feature extraction model by adjusting the Inception V3 model of convolution neural network and combine it with the GLLCBN model to achieve the multi-label learning.The experimental results show that our proposed model has better performance than other multi-label learning methods in performance evaluating.
基金supported by the National Key R&D Program of China(2018YFC0830200,Zhang,B,www.most.gov.cn)the Fundamental Research Funds for the Central Universities(2242018S30021 and 2242017S30023,Zhou S,www.seu.edu.cn)the Open Research Fund from Key Laboratory of Computer Network and Information Integration In Southeast University,Ministry of Education,China(3209012001C3,Zhang B,www.seu.edu.cn).
文摘The Internet of Medical Things(IoMT)will come to be of great importance in the mediation of medical disputes,as it is emerging as the core of intelligent medical treatment.First,IoMT can track the entire medical treatment process in order to provide detailed trace data in medical dispute resolution.Second,IoMT can infiltrate the ongoing treatment and provide timely intelligent decision support to medical staff.This information includes recommendation of similar historical cases,guidance for medical treatment,alerting of hired dispute profiteers etc.The multi-label classification of medical dispute documents(MDDs)plays an important role as a front-end process for intelligent decision support,especially in the recommendation of similar historical cases.However,MDDs usually appear as long texts containing a large amount of redundant information,and there is a serious distribution imbalance in the dataset,which directly leads to weaker classification performance.Accordingly,in this paper,a multi-label classification method based on key sentence extraction is proposed for MDDs.The method is divided into two parts.First,the attention-based hierarchical bi-directional long short-term memory(BiLSTM)model is used to extract key sentences from documents;second,random comprehensive sampling Bagging(RCS-Bagging),which is an ensemble multi-label classification model,is employed to classify MDDs based on key sentence sets.The use of this approach greatly improves the classification performance.Experiments show that the performance of the two models proposed in this paper is remarkably better than that of the baseline methods.
基金supported by the NSFC (Grant Nos. 61772281,61703212, 61602254)Jiangsu Province Natural Science Foundation [grant numberBK2160968]the Priority Academic Program Development of Jiangsu Higher Edu-cationInstitutions (PAPD) and Jiangsu Collaborative Innovation Center on AtmosphericEnvironment and Equipment Technology (CICAEET).
文摘Multi-label text categorization refers to the problem of categorizing text througha multi-label learning algorithm. Text classification for Asian languages such as Chinese isdifferent from work for other languages such as English which use spaces to separate words.Before classifying text, it is necessary to perform a word segmentation operation to converta continuous language into a list of separate words and then convert it into a vector of acertain dimension. Generally, multi-label learning algorithms can be divided into twocategories, problem transformation methods and adapted algorithms. This work will usecustomer's comments about some hotels as a training data set, which contains labels for allaspects of the hotel evaluation, aiming to analyze and compare the performance of variousmulti-label learning algorithms on Chinese text classification. The experiment involves threebasic methods of problem transformation methods: Support Vector Machine, Random Forest,k-Nearest-Neighbor;and one adapted algorithm of Convolutional Neural Network. Theexperimental results show that the Support Vector Machine has better performance.
基金the Natural Science Foundation of China(Grant Numbers 72074014 and 72004012).
文摘Purpose:Many science,technology and innovation(STI)resources are attached with several different labels.To assign automatically the resulting labels to an interested instance,many approaches with good performance on the benchmark datasets have been proposed for multi-label classification task in the literature.Furthermore,several open-source tools implementing these approaches have also been developed.However,the characteristics of real-world multi-label patent and publication datasets are not completely in line with those of benchmark ones.Therefore,the main purpose of this paper is to evaluate comprehensively seven multi-label classification methods on real-world datasets.Research limitations:Three real-world datasets differ in the following aspects:statement,data quality,and purposes.Additionally,open-source tools designed for multi-label classification also have intrinsic differences in their approaches for data processing and feature selection,which in turn impacts the performance of a multi-label classification approach.In the near future,we will enhance experimental precision and reinforce the validity of conclusions by employing more rigorous control over variables through introducing expanded parameter settings.Practical implications:The observed Macro F1 and Micro F1 scores on real-world datasets typically fall short of those achieved on benchmark datasets,underscoring the complexity of real-world multi-label classification tasks.Approaches leveraging deep learning techniques offer promising solutions by accommodating the hierarchical relationships and interdependencies among labels.With ongoing enhancements in deep learning algorithms and large-scale models,it is expected that the efficacy of multi-label classification tasks will be significantly improved,reaching a level of practical utility in the foreseeable future.Originality/value:(1)Seven multi-label classification methods are comprehensively compared on three real-world datasets.(2)The TextCNN and TextRCNN models perform better on small-scale datasets with more complex hierarchical structure of labels and more balanced document-label distribution.(3)The MLkNN method works better on the larger-scale dataset with more unbalanced document-label distribution.
基金This work was supported by the National Science Foundation of China(62176055)the China University S&T Innovation Plan Guided by the Ministry of Education.
文摘Multi-label learning deals with objects associated with multiple class labels,and aims to induce a predictive model which can assign a set of relevant class labels for an unseen instance.Since each class might possess its own characteristics,the strategy of extracting label-specific features has been widely employed to improve the discrimination process in multi-label learning,where the predictive model is induced based on tailored features specific to each class label instead of the identical instance representations.As a representative approach,LIFT generates label-specific features by conducting clustering analysis.However,its performance may be degraded due to the inherent instability of the single clustering algorithm.To improve this,a novel multi-label learning approach named SENCE(stable label-Specific features gENeration for multi-label learning via mixture-based Clustering Ensemble)is proposed,which stabilizes the generation process of label-specific features via clustering ensemble techniques.Specifically,more stable clustering results are obtained by firstly augmenting the original instance repre-sentation with cluster assignments from base clusters and then fitting a mixture model via the expectation-maximization(EM)algorithm.Extensive experiments on eighteen benchmark data sets show that SENCE performs better than LIFT and other well-established multi-label learning algorithms.
文摘To prevent irreversible damage to one’s eyesight,ocular diseases(ODs)need to be recognized and treated immediately.Color fundus imaging(CFI)is a screening technology that is both effective and economical.According to CFIs,the early stages of the disease are characterized by a paucity of observable symptoms,which necessitates the prompt creation of automated and robust diagnostic algorithms.The traditional research focuses on image-level diagnostics that attend to the left and right eyes in isolation without making use of pertinent correlation data between the two sets of eyes.In addition,they usually only target one or a few different kinds of eye diseases at the same time.In this study,we design a patient-level multi-label OD(PLML_ODs)classification model that is based on a spatial correlation network(SCNet).This model takes into consideration the relevance of patient-level diagnosis combining bilateral eyes and multi-label ODs classification.PLML_ODs is made up of three parts:a backbone convolutional neural network(CNN)for feature extraction i.e.,DenseNet-169,a SCNet for feature correlation,and a classifier for the development of classification scores.The DenseNet-169 is responsible for retrieving two separate sets of attributes,one from each of the left and right CFI.After then,the SCNet will record the correlations between the two feature sets on a pixel-by-pixel basis.After the attributes have been analyzed,they are integrated to provide a representation at the patient level.Throughout the whole process of ODs categorization,the patient-level representation will be used.The efficacy of the PLML_ODs is examined using a soft margin loss on a dataset that is readily accessible to the public,and the results reveal that the classification performance is significantly improved when compared to several baseline approaches.
基金Supported by Australian Research Council Discovery(DP130102691)the National Science Foundation of China(61302157)+1 种基金China National 863 Project(2012AA12A308)China Pre-research Project of Nuclear Industry(FZ1402-08)
文摘It is a key challenge to exploit the label coupling relationship in multi-label classification(MLC)problems.Most previous work focused on label pairwise relations,in which generally only global statistical information is used to analyze the coupled label relationship.In this work,firstly Bayesian and hypothesis testing methods are applied to predict the label set size of testing samples within their k nearest neighbor samples,which combines global and local statistical information,and then apriori algorithm is used to mine the label coupling relationship among multiple labels rather than pairwise labels,which can exploit the label coupling relations more accurately and comprehensively.The experimental results on text,biology and audio datasets shown that,compared with the state-of-the-art algorithm,the proposed algorithm can obtain better performance on 5 common criteria.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)Support Program(IITP-2023-2018-0-01426)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).The funding of this work was provided by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R410),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Road congestion,air pollution,and accident rates have all increased as a result of rising traffic density andworldwide population growth.Over the past ten years,the total number of automobiles has increased significantly over the world.In this paper,a novel method for intelligent traffic surveillance is presented.The proposed model is based on multilabel semantic segmentation using a random forest classifier which classifies the images into five classes.To improve the results,mean-shift clustering was applied to the segmented images.Afterward,the pixels given the label for the vehicle were extracted and blob detection was applied to mark each vehicle.For the validation of each detection,a vehicle verification method based on the structural similarity index is proposed.The tracking of vehicles across the image frames is done using the Identifier(ID)assignment technique and particle filter.Also,vehicle counting in each frame along with trajectory estimation was done for each object.Our proposed system demonstrated a remarkable vehicle detection rate of 0.83 over Vehicle Aerial Imaging from Drone(VAID),0.86 over AU-AIR,and 0.75 over the Unmanned Aerial Vehicle Benchmark Object Detection and Tracking(UAVDT)dataset during the experimental evaluation.The proposed system can be used for several purposes,such as vehicle identification in traffic,traffic density estimation at intersections,and traffic congestion sensing on a road.
基金supported by National Natural Science Foundation of China(NSFC)(Grant Nos.62162022,62162024)the Key Research and Development Program of Hainan Province(Grant Nos.ZDYF2020040,ZDYF2021GXJS003)+2 种基金the Major Science and Technology Project of Hainan Province(Grant No.ZDKJ2020012)Hainan Provincial Natural Science Foundation of China(Grant Nos.620MS021,621QN211)Science and Technology Development Center of the Ministry of Education Industry-University-Research Innovation Fund(2021JQR017).
文摘In the realm of Multi-Label Text Classification(MLTC),the dual challenges of extracting rich semantic features from text and discerning inter-label relationships have spurred innovative approaches.Many studies in semantic feature extraction have turned to external knowledge to augment the model’s grasp of textual content,often overlooking intrinsic textual cues such as label statistical features.In contrast,these endogenous insights naturally align with the classification task.In our paper,to complement this focus on intrinsic knowledge,we introduce a novel Gate-Attention mechanism.This mechanism adeptly integrates statistical features from the text itself into the semantic fabric,enhancing the model’s capacity to understand and represent the data.Additionally,to address the intricate task of mining label correlations,we propose a Dual-end enhancement mechanism.This mechanism effectively mitigates the challenges of information loss and erroneous transmission inherent in traditional long short term memory propagation.We conducted an extensive battery of experiments on the AAPD and RCV1-2 datasets.These experiments serve the dual purpose of confirming the efficacy of both the Gate-Attention mechanism and the Dual-end enhancement mechanism.Our final model unequivocally outperforms the baseline model,attesting to its robustness.These findings emphatically underscore the imperativeness of taking into account not just external knowledge but also the inherent intricacies of textual data when crafting potent MLTC models.
文摘The recent worldwide spreading of pneumonia-causing virus, such as Coronavirus, COVID-19, and H1N1, has been endangering the life of human beings all around the world. To provide useful clues for developing antiviral drugs, information of anatomical therapeutic chemicals is vitally important. In view of this, a CNN based predictor called “iATC_Deep-mISF” has been developed. The predictor is particularly useful in dealing with the multi-label systems in which some chemicals may occur in two or more different classes. To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/iATC_Deep-mISF/, which will become a very powerful tool for developing effective drugs to fight pandemic coronavirus and save the mankind of this planet.
基金Supported by Australian Research Council Discovery(DP130102691)the National Science Foundation of China(61302157)+1 种基金China National 863 Project(2012AA12A308)China Pre-research Project of Nuclear Industry(FZ1402-08)
文摘In this paper a novel coupled attribute similarity learning method is proposed with the basis on the multi-label categorical data(CASonMLCD).The CASonMLCD method not only computes the correlations between different attributes and multi-label sets using information gain,which can be regarded as the important degree of each attribute in the attribute learning method,but also further analyzes the intra-coupled and inter-coupled interactions between an attribute value pair for different attributes and multiple labels.The paper compared the CASonMLCD method with the OF distance and Jaccard similarity,which is based on the MLKNN algorithm according to 5common evaluation criteria.The experiment results demonstrated that the CASonMLCD method can mine the similarity relationship more accurately and comprehensively,it can obtain better performance than compared methods.
基金supported by the Major Project of the National Natural Science Foundation of China (82090051,81871442)Outstanding Member Project of Youth Innovation Promotion Association of the Chinese Academy of Sciences (Y201930)。
文摘Quantification of behaviors in macaques provides crucial support for various scientific disciplines,including pharmacology,neuroscience,and ethology.Despite recent advancements in the analysis of macaque behavior,research on multi-label behavior detection in socially housed macaques,including consideration of interactions among them,remains scarce.Given the lack of relevant approaches and datasets,we developed the Behavior-Aware Relation Network(BARN)for multi-label behavior detection of socially housed macaques.Our approach models the relationship of behavioral similarity between macaques,guided by a behavior-aware module and novel behavior classifier,which is suitable for multi-label classification.We also constructed a behavior dataset of rhesus macaques using ordinary RGB cameras mounted outside their cages.The dataset included 65?913 labels for19 behaviors and 60?367 proposals,including identities and locations of the macaques.Experimental results showed that BARN significantly improved the baseline SlowFast network and outperformed existing relation networks.In conclusion,we successfully achieved multilabel behavior detection of socially housed macaques with both economic efficiency and high accuracy.