期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种多标记学习入侵检测算法 被引量:3
1
作者 钱燕燕 李永忠 +1 位作者 章雷 余西亚 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第7期929-933,共5页
针对现有入侵检测技术的不足,文章研究了基于机器学习的异常入侵检测系统,将多标记和半监督学习应用于入侵检测,提出了一种基于多标记学习的入侵检测算法。该算法采用"k近邻"分类准则,统计近邻样本的类别标记信息,通过最大化... 针对现有入侵检测技术的不足,文章研究了基于机器学习的异常入侵检测系统,将多标记和半监督学习应用于入侵检测,提出了一种基于多标记学习的入侵检测算法。该算法采用"k近邻"分类准则,统计近邻样本的类别标记信息,通过最大化后验概率(maximum a posteriori,MAP)的方式推理未标记数据的所属集合。在KDD CUP99数据集上的仿真结果表明,该算法能有效地改善入侵检测系统的性能。 展开更多
关键词 多标记学习 ml-knn算法 半监督学习 入侵检测 KDD CUP99数据集
在线阅读 下载PDF
基于数字内容偏好的多标签分类应用
2
作者 刘斌 李笑 《计算机与现代化》 2021年第2期45-50,共6页
目前电信行业的数字内容研究主要是基于业务口径进行不同偏好的用户洞察,多以业务经验进行判断,不利于数字内容用户规模的发展扩大。为此,本文利用大流量客户的历史数据,基于多标签分类算法对数字内容偏好进行研究,得到各类别的潜在目... 目前电信行业的数字内容研究主要是基于业务口径进行不同偏好的用户洞察,多以业务经验进行判断,不利于数字内容用户规模的发展扩大。为此,本文利用大流量客户的历史数据,基于多标签分类算法对数字内容偏好进行研究,得到各类别的潜在目标客户,最终通过营销推荐客户喜好内容,提高精准营销能力。首先以M电信公司用户的基础、消费属性等脱敏数据作为数据源,并获取近3个月视频、音乐、阅读活跃用户清单,人工进行活跃维度的标注,得到初始数据集;由于正负样本不均衡,故采用多次下采样的方法随机抽样得到3份样本数据,并使用CC、ML-KNN、Rakel D等6种算法进行对比实验验证;实验结果表明:采用Rakel D及ML-KNN多标签分类算法在数字内容用户偏好洞察方面有较好的预测能力,故采用ML-KNN作为Rakel D算法的基本分类器,即Rakel D_MLKNN方法,对正负样比例不同的数据集分别进行预测,效果均优于前6种已经存在的常用多标签分类算法及传统经验选型方法。 展开更多
关键词 数字内容偏好 多标签分类 CC算法 ml-knn算法 RakelD算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部