Laser photovoltaic devices converting 1064 nm light energy into electric energy present a promising prospect in wireless energy transmission due to the commercial availability of high power 1064 nm lasers with very sm...Laser photovoltaic devices converting 1064 nm light energy into electric energy present a promising prospect in wireless energy transmission due to the commercial availability of high power 1064 nm lasers with very small divergence. Besides their high conversion efficiency, a high output voltage is also expected in a laser energy transmission system. Meanwhile,1064 nm InGaAsP multi-junction laser power converters have been developed using p^+-InGaAs/n^+-InGaAs tunnel junctions to connect sub-cells in series to obtain a high output voltage. The triple-junction laser power converter structures are grown on p-type InP substrates by metal-organic chemical vapor deposition(MOCVD), and InGaAsP laser power converters are fabricated by conventional photovoltaic device processing. The room-temperature I–V measurements show that the 1 × 1 cm^2 triplejunction InGaAsP laser power converters demonstrate a conversion efficiency of 32.6% at a power density of 1.1 W/cm^2, with an open-circuit voltage of 2.16 V and a fill factor of 0.74. In this paper, the characteristics of the laser power converters are analyzed and ways to improve the conversion efficiency are discussed.展开更多
A metamorphic GaInP/GaAs/GaInAs/Ge multi-junction solar cell with InAs quantum dots is investigated, and the analytical expression of the energy conversion efficiency on the multi-junction tandem solar cell is derived...A metamorphic GaInP/GaAs/GaInAs/Ge multi-junction solar cell with InAs quantum dots is investigated, and the analytical expression of the energy conversion efficiency on the multi-junction tandem solar cell is derived using the detailed balance principle and the Kronig-Penney model.The influences of interdot distance, quantum-dot size and the intermediate band location on the energy conversion efficiency are studied.This shows that the maximum efficiency,as a function of quantum-dot size and distance,is about 60.15%under the maximum concentration for only one InAs/GaAs subcell,and is even up to 39.69%for the overall cell.In addition,other efficiency factors such as current mismatch,the formation of a quasicontinuum conduction band and concentrated light are examined.展开更多
We report our progress in the high-temperature superconductor(HTS)Josephson junction fabrication process founded on utilizing a focused helium ion beam damaging technique and discuss the expected device performance at...We report our progress in the high-temperature superconductor(HTS)Josephson junction fabrication process founded on utilizing a focused helium ion beam damaging technique and discuss the expected device performance attainable with the HTS multi-junction device technology.Both the achievable high value of characteristic voltage V_(C)=I_(C)R_(N)of Josephson junctions and the ability to design a large number of arbitrary located Josephson junctions allow narrowing the existing gap in design abilities for lowtemperature superconductor(LTS)and HTS circuits even with using a single YBa_(2)Cu_(3)O_(7-x) film layer.A one-layer topology of active electrically small antenna is suggested and its voltage response characteristics are considered.展开更多
基金partially supported by the Jiangsu Province Science Foundation for Youths (No. BK20170431)the National Natural Science Foundation of China (No. 61604171)。
文摘Laser photovoltaic devices converting 1064 nm light energy into electric energy present a promising prospect in wireless energy transmission due to the commercial availability of high power 1064 nm lasers with very small divergence. Besides their high conversion efficiency, a high output voltage is also expected in a laser energy transmission system. Meanwhile,1064 nm InGaAsP multi-junction laser power converters have been developed using p^+-InGaAs/n^+-InGaAs tunnel junctions to connect sub-cells in series to obtain a high output voltage. The triple-junction laser power converter structures are grown on p-type InP substrates by metal-organic chemical vapor deposition(MOCVD), and InGaAsP laser power converters are fabricated by conventional photovoltaic device processing. The room-temperature I–V measurements show that the 1 × 1 cm^2 triplejunction InGaAsP laser power converters demonstrate a conversion efficiency of 32.6% at a power density of 1.1 W/cm^2, with an open-circuit voltage of 2.16 V and a fill factor of 0.74. In this paper, the characteristics of the laser power converters are analyzed and ways to improve the conversion efficiency are discussed.
文摘A metamorphic GaInP/GaAs/GaInAs/Ge multi-junction solar cell with InAs quantum dots is investigated, and the analytical expression of the energy conversion efficiency on the multi-junction tandem solar cell is derived using the detailed balance principle and the Kronig-Penney model.The influences of interdot distance, quantum-dot size and the intermediate band location on the energy conversion efficiency are studied.This shows that the maximum efficiency,as a function of quantum-dot size and distance,is about 60.15%under the maximum concentration for only one InAs/GaAs subcell,and is even up to 39.69%for the overall cell.In addition,other efficiency factors such as current mismatch,the formation of a quasicontinuum conduction band and concentrated light are examined.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1603900)in part by the Russian Science Foundation(RSCF)(Grant No.19-72-10016-P).
文摘We report our progress in the high-temperature superconductor(HTS)Josephson junction fabrication process founded on utilizing a focused helium ion beam damaging technique and discuss the expected device performance attainable with the HTS multi-junction device technology.Both the achievable high value of characteristic voltage V_(C)=I_(C)R_(N)of Josephson junctions and the ability to design a large number of arbitrary located Josephson junctions allow narrowing the existing gap in design abilities for lowtemperature superconductor(LTS)and HTS circuits even with using a single YBa_(2)Cu_(3)O_(7-x) film layer.A one-layer topology of active electrically small antenna is suggested and its voltage response characteristics are considered.