期刊文献+
共找到32,699篇文章
< 1 2 250 >
每页显示 20 50 100
A New Exposed-terminal-free MAC Protocol for Multi-hop Wireless Networks 被引量:3
1
作者 刘凯 邢小琴 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第3期285-292,共8页
This article presents a new multichannel medium access control (MAC) protocol to solve the exposed-terminal (ET) problem for efficient channel sharing in multi-hop wireless networks. It uses request-to-send and clear-... This article presents a new multichannel medium access control (MAC) protocol to solve the exposed-terminal (ET) problem for efficient channel sharing in multi-hop wireless networks. It uses request-to-send and clear-to-send (RTS/CTS) dialogue on a common channel and flexibly opts for conflict-free traffic channels to carry out the data packet transmission on the basis of a new channel selection scheme. The acknowledgment (ACK) packet for the data packet transmission is sent back to the sender over another ... 展开更多
关键词 wireless networks multiple access channel reservation exposed terminal
原文传递
Mitigating Hotspot Problem Using Northern Goshawk Optimization Based Energy Aware Multi-Hop Communication for Wireless Sensor Networks
2
作者 S.Leones Sherwin Vimalraj J.Lydia 《China Communications》 2025年第2期283-298,共16页
Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commo... Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commonly used in various applications such as environmental monitoring,surveillance,healthcare,agriculture,and industrial automation.Despite the benefits of WSN,energy efficiency remains a challenging problem that needs to be addressed.Clustering and routing can be considered effective solutions to accomplish energy efficiency in WSNs.Recent studies have reported that metaheuristic algorithms can be applied to optimize cluster formation and routing decisions.This study introduces a new Northern Goshawk Optimization with boosted coati optimization algorithm for cluster-based routing(NGOBCO-CBR)method for WSN.The proposed NGOBCO-CBR method resolves the hot spot problem,uneven load balancing,and energy consumption in WSN.The NGOBCO-CBR technique comprises two major processes such as NGO based clustering and BCO-based routing.In the initial phase,the NGObased clustering method is designed for cluster head(CH)selection and cluster construction using five input variables such as residual energy(RE),node proximity,load balancing,network average energy,and distance to BS(DBS).Besides,the NGOBCO-CBR technique applies the BCO algorithm for the optimum selection of routes to BS.The experimental results of the NGOBCOCBR technique are studied under different scenarios,and the obtained results showcased the improved efficiency of the NGOBCO-CBR technique over recent approaches in terms of different measures. 展开更多
关键词 CLUSTERING energy efficiency metaheuristics multihop communication network lifetime wireless sensor networks
在线阅读 下载PDF
Location-aided and secure routing protocol for heterogeneous multi-hop wireless networks 被引量:6
3
作者 Bai Yuan Hao Ruimin +1 位作者 An Jie Zhang Huibing 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2016年第1期49-54,共6页
Most of the existing routing protocols for heterogeneous multi-hop wireless networks (HWMNs) use on-demand routing protocols owing to their suitability for dynamic topology environments, but it causes wastes of netw... Most of the existing routing protocols for heterogeneous multi-hop wireless networks (HWMNs) use on-demand routing protocols owing to their suitability for dynamic topology environments, but it causes wastes of network resources with large number of data packets being broadcast. Furthermore, some nodes in heterogeneous wireless multi-hop networksmay be malicious or selfish nodes which can easily lead to link attacks. A novel routing protocol called trust-based secure routing protocol with auxiliary of nodes' location information (TSRAL) is proposed for the establishment of a secure routing protocol with a lower overhead for HWMNs which combines the location information and trust value of nodes to select the next forwarding nodes. The destination node selects an optimal path from multiple paths according to the total trust value and the hop number of routes. Simulation results demonstrate that TSRAL can not only reduce the number of hops and data packets being broadcast in the process of routing but also ensure the safety of the route. 展开更多
关键词 heterogeneous multi-hop wireless networks trust system LOCALIZATION secure routing
原文传递
Application Research of Wireless Sensor Networks and the Internet of Things 被引量:1
4
作者 Changjian Lv Rui Wang Man Zhao 《Journal of Electronic Research and Application》 2025年第4期283-289,共7页
In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),dee... In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),deeply embedded in the perception layer architecture of the IoT,play a crucial role as“tactile nerve endings.”A vast number of micro sensor nodes are widely distributed in monitoring areas according to preset deployment strategies,continuously and accurately perceiving and collecting real-time data on environmental parameters such as temperature,humidity,light intensity,air pressure,and pollutant concentration.These data are transmitted to the IoT cloud platform through stable and reliable communication links,forming a massive and detailed basic data resource pool.By using cutting-edge big data processing algorithms,machine learning models,and artificial intelligence analysis tools,in-depth mining and intelligent analysis of these multi-source heterogeneous data are conducted to generate high-value-added decision-making bases.This precisely empowers multiple fields,including agriculture,medical and health care,smart home,environmental science,and industrial manufacturing,driving intelligent transformation and catalyzing society to move towards a new stage of high-quality development.This paper comprehensively analyzes the technical cores of the IoT and WSNs,systematically sorts out the advanced key technologies of WSNs and the evolution of their strategic significance in the IoT system,deeply explores the innovative application scenarios and practical effects of the two in specific vertical fields,and looks forward to the technological evolution trends.It provides a detailed and highly practical guiding reference for researchers,technical engineers,and industrial decision-makers. 展开更多
关键词 wireless Sensor networks Internet of Things Key technologies Application fields
在线阅读 下载PDF
Computation and wireless resource management in 6G space-integrated-ground access networks 被引量:1
5
作者 Ning Hui Qian Sun +2 位作者 Lin Tian Yuanyuan Wang Yiqing Zhou 《Digital Communications and Networks》 2025年第3期768-777,共10页
In 6th Generation Mobile Networks(6G),the Space-Integrated-Ground(SIG)Radio Access Network(RAN)promises seamless coverage and exceptionally high Quality of Service(QoS)for diverse services.However,achieving this neces... In 6th Generation Mobile Networks(6G),the Space-Integrated-Ground(SIG)Radio Access Network(RAN)promises seamless coverage and exceptionally high Quality of Service(QoS)for diverse services.However,achieving this necessitates effective management of computation and wireless resources tailored to the requirements of various services.The heterogeneity of computation resources and interference among shared wireless resources pose significant coordination and management challenges.To solve these problems,this work provides an overview of multi-dimensional resource management in 6G SIG RAN,including computation and wireless resource.Firstly it provides with a review of current investigations on computation and wireless resource management and an analysis of existing deficiencies and challenges.Then focusing on the provided challenges,the work proposes an MEC-based computation resource management scheme and a mixed numerology-based wireless resource management scheme.Furthermore,it outlines promising future technologies,including joint model-driven and data-driven resource management technology,and blockchain-based resource management technology within the 6G SIG network.The work also highlights remaining challenges,such as reducing communication costs associated with unstable ground-to-satellite links and overcoming barriers posed by spectrum isolation.Overall,this comprehensive approach aims to pave the way for efficient and effective resource management in future 6G networks. 展开更多
关键词 Space-integrated-ground Radio access network MEC-based computation resource management Mixed numerology-based wireless resource management
在线阅读 下载PDF
Hierarchical detection and tracking for moving targets in underwater wireless sensor networks 被引量:1
6
作者 Yudong Li Hongcheng Zhuang +2 位作者 Long Xu Shengquan Li Haibo Lu 《Digital Communications and Networks》 2025年第2期556-562,共7页
It is difficult to improve both energy consumption and detection accuracy simultaneously,and even to obtain the trade-off between them,when detecting and tracking moving targets,especially for Underwater Wireless Sens... It is difficult to improve both energy consumption and detection accuracy simultaneously,and even to obtain the trade-off between them,when detecting and tracking moving targets,especially for Underwater Wireless Sensor Networks(UWSNs).To this end,this paper investigates the relationship between the Degree of Target Change(DoTC)and the detection period,as well as the impact of individual nodes.A Hierarchical Detection and Tracking Approach(HDTA)is proposed.Firstly,the network detection period is determined according to DoTC,which reflects the variation of target motion.Secondly,during the network detection period,each detection node calculates its own node detection period based on the detection mutual information.Taking DoTC as pheromone,an ant colony algorithm is proposed to adaptively adjust the network detection period.The simulation results show that the proposed HDTA with the optimizations of network level and node level significantly improves the detection accuracy by 25%and the network energy consumption by 10%simultaneously,compared to the traditional adaptive period detection schemes. 展开更多
关键词 Underwater wireless sensor networks The degree of target change Mutual information PHEROMONE Adaptive period
在线阅读 下载PDF
Adaptive Time Synchronization in Time Sensitive-Wireless Sensor Networks Based on Stochastic Gradient Algorithms Framework
7
作者 Ramadan Abdul-Rashid Mohd Amiruddin Abd Rahman +1 位作者 Kar Tim Chan Arun Kumar Sangaiah 《Computer Modeling in Engineering & Sciences》 2025年第3期2585-2616,共32页
This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different... This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments.The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency.A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.Steady and convergence analyses are then presented for the synchronization,with frequency adaptations done using least mean square(LMS),the Newton search,the gradient descent(GraDes),the normalized LMS(N-LMS),and the Sign-Data LMS algorithms.Results obtained from real-time experiments showed a better performance of our protocols as compared to the Average Proportional-Integral Synchronization Protocol(AvgPISync)regarding the impact of quantization error on synchronization accuracy,precision,and convergence time.This generalized approach to time synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications. 展开更多
关键词 wireless sensor network time synchronization stochastic gradient algorithm multi-hop
在线阅读 下载PDF
Dynamic Multi-Target Jamming Channel Allocation and Power Decision-Making in Wireless Communication Networks:A Multi-Agent Deep Reinforcement Learning Approach
8
作者 Peng Xiang Xu Hua +4 位作者 Qi Zisen Wang Dan Zhang Yue Rao Ning Gu Wanyi 《China Communications》 2025年第5期71-91,共21页
This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD... This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD)approach based on multi-agent deep reinforcement learning(MADRL).In high-dynamic and multi-target aviation communication environments,the rapid changes in channels make it difficult for sensors to accurately capture instantaneous channel state information.This poses a challenge to make centralized jamming decisions with single-agent deep reinforcement learning(DRL)approaches.In response,we design a distributed multi-agent decision architecture(DMADA).We formulate multi-jammer resource allocation as a multiagent Markov decision process(MDP)and propose a fingerprint-based double deep Q-Network(FBDDQN)algorithm for solving it.Each jammer functions as an agent that interacts with the environment in this framework.Through the design of a reasonable reward and training mechanism,our approach enables jammers to achieve distributed cooperation,significantly improving the jamming success rate while considering jamming power cost,and reducing the transmission rate of links.Our experimental results show the FBDDQN algorithm is superior to the baseline methods. 展开更多
关键词 jamming resource allocation JCAPD MADRL wireless communication countermeasure wireless communication networks
在线阅读 下载PDF
Reliability Service Oriented Efficient Embedding Method Towards Virtual Hybrid Wireless Sensor Networks
9
作者 Wu Dapeng Lai Wan +3 位作者 Sun Meiyu Yang Zhigang Zhang Puning Wang Ruyan 《China Communications》 2025年第11期161-175,共15页
Network virtualization is the development trend and inevitable requirement of hybrid wireless sensor networks(HWSNs).Low mapping efficiency and service interruption caused by mobility seriously affect the reliability ... Network virtualization is the development trend and inevitable requirement of hybrid wireless sensor networks(HWSNs).Low mapping efficiency and service interruption caused by mobility seriously affect the reliability of sensing tasks and ultimately affect the long-term revenue of the infrastructure providers.In response to these problems,this paper proposes an efficient virtual network embedding algorithm with a reliable service guarantee.Based on the topological attributes of nodes,a method for evaluating the physical network resource importance degree is proposed,and the nodes with rich resources are selected to improve embedding efficiency.Then,a method for evaluating the physical network reliability degree is proposed to predict the probability of mobile sensors providing uninterrupted services.The simulation results show that the proposed algorithm improves the acceptance rate of virtual sensor networks(VSN)embedding requests and the long-term revenue of the infrastructure providers. 展开更多
关键词 hybrid wireless sensor networks mobile sensor reliability service virtual network embedding
在线阅读 下载PDF
Application of Bagging Ensemble Model for Fault Detection in Wireless Sensor Networks
10
作者 Rahul Prasad Baghel R K 《Journal of Harbin Institute of Technology(New Series)》 2025年第5期74-85,共12页
A Wireless Sensor Network(WSN)comprises a series of spatially distributed autonomous devices,each equipped with sophisticated sensors.These sensors play a crucial role in monitoring diverse environmental conditions su... A Wireless Sensor Network(WSN)comprises a series of spatially distributed autonomous devices,each equipped with sophisticated sensors.These sensors play a crucial role in monitoring diverse environmental conditions such as light intensity,air pressure,temperature,humidity,wind,etc.These sensors are generally deployed in harsh and hostile conditions;hence they suffer from different kinds of faults.However,identifying faults in WSN data remains a complex task,as existing fault detection methods,including centralized,distributed,and hybrid approaches,rely on the spatio⁃temporal correlation among sensor nodes.Moreover,existing techniques predominantly leverage classification⁃based machine learning methods to discern the fault state within WSN.In this paper,we propose a regression⁃based bagging method to detect the faults in the network.The proposed bagging method is consisted of GRU(Gated Recurrent Unit)and Prophet model.Bagging allows weak learners to combine efforts to outperform a strong learner,hence it is appropriate to use in WSN.The proposed bagging method was first trained at the base station,then they were deployed at each SN(Sensor Node).Most of the common faults in WSN,such as transient,intermittent and permanent faults,were considered.The validity of the proposed scheme was tested using a trusted online published dataset.Using experimental studies,compared to the latest state⁃of⁃the⁃art machine learning models,the effectiveness of the proposed model is shown for fault detection.Performance evaluation in terms of false positive rate,accuracy,and false alarm rate shows the efficiency of the proposed algorithm. 展开更多
关键词 fault detection GRU PROPHET deep learning wireless sensor networks
在线阅读 下载PDF
Sine-Polynomial Chaotic Map(SPCM):A Decent Cryptographic Solution for Image Encryption in Wireless Sensor Networks
11
作者 David S.Bhatti Annas W.Malik +1 位作者 Haeung Choi Ki-Il Kim 《Computers, Materials & Continua》 2025年第10期2157-2177,共21页
Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a n... Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a novel one-dimensional discontinuous chaotic system integrating polynomial and sine functions,leveraging a piecewise function to achieve a broad chaotic range()and a high Lyapunov exponent(5.04).Validated through nine benchmarks,including standard randomness tests,Diehard tests,and Shannon entropy(3.883),SPCM demonstrates superior randomness and high sensitivity to initial conditions.Applied to image encryption,SPCM achieves 0.152582 s(39%faster than some techniques)and 433.42 KB/s throughput(134%higher than some techniques),setting new benchmarks for chaotic map-based methods in WSNs.Chaos-based permutation and exclusive or(XOR)diffusion yield near-zero correlation in encrypted images,ensuring strong resistance to Statistical Attacks(SA)and accurate recovery.SPCM also exhibits a strong avalanche effect(bit difference),making it an efficient,secure solution for WSNs in domains like healthcare and smart cities. 展开更多
关键词 Chaos theory chaotic system image encryption CRYPTOGRAPHY wireless sensor networks(WSNs)
在线阅读 下载PDF
A Fuzzy Multi-Objective Framework for Energy Optimization and Reliable Routing in Wireless Sensor Networks via Particle Swarm Optimization
12
作者 Medhat A.Tawfeek Ibrahim Alrashdi +1 位作者 Madallah Alruwaili Fatma M.Talaat 《Computers, Materials & Continua》 2025年第5期2773-2792,共20页
Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectu... Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use. 展开更多
关键词 wireless sensor networks particle swarm optimization fuzzy multi-objective framework routing stability
在线阅读 下载PDF
Dynamic Clustering Method for Underwater Wireless Sensor Networks based on Deep Reinforcement Learning
13
作者 Kohyar Bolvary Zadeh Dashtestani Reza Javidan Reza Akbari 《哈尔滨工程大学学报(英文版)》 2025年第4期864-876,共13页
Underwater wireless sensor networks(UWSNs)have emerged as a new paradigm of real-time organized systems,which are utilized in a diverse array of scenarios to manage the underwater environment surrounding them.One of t... Underwater wireless sensor networks(UWSNs)have emerged as a new paradigm of real-time organized systems,which are utilized in a diverse array of scenarios to manage the underwater environment surrounding them.One of the major challenges that these systems confront is topology control via clustering,which reduces the overload of wireless communications within a network and ensures low energy consumption and good scalability.This study aimed to present a clustering technique in which the clustering process and cluster head(CH)selection are performed based on the Markov decision process and deep reinforcement learning(DRL).DRL algorithm selects the CH by maximizing the defined reward function.Subsequently,the sensed data are collected by the CHs and then sent to the autonomous underwater vehicles.In the final phase,the consumed energy by each sensor is calculated,and its residual energy is updated.Then,the autonomous underwater vehicle performs all clustering and CH selection operations.This procedure persists until the point of cessation when the sensor’s power has been reduced to such an extent that no node can become a CH.Through analysis of the findings from this investigation and their comparison with alternative frameworks,the implementation of this method can be used to control the cluster size and the number of CHs,which ultimately augments the energy usage of nodes and prolongs the lifespan of the network.Our simulation results illustrate that the suggested methodology surpasses the conventional low-energy adaptive clustering hierarchy,the distance-and energy-constrained K-means clustering scheme,and the vector-based forward protocol and is viable for deployment in an actual operational environment. 展开更多
关键词 Underwater wireless sensor network CLUSTERING Cluster head selection Deep reinforcement learning
暂未订购
Flex-QUIC:AI for QUIC Transport Protocol with High-Efficiency in Future Wireless Networks
14
作者 Jiang Tao Liu Yang +2 位作者 Zhang Yu Peng Miaoran Wang Haoyu 《China Communications》 2025年第12期1-14,共14页
This paper proposes Flex-QUIC,an AIempowered quick UDP Internet connections(QUIC)enhancement framework that addresses the challenge of degraded transmission efficiency caused by the static parameterization of acknowle... This paper proposes Flex-QUIC,an AIempowered quick UDP Internet connections(QUIC)enhancement framework that addresses the challenge of degraded transmission efficiency caused by the static parameterization of acknowledgment(ACK)mechanisms,loss detection,and forward error correction(FEC)in dynamic wireless networks.Unlike the standard QUIC protocol,Flex-QUIC systematically integrates machine learning across three critical modules to achieve high-efficiency operation.First,a contextual multi-armed bandit-based ACK adaptation mechanism optimizes the ACK ratio to reduce wireless channel contention.Second,the adaptive loss detection module utilizes a long short-term memory(LSTM)model to predict the reordering displacement for optimizing the packet reordering tolerance.Third,the FEC transmission scheme jointly adjusts the redundancy level based on the LSTM-predicted loss rate and congestion window state.Extensive evaluations across Wi-Fi,5G,and satellite network scenarios demonstrate that Flex-QUIC significantly improves throughput and latency reduction compared to the standard QUIC and other enhanced QUIC variants,highlighting its adaptability to diverse and dynamic network conditions.Finally,we further discuss open issues in deploying AI-native transport protocols. 展开更多
关键词 contextual multi-armed bandit long shortterm memory QUIC transport protocol wireless networks
在线阅读 下载PDF
An Efficient Clustering Algorithm for Enhancing the Lifetime and Energy Efficiency of Wireless Sensor Networks
15
作者 Peng Zhou Wei Chen Bingyu Cao 《Computers, Materials & Continua》 2025年第9期5337-5360,共24页
Wireless Sensor Networks(WSNs),as a crucial component of the Internet of Things(IoT),are widely used in environmental monitoring,industrial control,and security surveillance.However,WSNs still face challenges such as ... Wireless Sensor Networks(WSNs),as a crucial component of the Internet of Things(IoT),are widely used in environmental monitoring,industrial control,and security surveillance.However,WSNs still face challenges such as inaccurate node clustering,low energy efficiency,and shortened network lifespan in practical deployments,which significantly limit their large-scale application.To address these issues,this paper proposes an Adaptive Chaotic Ant Colony Optimization algorithm(AC-ACO),aiming to optimize the energy utilization and system lifespan of WSNs.AC-ACO combines the path-planning capability of Ant Colony Optimization(ACO)with the dynamic characteristics of chaotic mapping and introduces an adaptive mechanism to enhance the algorithm’s flexibility and adaptability.By dynamically adjusting the pheromone evaporation factor and heuristic weights,efficient node clustering is achieved.Additionally,a chaotic mapping initialization strategy is employed to enhance population diversity and avoid premature convergence.To validate the algorithm’s performance,this paper compares AC-ACO with clustering methods such as Low-Energy Adaptive Clustering Hierarchy(LEACH),ACO,Particle Swarm Optimization(PSO),and Genetic Algorithm(GA).Simulation results demonstrate that AC-ACO outperforms the compared algorithms in key metrics such as energy consumption optimization,network lifetime extension,and communication delay reduction,providing an efficient solution for improving energy efficiency and ensuring long-term stable operation of wireless sensor networks. 展开更多
关键词 Internet of Things wireless sensor networks ant colony optimization clustering algorithm energy efficiency
在线阅读 下载PDF
Three-Level Intrusion Detection Model for Wireless Sensor Networks Based on Dynamic Trust Evaluation
16
作者 Xiaogang Yuan Huan Pei Yanlin Wu 《Computers, Materials & Continua》 2025年第9期5555-5575,共21页
In the complex environment of Wireless Sensor Networks(WSNs),various malicious attacks have emerged,among which internal attacks pose particularly severe security risks.These attacks seriously threaten network stabili... In the complex environment of Wireless Sensor Networks(WSNs),various malicious attacks have emerged,among which internal attacks pose particularly severe security risks.These attacks seriously threaten network stability,data transmission reliability,and overall performance.To effectively address this issue and significantly improve intrusion detection speed,accuracy,and resistance to malicious attacks,this research designs a Three-level Intrusion Detection Model based on Dynamic Trust Evaluation(TIDM-DTE).This study conducts a detailed analysis of how different attack types impact node trust and establishes node models for data trust,communication trust,and energy consumption trust by focusing on characteristics such as continuous packet loss and energy consumption changes.By dynamically predicting node trust values using the grey Markov model,the model accurately and sensitively reflects changes in node trust levels during attacks.Additionally,DBSCAN(Density-Based Spatial Clustering of Applications with Noise)data noise monitoring technology is employed to quickly identify attacked nodes,while a trust recovery mechanism restores the trust of temporarily faulty nodes to reduce False Alarm Rate.Simulation results demonstrate that TIDM-DTE achieves high detection rates,fast detection speed,and low False Alarm Rate when identifying various network attacks,including selective forwarding attacks,Sybil attacks,switch attacks,and black hole attacks.TIDM-DTE significantly enhances network security,ensures secure and reliable data transmission,moderately improves network energy efficiency,reduces unnecessary energy consumption,and provides strong support for the stable operation of WSNs.Meanwhile,the research findings offer new ideas and methods for WSN security protection,possessing important theoretical significance and practical application value. 展开更多
关键词 wireless sensor networks intrusion detection dynamic trust evaluation data noise detection trust recovery mechanism
在线阅读 下载PDF
Resource allocation algorithm for downlink secure transmission in wireless EH cooperative networks with idle relay-assisted jamming
17
作者 Xintong Zhou Kun Xiao Feng Ke 《Digital Communications and Networks》 2025年第3期829-836,共8页
In wireless Energy Harvesting(EH)cooperative networks,we investigate the problem of secure energy-saving resource allocation for downlink physical layer security transmission.Initially,we establish a model for a multi... In wireless Energy Harvesting(EH)cooperative networks,we investigate the problem of secure energy-saving resource allocation for downlink physical layer security transmission.Initially,we establish a model for a multi-relay cooperative network incorporating wireless energy harvesting,spectrum sharing,and system power constraints,focusing on physical layersecurity transmission in the presence of eavesdropping nodes.In this model,the source node transmits signals while injecting Artificial Noise(AN)to mitigate eavesdropping risks,and an idle relay can act as a jamming node to assist in this process.Based on this model,we formulate an optimization problem for maximizing system secure harvesting energy efficiency,this problem integrates constraints on total power,bandwidth,and AN allocation.We proceed by conducting a mathematical analysis of the optimization problem,deriving optimal solutions for secure energy-saving resource allocation,this includes strategies for power allocation at the source and relay nodes,bandwidth allocation among relays,and power splitting for the energy harvesting node.Thus,we propose a secure resource allocation algorithm designed to maximize secure harvesting energy efficiency.Finally,we validate the correctness of the theoretical derivation through Monte Carlo simulations,discussing the impact of parameters such as legitimate channel gain,power splitting factor,and the number of relays on secure harvesting energy efficiency of the system.The simulation results show that the proposed secure energy-saving resource allocation algorithm effectively enhances the security performance of the system. 展开更多
关键词 wireless cooperative network Physical layer security Energy harvesting Resource allocation Spectrum sharing Secure energy efficiency
在线阅读 下载PDF
Efficient Cooperative Target Node Localization with Optimization Strategy Based on RSS for Wireless Sensor Networks
18
作者 Xinrong Zhang Bo Chang 《Computers, Materials & Continua》 2025年第3期5079-5095,共17页
In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in ... In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in each phase of the localization process and fully use the detective information in the network to improve the positioning precision and robustness.In the ranging period,the power attenuation factor is obtained through the wireless channel modeling,and the RSSI value is transformed into distance.In the positioning period,the preferred reference nodes are used to calculate coordinates.In the position optimization period,Taylor expansion and least-squared iterative update algorithms are used to further improve the location precision.In the positioning,the notion of cooperative localization is introduced,in which the located node satisfying certain demands will be upgraded to a reference node so that it can participate in the positioning of other nodes,and improve the coverage and positioning precision.The results show that on the same network conditions,the proposed algorithm in this paper is similar to the Taylor series expansion algorithm based on the actual coordinates,but much higher than the basic least square algorithm,and the positioning precision is improved rapidly with the reduce of the range error. 展开更多
关键词 wireless sensor networks received signal strength(RSS) optimization algorithm cooperative localiza-tion weighted least squares
在线阅读 下载PDF
A Hybrid Framework Integrating Deterministic Clustering,Neural Networks,and Energy-Aware Routing for Enhanced Efficiency and Longevity in Wireless Sensor Network
19
作者 Muhammad Salman Qamar Muhammad Fahad Munir 《Computers, Materials & Continua》 2025年第9期5463-5485,共23页
Wireless Sensor Networks(WSNs)have emerged as crucial tools for real-time environmental monitoring through distributed sensor nodes(SNs).However,the operational lifespan of WSNs is significantly constrained by the lim... Wireless Sensor Networks(WSNs)have emerged as crucial tools for real-time environmental monitoring through distributed sensor nodes(SNs).However,the operational lifespan of WSNs is significantly constrained by the limited energy resources of SNs.Current energy efficiency strategies,such as clustering,multi-hop routing,and data aggregation,face challenges,including uneven energy depletion,high computational demands,and suboptimal cluster head(CH)selection.To address these limitations,this paper proposes a hybrid methodology that optimizes energy consumption(EC)while maintaining network performance.The proposed approach integrates the Low Energy Adaptive Clustering Hierarchy with Deterministic(LEACH-D)protocol using an Artificial Neural Network(ANN)and Bayesian Regularization Algorithm(BRA).LEACH-D improves upon conventional LEACH by ensuring more uniform energy usage across SNs,mitigating inefficiencies from random CH selection.The ANN further enhances CH selection and routing processes,effectively reducing data transmission overhead and idle listening.Simulation results reveal that the LEACH-D-ANN model significantly reduces EC and extends the network’s lifespan compared to existing protocols.This framework offers a promising solution to the energy efficiency challenges in WSNs,paving the way for more sustainable and reliable network deployments. 展开更多
关键词 wireless sensor networks(WSNs) machine learning based artificial neural networks(ANNs) energy consumption(EC) LEACH-D sensor nodes(SNs) Bayesian Regularization Algorithm(BRA)
在线阅读 下载PDF
MATD3-Based End-Edge Collaborative Resource Optimization for NOMA-Assisted Industrial Wireless Networks
20
作者 Ru Hao Chi Xu Jing Liu 《Computers, Materials & Continua》 2025年第2期3203-3222,共20页
Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resource... Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resources. This paper minimizes the system overhead regarding task processing delay and energy consumption for the IWN with hybrid NOMA and orthogonal multiple access (OMA) schemes. Specifically, we formulate the system overhead minimization (SOM) problem by considering the limited computation and communication resources and NOMA efficiency. To solve the complex mixed-integer nonconvex problem, we combine the multi-agent twin delayed deep deterministic policy gradient (MATD3) and convex optimization, namely MATD3-CO, for iterative optimization. Specifically, we first decouple SOM into two sub-problems, i.e., joint sub-channel allocation and task offloading sub-problem, and computation resource allocation sub-problem. Then, we propose MATD3 to optimize the sub-channel allocation and task offloading ratio, and employ the convex optimization to allocate the computation resource with a closed-form expression derived by the Karush-Kuhn-Tucker (KKT) conditions. The solution is obtained by iteratively solving these two sub-problems. The experimental results indicate that the MATD3-CO scheme, when compared to the benchmark schemes, significantly decreases system overhead with respect to both delay and energy consumption. 展开更多
关键词 Industrial wireless networks(IWNs) multi-access edge computing(MEC) non-orthogonal multiple access(NOMA) task offloading resource allocation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部