Because of different system capacities of base station (BS) or access point (AP) and ununiformity of traffic distribution in different cells, quantities of new call users may be blocked in overloaded cell in commu...Because of different system capacities of base station (BS) or access point (AP) and ununiformity of traffic distribution in different cells, quantities of new call users may be blocked in overloaded cell in communication hot spots. Whereas in some neighboring under-loaded cells, bandwidth may be superfluous because there are only few users to request services. In order to raise resource utilization of the whole heterogeneous networks, several novel load balancing strategies are proposed, which combine the call ad- mission control policy and multi-hop routing protocol of ad-hoc network for load balancing. These loadbalancing strategies firstly make a decision whether to admit a new call or not by considering some parameters like load index and route cost, etc., and then transfer the denied users into neighboring under-loaded cell with surplus channel according to optimum multi-hop routing algorithm. Simulation results show that the proposed load balancing strategies can distribute traffics to the whole heterogeneous wireless netorks, improve the load balance index efficiently, and avoid the call block phenomenon almost absolutely.展开更多
Military tactical network is one of the most important applications of ad hoc network. Currently the existing routing protocols are put forward based on the simple and universal network model which has the ability of ...Military tactical network is one of the most important applications of ad hoc network. Currently the existing routing protocols are put forward based on the simple and universal network model which has the ability of multi-hop routing but cannot work efficiently in the special military applications. The narrow bandwidth and limited energy of the wireless network make general routing protocols seem to be more redundant. In order to satisfy military needs properly, this letter makes a detailed analysis of physical nodes and traffic distribution in military network, uses cross-layer design concept tbr reference, combines traffic characteristic of application layer with routing protocol design. It categorized routing problem as crucial routes and non-crucial routes which adopted separate maintenance methods. It not only realizes basic transmission function but also works efficiently. It is quite fit for military application.展开更多
In Wireless Sensor Network (WSNs), sensor nodes collect data and send them to a Base Station (BS) for further processing. One of the most issues in WSNs that researchers have proposed a hundred of technique to solve i...In Wireless Sensor Network (WSNs), sensor nodes collect data and send them to a Base Station (BS) for further processing. One of the most issues in WSNs that researchers have proposed a hundred of technique to solve its impact is the energy constraint since sensor nodes have small battery, small memory and less data processing with low computational capabilities. However, many researches efforts have focused on how to prolong the battery lifetime of sensor nodes by proposing different routing, MAC, localization, data aggregation, topology construction techniques. In this paper, we will focus on routing techniques which aim to prolonging the network lifetime. Hence, we propose an Energy-Efficient Routing technique in WSNs based on Stationary and Mobile nodes (EERSM). Sensing filed is divided into intersected circles which contain Mobile Nodes (MN). The proposed data aggregation technique via the circular topology will eliminate the redundant data to be sent to the Base Station (BS). MN in each circle will rout packets for their source nodes, and move to the intersected area where another MN is waiting (sleep mode) to receive the transmitted packet, and then the packet will be delivered to the next intersected area until the packet is arrived to the BS. Our proposed EERSM technique is simulated using MATLAB and compared with conventional multi-hop techniques under different network models and scenarios. In the simulation, we will show how the proposed EERSM technique overcomes many routing protocols in terms of the number of hops counted when sending packets from a source node to the destination (i.e. BS), the average residual energy, number of sent packets to the BS, and the number of a live sensor nodes verse the simulation rounds.展开更多
Lossy link is one of the unique characteristics in random-deployed sensor networks. We envision that robustness and reliability of routing cannot be ensured purely in network layer. Our idea is to enhance the performa...Lossy link is one of the unique characteristics in random-deployed sensor networks. We envision that robustness and reliability of routing cannot be ensured purely in network layer. Our idea is to enhance the performance of routing protocol by cross-layer interaction. We modified mint protocol, a routing protocol in TinyOS and proposed an enhanced version of mint called PA-mint. A transmission power control interface is added to network layer in PA-mint. When routing performance of the current network is not satisfied, PA-mint monotonically increases the transmission power via the interface we added. PA-mint is able to connect orphan nodes and robust to node mobility or key nodes failure. In the case that automatic request retransmission is employed, the number of retransmissions can be reduced by PA-mint. Results from experiments show that PA-mint increases the reliability and robustness of routing protocol by cross-layer interaction.展开更多
Wireless Sensor Networks(WSN)has evolved into a key technology for ubiquitous living and the domain of interest has remained active in research owing to its extensive range of applications.In spite of this,it is chall...Wireless Sensor Networks(WSN)has evolved into a key technology for ubiquitous living and the domain of interest has remained active in research owing to its extensive range of applications.In spite of this,it is challenging to design energy-efficient WSN.The routing approaches are leveraged to reduce the utilization of energy and prolonging the lifespan of network.In order to solve the restricted energy problem,it is essential to reduce the energy utilization of data,transmitted from the routing protocol and improve network development.In this background,the current study proposes a novel Differential Evolution with Arithmetic Optimization Algorithm Enabled Multi-hop Routing Protocol(DEAOA-MHRP)for WSN.The aim of the proposed DEAOA-MHRP model is select the optimal routes to reach the destination in WSN.To accomplish this,DEAOA-MHRP model initially integrates the concepts of Different Evolution(DE)and Arithmetic Optimization Algorithms(AOA)to improve convergence rate and solution quality.Besides,the inclusion of DE in traditional AOA helps in overcoming local optima problems.In addition,the proposed DEAOA-MRP technique derives a fitness function comprising two input variables such as residual energy and distance.In order to ensure the energy efficient performance of DEAOA-MHRP model,a detailed comparative study was conducted and the results established its superior performance over recent approaches.展开更多
Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To sa...Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link.展开更多
Cross-domain routing in Integrated Heterogeneous Networks(Inte-HetNet)should ensure efficient and secure data transmission across different network domains by satisfying diverse routing requirements.However,current so...Cross-domain routing in Integrated Heterogeneous Networks(Inte-HetNet)should ensure efficient and secure data transmission across different network domains by satisfying diverse routing requirements.However,current solutions face numerous challenges in continuously ensuring trustworthy routing,fulfilling diverse requirements,achieving reasonable resource allocation,and safeguarding against malicious behaviors of network operators.We propose CrowdRouting,a novel cross-domain routing scheme based on crowdsourcing,dedicated to establishing sustained trust in cross-domain routing,comprehensively considering and fulfilling various customized routing requirements,while ensuring reasonable resource allocation and effectively curbing malicious behavior of network operators.Concretely,CrowdRouting employs blockchain technology to verify the trustworthiness of border routers in different network domains,thereby establishing sustainable and trustworthy crossdomain routing based on sustained trust in these routers.In addition,CrowdRouting ingeniously integrates a crowdsourcing mechanism into the auction for routing,achieving fair and impartial allocation of routing rights by flexibly embedding various customized routing requirements into each auction phase.Moreover,CrowdRouting leverages incentive mechanisms and routing settlement to encourage network domains to actively participate in cross-domain routing,thereby promoting optimal resource allocation and efficient utilization.Furthermore,CrowdRouting introduces a supervisory agency(e.g.,undercover agent)to effectively suppress the malicious behavior of network operators through the game and interaction between the agent and the network operators.Through comprehensive experimental evaluations and comparisons with existing works,we demonstrate that CrowdRouting excels in providing trustworthy and fine-grained customized routing services,stimulating active participation in cross-domain routing,inhibiting malicious operator behavior,and maintaining reasonable resource allocation,all of which outperform baseline schemes.展开更多
This paper systematically reviews the latest research developments in Vehicle Routing Problems(VRP).It examines classical VRP models and their classifications across different dimensions,including load capacity,operat...This paper systematically reviews the latest research developments in Vehicle Routing Problems(VRP).It examines classical VRP models and their classifications across different dimensions,including load capacity,operational characteristics,optimization objectives,vehicle types,and time constraints.Based on literature retrieval results from the Web of Science database,the paper analyzes the current state and trends in VRP research,providing detailed explanations of VRP models and algorithms applied to various scenarios in recent years.Additionally,the article discusses limitations in existing research and provides perspectives on future development trends in VRP research.This review offers researchers in the VRP field a comprehensive overview while identifying future research directions.展开更多
This paper proposes an efficient strategy for resource utilization in Elastic Optical Networks (EONs) to minimize spectrum fragmentation and reduce connection blocking probability during Routing and Spectrum Allocatio...This paper proposes an efficient strategy for resource utilization in Elastic Optical Networks (EONs) to minimize spectrum fragmentation and reduce connection blocking probability during Routing and Spectrum Allocation (RSA). The proposed method, Dynamic Threshold-Based Routing and Spectrum Allocation with Fragmentation Awareness (DT-RSAF), integrates rerouting and spectrum defragmentation as needed. By leveraging Yen’s shortest path algorithm, DT-RSAF enhances resource utilization while ensuring improved service continuity. A dynamic threshold mechanism enables the algorithm to adapt to varying network conditions, while its fragmentation awareness effectively mitigates spectrum fragmentation. Simulation results on NSFNET and COST 239 topologies demonstrate that DT-RSAF significantly outperforms methods such as K-Shortest Path Routing and Spectrum Allocation (KSP-RSA), Load Balanced and Fragmentation-Aware (LBFA), and the Invasive Weed Optimization-based RSA (IWO-RSA). Under heavy traffic, DT-RSAF reduces the blocking probability by up to 15% and achieves lower Bandwidth Fragmentation Ratios (BFR), ranging from 74% to 75%, compared to 77% - 80% for KSP-RSA, 75% - 77% for LBFA, and approximately 76% for IWO-RSA. DT-RSAF also demonstrated reasonable computation times compared to KSP-RSA, LBFA, and IWO-RSA. On a small-sized network, its computation time was 8710 times faster than that of Integer Linear Programming (ILP) on the same network topology. Additionally, it achieved a similar execution time to LBFA and outperformed IWO-RSA in terms of efficiency. These results highlight DT-RSAF’s capability to maintain large contiguous frequency blocks, making it highly effective for accommodating high-bandwidth requests in EONs while maintaining reasonable execution times.展开更多
As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in mult...As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.展开更多
Border Gateway Protocol(BGP),as the standard inter-domain routing protocol,is a distance-vector dynamic routing protocol used for exchanging routing information between distributed Autonomous Systems(AS).BGP nodes,com...Border Gateway Protocol(BGP),as the standard inter-domain routing protocol,is a distance-vector dynamic routing protocol used for exchanging routing information between distributed Autonomous Systems(AS).BGP nodes,communicating in a distributed dynamic environment,face several security challenges,with trust being one of the most important issues in inter-domain routing.Existing research,which performs trust evaluation when exchanging routing information to suppress malicious routing behavior,cannot meet the scalability requirements of BGP nodes.In this paper,we propose a blockchain-based trust model for inter-domain routing.Our model achieves scalability by allowing the master node of an AS alliance to transmit the trust evaluation data of its member nodes to the blockchain.The BGP nodes can expedite the trust evaluation process by accessing a global view of other BGP nodes through the master node of their respective alliance.We incorporate security service evaluation before direct evaluation and indirect recommendations to assess the security services that BGP nodes provide for themselves and prioritize to guarantee their security of routing service.We forward the trust evaluation for neighbor discovery and prioritize the nodes with high trust as neighbor nodes to reduce the malicious exchange routing behavior.We use simulation software to simulate a real BGP environments and employ a comparative experimental research approach to demonstrate the performance evaluation of our trust model.Compared with the classical trust model,our trust model not only saves more storage overhead,but also provides higher security,especially reducing the impact of collusion attacks.展开更多
The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the...The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the selection of appropriate routing protocols, which is crucial for maintaining high Quality of Service (QoS). The Internet Engineering Task Force’s Routing Over Low Power and Lossy Networks (IETF ROLL) working group developed the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) to meet these needs. While the initial RPL standard focused on single-metric route selection, ongoing research explores enhancing RPL by incorporating multiple routing metrics and developing new Objective Functions (OFs). This paper introduces a novel Objective Function (OF), the Reliable and Secure Objective Function (RSOF), designed to enhance the reliability and trustworthiness of parent selection at both the node and link levels within IoT and RPL routing protocols. The RSOF employs an adaptive parent node selection mechanism that incorporates multiple metrics, including Residual Energy (RE), Expected Transmission Count (ETX), Extended RPL Node Trustworthiness (ERNT), and a novel metric that measures node failure rate (NFR). In this mechanism, nodes with a high NFR are excluded from the parent selection process to improve network reliability and stability. The proposed RSOF was evaluated using random and grid topologies in the Cooja Simulator, with tests conducted across small, medium, and large-scale networks to examine the impact of varying node densities. The simulation results indicate a significant improvement in network performance, particularly in terms of average latency, packet acknowledgment ratio (PAR), packet delivery ratio (PDR), and Control Message Overhead (CMO), compared to the standard Minimum Rank with Hysteresis Objective Function (MRHOF).展开更多
In large-scaleWireless Rechargeable SensorNetworks(WRSN),traditional forward routingmechanisms often lead to reduced energy efficiency.To address this issue,this paper proposes a WRSN node energy optimization algorith...In large-scaleWireless Rechargeable SensorNetworks(WRSN),traditional forward routingmechanisms often lead to reduced energy efficiency.To address this issue,this paper proposes a WRSN node energy optimization algorithm based on regional partitioning and inter-layer routing.The algorithm employs a dynamic clustering radius method and the K-means clustering algorithm to dynamically partition the WRSN area.Then,the cluster head nodes in the outermost layer select an appropriate layer from the next relay routing region and designate it as the relay layer for data transmission.Relay nodes are selected layer by layer,starting from the outermost cluster heads.Finally,the inter-layer routing mechanism is integrated with regional partitioning and clustering methods to develop the WRSN energy optimization algorithm.To further optimize the algorithm’s performance,we conduct parameter optimization experiments on the relay routing selection function,cluster head rotation energy threshold,and inter-layer relay structure selection,ensuring the best configurations for energy efficiency and network lifespan.Based on these optimizations,simulation results demonstrate that the proposed algorithm outperforms traditional forward routing,K-CHRA,and K-CLP algorithms in terms of node mortality rate and energy consumption,extending the number of rounds to 50%node death by 11.9%,19.3%,and 8.3%in a 500-node network,respectively.展开更多
Underwater Wireless Sensor Networks(UWSNs)are gaining popularity because of their potential uses in oceanography,seismic activity monitoring,environmental preservation,and underwater mapping.Yet,these networks are fac...Underwater Wireless Sensor Networks(UWSNs)are gaining popularity because of their potential uses in oceanography,seismic activity monitoring,environmental preservation,and underwater mapping.Yet,these networks are faced with challenges such as self-interference,long propagation delays,limited bandwidth,and changing network topologies.These challenges are coped with by designing advanced routing protocols.In this work,we present Under Water Fuzzy-Routing Protocol for Low power and Lossy networks(UWF-RPL),an enhanced fuzzy-based protocol that improves decision-making during path selection and traffic distribution over different network nodes.Our method extends RPL with the aid of fuzzy logic to optimize depth,energy,Received Signal Strength Indicator(RSSI)to Expected Transmission Count(ETX)ratio,and latency.Theproposed protocol outperforms other techniques in that it offersmore energy efficiency,better packet delivery,lowdelay,and no queue overflow.It also exhibits better scalability and reliability in dynamic underwater networks,which is of very high importance in maintaining the network operations efficiency and the lifetime of UWSNs optimized.Compared to other recent methods,it offers improved network convergence time(10%–23%),energy efficiency(15%),packet delivery(17%),and delay(24%).展开更多
Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectu...Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use.展开更多
Efficient warehouse management is critical for modern supply chain systems,particularly in the era of e-commerce and automation.The Multi-Picker Robot Routing Problem(MPRRP)presents a complex challenge involving the o...Efficient warehouse management is critical for modern supply chain systems,particularly in the era of e-commerce and automation.The Multi-Picker Robot Routing Problem(MPRRP)presents a complex challenge involving the optimization of routes for multiple robots assigned to retrieve items from distinct locations within a warehouse.This study introduces optimized metaheuristic strategies to address MPRRP,with the aim of minimizing travel distances,energy consumption,and order fulfillment time while ensuring operational efficiency.Advanced algorithms,including an enhanced Particle Swarm Optimization(PSO-MPRRP)and a tailored Genetic Algorithm(GA-MPRRP),are specifically designed with customized evolutionary operators to effectively solve the MPRRP.Comparative experiments are conducted to evaluate the proposed strategies against benchmark approaches,demonstrating significant improvements in solution quality and computational efficiency.The findings contribute to the development of intelligent,scalable,and environmentally friendly warehouse systems,paving the way for future advances in robotics and automated logistics management.展开更多
Unmanned Aerial Vehicle(UAV)stands as a burgeoning electric transportation carrier,holding substantial promise for the logistics sector.A reinforcement learning framework Centralized-S Proximal Policy Optimization(C-S...Unmanned Aerial Vehicle(UAV)stands as a burgeoning electric transportation carrier,holding substantial promise for the logistics sector.A reinforcement learning framework Centralized-S Proximal Policy Optimization(C-SPPO)based on centralized decision process and considering policy entropy(S)is proposed.The proposed framework aims to plan the best scheduling scheme with the objective of minimizing both the timeout of order requests and the flight impact of UAVs that may lead to conflicts.In this framework,the intents of matching act are generated through the observations of UAV agents,and the ultimate conflict-free matching results are output under the guidance of a centralized decision maker.Concurrently,a pre-activation operation is introduced to further enhance the cooperation among UAV agents.Simulation experiments based on real-world data from New York City are conducted.The results indicate that the proposed CSPPO outperforms the baseline algorithms in the Average Delay Time(ADT),the Maximum Delay Time(MDT),the Order Delay Rate(ODR),the Average Flight Distance(AFD),and the Flight Impact Ratio(FIR).Furthermore,the framework demonstrates scalability to scenarios of different sizes without requiring additional training.展开更多
Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a netwo...Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-toend delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a lowEarth-orbit satellite communication network(LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds.展开更多
UAV networks often encounter jamming attacks, under which multi-radio protocols have to switch radios to accelerate communication recovery. However, the existing protocols rely on exchange of hello messages to detect ...UAV networks often encounter jamming attacks, under which multi-radio protocols have to switch radios to accelerate communication recovery. However, the existing protocols rely on exchange of hello messages to detect jamming, leading to long sensing time and thus slow routing recovery. To address the issues raised by jamming attacks, we propose a new routing protocol, Electromagnetic Spectrum situation awareness Optimized Link State Routing (ESOLSR) protocol, to improve the existing OLSRv2 protocol. ESOLSR utilizes the spectrum situation awareness capability from the physical layer, and adopts joint-updating of link status, updating of interface functions, and adaptive adjustment of parameters. Our simulation results show that the improved protocol, ESOLSR, can recover routing and resume normal communication 26.6% faster compared to the existing protocols.展开更多
基金Supported by the National Natural Science Foundation of China (No. 60672059, 60496315 )the National High Technology Research and Development Programme of China (No.2006AA01Z233)
文摘Because of different system capacities of base station (BS) or access point (AP) and ununiformity of traffic distribution in different cells, quantities of new call users may be blocked in overloaded cell in communication hot spots. Whereas in some neighboring under-loaded cells, bandwidth may be superfluous because there are only few users to request services. In order to raise resource utilization of the whole heterogeneous networks, several novel load balancing strategies are proposed, which combine the call ad- mission control policy and multi-hop routing protocol of ad-hoc network for load balancing. These loadbalancing strategies firstly make a decision whether to admit a new call or not by considering some parameters like load index and route cost, etc., and then transfer the denied users into neighboring under-loaded cell with surplus channel according to optimum multi-hop routing algorithm. Simulation results show that the proposed load balancing strategies can distribute traffics to the whole heterogeneous wireless netorks, improve the load balance index efficiently, and avoid the call block phenomenon almost absolutely.
文摘Military tactical network is one of the most important applications of ad hoc network. Currently the existing routing protocols are put forward based on the simple and universal network model which has the ability of multi-hop routing but cannot work efficiently in the special military applications. The narrow bandwidth and limited energy of the wireless network make general routing protocols seem to be more redundant. In order to satisfy military needs properly, this letter makes a detailed analysis of physical nodes and traffic distribution in military network, uses cross-layer design concept tbr reference, combines traffic characteristic of application layer with routing protocol design. It categorized routing problem as crucial routes and non-crucial routes which adopted separate maintenance methods. It not only realizes basic transmission function but also works efficiently. It is quite fit for military application.
文摘In Wireless Sensor Network (WSNs), sensor nodes collect data and send them to a Base Station (BS) for further processing. One of the most issues in WSNs that researchers have proposed a hundred of technique to solve its impact is the energy constraint since sensor nodes have small battery, small memory and less data processing with low computational capabilities. However, many researches efforts have focused on how to prolong the battery lifetime of sensor nodes by proposing different routing, MAC, localization, data aggregation, topology construction techniques. In this paper, we will focus on routing techniques which aim to prolonging the network lifetime. Hence, we propose an Energy-Efficient Routing technique in WSNs based on Stationary and Mobile nodes (EERSM). Sensing filed is divided into intersected circles which contain Mobile Nodes (MN). The proposed data aggregation technique via the circular topology will eliminate the redundant data to be sent to the Base Station (BS). MN in each circle will rout packets for their source nodes, and move to the intersected area where another MN is waiting (sleep mode) to receive the transmitted packet, and then the packet will be delivered to the next intersected area until the packet is arrived to the BS. Our proposed EERSM technique is simulated using MATLAB and compared with conventional multi-hop techniques under different network models and scenarios. In the simulation, we will show how the proposed EERSM technique overcomes many routing protocols in terms of the number of hops counted when sending packets from a source node to the destination (i.e. BS), the average residual energy, number of sent packets to the BS, and the number of a live sensor nodes verse the simulation rounds.
基金Supported by National Natural Science Foundation of P. R. China (60374072, 60434030)
文摘Lossy link is one of the unique characteristics in random-deployed sensor networks. We envision that robustness and reliability of routing cannot be ensured purely in network layer. Our idea is to enhance the performance of routing protocol by cross-layer interaction. We modified mint protocol, a routing protocol in TinyOS and proposed an enhanced version of mint called PA-mint. A transmission power control interface is added to network layer in PA-mint. When routing performance of the current network is not satisfied, PA-mint monotonically increases the transmission power via the interface we added. PA-mint is able to connect orphan nodes and robust to node mobility or key nodes failure. In the case that automatic request retransmission is employed, the number of retransmissions can be reduced by PA-mint. Results from experiments show that PA-mint increases the reliability and robustness of routing protocol by cross-layer interaction.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/142/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R237)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR14).
文摘Wireless Sensor Networks(WSN)has evolved into a key technology for ubiquitous living and the domain of interest has remained active in research owing to its extensive range of applications.In spite of this,it is challenging to design energy-efficient WSN.The routing approaches are leveraged to reduce the utilization of energy and prolonging the lifespan of network.In order to solve the restricted energy problem,it is essential to reduce the energy utilization of data,transmitted from the routing protocol and improve network development.In this background,the current study proposes a novel Differential Evolution with Arithmetic Optimization Algorithm Enabled Multi-hop Routing Protocol(DEAOA-MHRP)for WSN.The aim of the proposed DEAOA-MHRP model is select the optimal routes to reach the destination in WSN.To accomplish this,DEAOA-MHRP model initially integrates the concepts of Different Evolution(DE)and Arithmetic Optimization Algorithms(AOA)to improve convergence rate and solution quality.Besides,the inclusion of DE in traditional AOA helps in overcoming local optima problems.In addition,the proposed DEAOA-MRP technique derives a fitness function comprising two input variables such as residual energy and distance.In order to ensure the energy efficient performance of DEAOA-MHRP model,a detailed comparative study was conducted and the results established its superior performance over recent approaches.
基金National Key Research and Development Program(2021YFB2900604)。
文摘Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link.
基金supported in part by the National Natural Science Foundation of China under Grant U23A20300 and 62072351in part by the Key Research Project of Shaanxi Natural Science Foundation under Grant 2023-JC-ZD-35+1 种基金in part by the Concept Verification Funding of Hangzhou Institute of Technology of Xidian University under Grant GNYZ2024XX007in part by the 111 Project under Grant B16037.
文摘Cross-domain routing in Integrated Heterogeneous Networks(Inte-HetNet)should ensure efficient and secure data transmission across different network domains by satisfying diverse routing requirements.However,current solutions face numerous challenges in continuously ensuring trustworthy routing,fulfilling diverse requirements,achieving reasonable resource allocation,and safeguarding against malicious behaviors of network operators.We propose CrowdRouting,a novel cross-domain routing scheme based on crowdsourcing,dedicated to establishing sustained trust in cross-domain routing,comprehensively considering and fulfilling various customized routing requirements,while ensuring reasonable resource allocation and effectively curbing malicious behavior of network operators.Concretely,CrowdRouting employs blockchain technology to verify the trustworthiness of border routers in different network domains,thereby establishing sustainable and trustworthy crossdomain routing based on sustained trust in these routers.In addition,CrowdRouting ingeniously integrates a crowdsourcing mechanism into the auction for routing,achieving fair and impartial allocation of routing rights by flexibly embedding various customized routing requirements into each auction phase.Moreover,CrowdRouting leverages incentive mechanisms and routing settlement to encourage network domains to actively participate in cross-domain routing,thereby promoting optimal resource allocation and efficient utilization.Furthermore,CrowdRouting introduces a supervisory agency(e.g.,undercover agent)to effectively suppress the malicious behavior of network operators through the game and interaction between the agent and the network operators.Through comprehensive experimental evaluations and comparisons with existing works,we demonstrate that CrowdRouting excels in providing trustworthy and fine-grained customized routing services,stimulating active participation in cross-domain routing,inhibiting malicious operator behavior,and maintaining reasonable resource allocation,all of which outperform baseline schemes.
文摘This paper systematically reviews the latest research developments in Vehicle Routing Problems(VRP).It examines classical VRP models and their classifications across different dimensions,including load capacity,operational characteristics,optimization objectives,vehicle types,and time constraints.Based on literature retrieval results from the Web of Science database,the paper analyzes the current state and trends in VRP research,providing detailed explanations of VRP models and algorithms applied to various scenarios in recent years.Additionally,the article discusses limitations in existing research and provides perspectives on future development trends in VRP research.This review offers researchers in the VRP field a comprehensive overview while identifying future research directions.
文摘This paper proposes an efficient strategy for resource utilization in Elastic Optical Networks (EONs) to minimize spectrum fragmentation and reduce connection blocking probability during Routing and Spectrum Allocation (RSA). The proposed method, Dynamic Threshold-Based Routing and Spectrum Allocation with Fragmentation Awareness (DT-RSAF), integrates rerouting and spectrum defragmentation as needed. By leveraging Yen’s shortest path algorithm, DT-RSAF enhances resource utilization while ensuring improved service continuity. A dynamic threshold mechanism enables the algorithm to adapt to varying network conditions, while its fragmentation awareness effectively mitigates spectrum fragmentation. Simulation results on NSFNET and COST 239 topologies demonstrate that DT-RSAF significantly outperforms methods such as K-Shortest Path Routing and Spectrum Allocation (KSP-RSA), Load Balanced and Fragmentation-Aware (LBFA), and the Invasive Weed Optimization-based RSA (IWO-RSA). Under heavy traffic, DT-RSAF reduces the blocking probability by up to 15% and achieves lower Bandwidth Fragmentation Ratios (BFR), ranging from 74% to 75%, compared to 77% - 80% for KSP-RSA, 75% - 77% for LBFA, and approximately 76% for IWO-RSA. DT-RSAF also demonstrated reasonable computation times compared to KSP-RSA, LBFA, and IWO-RSA. On a small-sized network, its computation time was 8710 times faster than that of Integer Linear Programming (ILP) on the same network topology. Additionally, it achieved a similar execution time to LBFA and outperformed IWO-RSA in terms of efficiency. These results highlight DT-RSAF’s capability to maintain large contiguous frequency blocks, making it highly effective for accommodating high-bandwidth requests in EONs while maintaining reasonable execution times.
文摘As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.
基金funded by the National Natural Science Foundation of China,grant numbers(62272007,62001007)the Natural Science Foundation of Beijing,grant numbers(4234083,4212018)The authors also extend their appreciation to King Khalid University for funding this work through the Large Group Project under grant number RGP.2/373/45.
文摘Border Gateway Protocol(BGP),as the standard inter-domain routing protocol,is a distance-vector dynamic routing protocol used for exchanging routing information between distributed Autonomous Systems(AS).BGP nodes,communicating in a distributed dynamic environment,face several security challenges,with trust being one of the most important issues in inter-domain routing.Existing research,which performs trust evaluation when exchanging routing information to suppress malicious routing behavior,cannot meet the scalability requirements of BGP nodes.In this paper,we propose a blockchain-based trust model for inter-domain routing.Our model achieves scalability by allowing the master node of an AS alliance to transmit the trust evaluation data of its member nodes to the blockchain.The BGP nodes can expedite the trust evaluation process by accessing a global view of other BGP nodes through the master node of their respective alliance.We incorporate security service evaluation before direct evaluation and indirect recommendations to assess the security services that BGP nodes provide for themselves and prioritize to guarantee their security of routing service.We forward the trust evaluation for neighbor discovery and prioritize the nodes with high trust as neighbor nodes to reduce the malicious exchange routing behavior.We use simulation software to simulate a real BGP environments and employ a comparative experimental research approach to demonstrate the performance evaluation of our trust model.Compared with the classical trust model,our trust model not only saves more storage overhead,but also provides higher security,especially reducing the impact of collusion attacks.
文摘The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the selection of appropriate routing protocols, which is crucial for maintaining high Quality of Service (QoS). The Internet Engineering Task Force’s Routing Over Low Power and Lossy Networks (IETF ROLL) working group developed the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) to meet these needs. While the initial RPL standard focused on single-metric route selection, ongoing research explores enhancing RPL by incorporating multiple routing metrics and developing new Objective Functions (OFs). This paper introduces a novel Objective Function (OF), the Reliable and Secure Objective Function (RSOF), designed to enhance the reliability and trustworthiness of parent selection at both the node and link levels within IoT and RPL routing protocols. The RSOF employs an adaptive parent node selection mechanism that incorporates multiple metrics, including Residual Energy (RE), Expected Transmission Count (ETX), Extended RPL Node Trustworthiness (ERNT), and a novel metric that measures node failure rate (NFR). In this mechanism, nodes with a high NFR are excluded from the parent selection process to improve network reliability and stability. The proposed RSOF was evaluated using random and grid topologies in the Cooja Simulator, with tests conducted across small, medium, and large-scale networks to examine the impact of varying node densities. The simulation results indicate a significant improvement in network performance, particularly in terms of average latency, packet acknowledgment ratio (PAR), packet delivery ratio (PDR), and Control Message Overhead (CMO), compared to the standard Minimum Rank with Hysteresis Objective Function (MRHOF).
基金funded by National Natural Science Foundation of China(No.61741303)Guangxi Natural Science Foundation(No.2017GXNSFAA198161)the Foundation Project of Guangxi Key Laboratory of Spatial Information and Mapping(No.21-238-21-16).
文摘In large-scaleWireless Rechargeable SensorNetworks(WRSN),traditional forward routingmechanisms often lead to reduced energy efficiency.To address this issue,this paper proposes a WRSN node energy optimization algorithm based on regional partitioning and inter-layer routing.The algorithm employs a dynamic clustering radius method and the K-means clustering algorithm to dynamically partition the WRSN area.Then,the cluster head nodes in the outermost layer select an appropriate layer from the next relay routing region and designate it as the relay layer for data transmission.Relay nodes are selected layer by layer,starting from the outermost cluster heads.Finally,the inter-layer routing mechanism is integrated with regional partitioning and clustering methods to develop the WRSN energy optimization algorithm.To further optimize the algorithm’s performance,we conduct parameter optimization experiments on the relay routing selection function,cluster head rotation energy threshold,and inter-layer relay structure selection,ensuring the best configurations for energy efficiency and network lifespan.Based on these optimizations,simulation results demonstrate that the proposed algorithm outperforms traditional forward routing,K-CHRA,and K-CLP algorithms in terms of node mortality rate and energy consumption,extending the number of rounds to 50%node death by 11.9%,19.3%,and 8.3%in a 500-node network,respectively.
文摘Underwater Wireless Sensor Networks(UWSNs)are gaining popularity because of their potential uses in oceanography,seismic activity monitoring,environmental preservation,and underwater mapping.Yet,these networks are faced with challenges such as self-interference,long propagation delays,limited bandwidth,and changing network topologies.These challenges are coped with by designing advanced routing protocols.In this work,we present Under Water Fuzzy-Routing Protocol for Low power and Lossy networks(UWF-RPL),an enhanced fuzzy-based protocol that improves decision-making during path selection and traffic distribution over different network nodes.Our method extends RPL with the aid of fuzzy logic to optimize depth,energy,Received Signal Strength Indicator(RSSI)to Expected Transmission Count(ETX)ratio,and latency.Theproposed protocol outperforms other techniques in that it offersmore energy efficiency,better packet delivery,lowdelay,and no queue overflow.It also exhibits better scalability and reliability in dynamic underwater networks,which is of very high importance in maintaining the network operations efficiency and the lifetime of UWSNs optimized.Compared to other recent methods,it offers improved network convergence time(10%–23%),energy efficiency(15%),packet delivery(17%),and delay(24%).
基金funded by Deanship of Graduate studies and Scientific Research at Jouf University under grant No.(DGSSR-2023-2-02038).
文摘Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use.
基金funded by Hanoi University of Industry,Hanoi,Vietnam,under contract number 25−2024−RD/HD−DHCN.
文摘Efficient warehouse management is critical for modern supply chain systems,particularly in the era of e-commerce and automation.The Multi-Picker Robot Routing Problem(MPRRP)presents a complex challenge involving the optimization of routes for multiple robots assigned to retrieve items from distinct locations within a warehouse.This study introduces optimized metaheuristic strategies to address MPRRP,with the aim of minimizing travel distances,energy consumption,and order fulfillment time while ensuring operational efficiency.Advanced algorithms,including an enhanced Particle Swarm Optimization(PSO-MPRRP)and a tailored Genetic Algorithm(GA-MPRRP),are specifically designed with customized evolutionary operators to effectively solve the MPRRP.Comparative experiments are conducted to evaluate the proposed strategies against benchmark approaches,demonstrating significant improvements in solution quality and computational efficiency.The findings contribute to the development of intelligent,scalable,and environmentally friendly warehouse systems,paving the way for future advances in robotics and automated logistics management.
基金the support of the Chinese Special Research Project for Civil Aircraft(No.MJZ17N22)the National Natural Science Foundation of China(Nos.U2133207,U2333214)+1 种基金the China Postdoctoral Science Foundation(No.2023M741687)the National Social Science Fund of China(No.22&ZD169)。
文摘Unmanned Aerial Vehicle(UAV)stands as a burgeoning electric transportation carrier,holding substantial promise for the logistics sector.A reinforcement learning framework Centralized-S Proximal Policy Optimization(C-SPPO)based on centralized decision process and considering policy entropy(S)is proposed.The proposed framework aims to plan the best scheduling scheme with the objective of minimizing both the timeout of order requests and the flight impact of UAVs that may lead to conflicts.In this framework,the intents of matching act are generated through the observations of UAV agents,and the ultimate conflict-free matching results are output under the guidance of a centralized decision maker.Concurrently,a pre-activation operation is introduced to further enhance the cooperation among UAV agents.Simulation experiments based on real-world data from New York City are conducted.The results indicate that the proposed CSPPO outperforms the baseline algorithms in the Average Delay Time(ADT),the Maximum Delay Time(MDT),the Order Delay Rate(ODR),the Average Flight Distance(AFD),and the Flight Impact Ratio(FIR).Furthermore,the framework demonstrates scalability to scenarios of different sizes without requiring additional training.
基金National Natural Science Foundation of China (61773044,62073009)National key Laboratory of Science and Technology on Reliability and Environmental Engineering(WDZC2019601A301)。
文摘Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-toend delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a lowEarth-orbit satellite communication network(LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds.
基金supported in part by National Natural Science Foundation of China(Nos.61931011 and 62372230)the Jiangsu Provincial Key Research and Development Program,China(No.BE2021013-4).
文摘UAV networks often encounter jamming attacks, under which multi-radio protocols have to switch radios to accelerate communication recovery. However, the existing protocols rely on exchange of hello messages to detect jamming, leading to long sensing time and thus slow routing recovery. To address the issues raised by jamming attacks, we propose a new routing protocol, Electromagnetic Spectrum situation awareness Optimized Link State Routing (ESOLSR) protocol, to improve the existing OLSRv2 protocol. ESOLSR utilizes the spectrum situation awareness capability from the physical layer, and adopts joint-updating of link status, updating of interface functions, and adaptive adjustment of parameters. Our simulation results show that the improved protocol, ESOLSR, can recover routing and resume normal communication 26.6% faster compared to the existing protocols.