In recent years,the demands of high traffic transmission motivate the rapid development of wireless access techniques,and it becomes promising to design the fifth generation(5G)wireless networks.Essential requirements...In recent years,the demands of high traffic transmission motivate the rapid development of wireless access techniques,and it becomes promising to design the fifth generation(5G)wireless networks.Essential requirements for 5G involve higher traffic volume,indoor or hotspot traffic,and spectrum,energy,and cost efficien-cy.展开更多
The additional diversity gain provided by the relays improves the secrecy capacity of communications system significantly. The multiple hops in the relaying system is an important technique to improve this diversity g...The additional diversity gain provided by the relays improves the secrecy capacity of communications system significantly. The multiple hops in the relaying system is an important technique to improve this diversity gain. The development of an analytical mathematical model of ensuring security in multicasting through fading channels incorporating this benefit of multi-hop relaying is still an open problem. Motivated by this issue, this paper considers a secure wireless multicasting scenario employing multi-hop relaying technique over frequency selective Nakagami-m fading channel and develops an analytical mathematical model to ensure the security against multiple eavesdroppers. This mathematical model has been developed based on the closed-form analytical expressions of the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multicasting (SOPM) to ensure the security in the presence of multiple eavesdroppers. Moreover, the effects of the fading parameter of multicast channel, the number of hops and eavesdropper are investigated. The results show that the security in multicasting through Nakagami-m fading channel with multi-hop relaying system is more sensitive to the number of hops and eavesdroppers. The fading of multicast channel helps to improve the secrecy multicast capacity and is not the enemy of security in multicasting.展开更多
Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum...Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.展开更多
In Power Line Communications(PLC),there are regulatory masks that restrict the transmit power spectral density for electromagnetic compatibility reasons,which creates coverage issues despite the not too long distances...In Power Line Communications(PLC),there are regulatory masks that restrict the transmit power spectral density for electromagnetic compatibility reasons,which creates coverage issues despite the not too long distances.Hence,PLC networks often employ repeaters/relays,especially in smart grid neighborhood area networks.Even in broadband indoor PLC systems that offer a notable data rate,relaying may pave the way to new applications like being the backbone for wireless technologies in a cost-effective manner to support the Internet-of-things paradigm.In this paper,we study Multiple-Input Multiple-Output(MIMO)PLC systems that incorporate inband full-duplex functionality in relaying networks.We present several MIMO configurations that allow end-to-end half-duplex or full-duplex operations and analyze the achievable performance with state-of-the-art PLC systems.To reach this analysis,we get channel realizations from random network layouts for indoor and outdoor scenarios.We adopt realistic MIMO channel and noise models and consider transmission techniques according to PLC standards.The concepts discussed in this work can be useful in the design of future PLC relay-aided networks for different applications that look for a coverage extension and/or throughput:smart grids with enhanced communications in outdoor scenarios,and“last meter”systems for high-speed connections everywhere in indoor ones.展开更多
Physical layer security methods based on joint relay and jammer selection(JRJS)have been widely investigated in the study of secure wireless communications.Different from current works on JRJS schemes,which assumed th...Physical layer security methods based on joint relay and jammer selection(JRJS)have been widely investigated in the study of secure wireless communications.Different from current works on JRJS schemes,which assumed that the global channel state information(CSI)of the eavesdroppers(Eves)was known beforehand,then the optimal relaying and jamming relays were determined.More importantly,the time complexity of selecting optimal jamming relay is O(N^(2)),where N is the maximum number of relays/Eves.In this paper,for the scenario where the source wants to exchange the message with the destination,via relaying scheme due to longer communication distance and limited transmission power,in the presence of multiple Eves,with the assumption of Eves'perfect CSI and average CSI,we propose two kinds of JRJS methods.In particular,the time complexity of finding the optimal jammer can be reduced to O(N).Furthermore,we present a novel JRJS scheme for no CSI of Eves by minimizing the difference between expected signal and interfering signal at the destination.Finally,simulations show that the designed methods are more effective than JRJS and other existing strategies in terms of security performance.展开更多
This paper investigates the secure communication between legitimate users in the presence of eavesdroppers, where the Intelligent Reflective Surface-Unmanned Aerial Vehicle (IRS-UAV) and Buffer-Aided (BA) relaying tec...This paper investigates the secure communication between legitimate users in the presence of eavesdroppers, where the Intelligent Reflective Surface-Unmanned Aerial Vehicle (IRS-UAV) and Buffer-Aided (BA) relaying techniques are utilized to enhance secrecy performance. By jointly optimizing the link selection strategy, the UAV position, and the reflection coefficient of the IRS, we aim to maximize the long-term average secrecy rate. Specifically, we propose a novel buffer in/out stabilization scheme based on the Lyapunov framework, which transforms the long-term average secrecy rate maximization problem into two per-slot drift-plus-penalty minimization problems with different link selection factors. The hybrid Particle Swarm Optimization-Artificial Fish Swarm Algorithm (PSO-AFSA) is adopted to optimize the UAV position, and the IRS reflection coefficient optimization problem is solved by iterative optimization in which auxiliary variables and standard convex optimization algorithms are introduced. Finally, the delay constraint is set to ensure the timeliness of information packets. Simulation results demonstrate that our proposed scheme outperforms the comparison schemes in terms of average secrecy rate. Specifically, the addition of BA improves the average secrecy rate by 1.37 bps/Hz, and the continued optimizations of IRS reflection coefficients and UAV positions improve the average secrecy rate by 2.46 bps/Hz and 3.75 bps/Hz, respectively.展开更多
Recently,nano-systems based on molecular communications via diffusion(MCvD)have been implemented in a variety of nanomedical applications,most notably in targeted drug delivery system(TDDS)scenarios.Furthermore,becaus...Recently,nano-systems based on molecular communications via diffusion(MCvD)have been implemented in a variety of nanomedical applications,most notably in targeted drug delivery system(TDDS)scenarios.Furthermore,because the MCvD is unreliable and there exists molecular noise and inter symbol interference(ISI),cooperative nano-relays can acquire the reliability for drug delivery to targeted diseased cells,especially if the separation distance between the nano transmitter and nano receiver is increased.In this work,we propose an approach for optimizing the performance of the nano system using cooperative molecular communications with a nano relay scheme,while accounting for blood flow effects in terms of drift velocity.The fractions of the molecular drug that should be allocated to the nano transmitter and nano relay positioning are computed using a collaborative optimization problem solved by theModified Central Force Optimization(MCFO)algorithm.Unlike the previous work,the probability of bit error is expressed in a closed-form expression.It is used as an objective function to determine the optimal velocity of the drug molecules and the detection threshold at the nano receiver.The simulation results show that the probability of bit error can be dramatically reduced by optimizing the drift velocity,detection threshold,location of the nano-relay in the proposed nano system,and molecular drug budget.展开更多
处于改建阶段的智能变电站采样模式复杂,继电保护装置难以发现采样回路轻微异常,导致回路隐患暴露时间严重滞后。针对上述问题,分析改建时期智能变电站的采样模式和二次设备配置情况,提出基于同源录波数据比对的继电保护采样回路异常检...处于改建阶段的智能变电站采样模式复杂,继电保护装置难以发现采样回路轻微异常,导致回路隐患暴露时间严重滞后。针对上述问题,分析改建时期智能变电站的采样模式和二次设备配置情况,提出基于同源录波数据比对的继电保护采样回路异常检测方法。首先,利用双向编码器表征(bidirectional encoder representations from transformers,BERT)语言模型与余弦相似度算法,实现同源录波数据的通道匹配。然后,利用重采样技术和曼哈顿距离完成波形的采样频率统一与时域对齐。最后,基于动态时间规整(dynamic time warping,DTW)算法提出改进算法,并结合采样点偏移量共同设置采样回路的异常判据。算例分析表明,该方法可以完成录波数据的同源通道匹配,实现波形的一致性对齐,并且相比于传统DTW算法,改进DTW算法对异常状态识别的灵敏性和准确性更高。根据异常判据能够有效检测继电保护采样回路的异常状态,确保了智能变电站的安全可靠运行。展开更多
文摘In recent years,the demands of high traffic transmission motivate the rapid development of wireless access techniques,and it becomes promising to design the fifth generation(5G)wireless networks.Essential requirements for 5G involve higher traffic volume,indoor or hotspot traffic,and spectrum,energy,and cost efficien-cy.
文摘The additional diversity gain provided by the relays improves the secrecy capacity of communications system significantly. The multiple hops in the relaying system is an important technique to improve this diversity gain. The development of an analytical mathematical model of ensuring security in multicasting through fading channels incorporating this benefit of multi-hop relaying is still an open problem. Motivated by this issue, this paper considers a secure wireless multicasting scenario employing multi-hop relaying technique over frequency selective Nakagami-m fading channel and develops an analytical mathematical model to ensure the security against multiple eavesdroppers. This mathematical model has been developed based on the closed-form analytical expressions of the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multicasting (SOPM) to ensure the security in the presence of multiple eavesdroppers. Moreover, the effects of the fading parameter of multicast channel, the number of hops and eavesdropper are investigated. The results show that the security in multicasting through Nakagami-m fading channel with multi-hop relaying system is more sensitive to the number of hops and eavesdroppers. The fading of multicast channel helps to improve the secrecy multicast capacity and is not the enemy of security in multicasting.
基金Project supported by the Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology (Grant No. ZKSYS202204)the Talent Introduction Fund of Anhui University of Science and Technology (Grant No. 2021yjrc34)the Scientific Research Fund of Anhui Provincial Education Department (Grant No. KJ2020A0301)。
文摘Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.
基金supported by the Spanish Government and EU,under project PID2019-109842RB-I00/AEI/10.13039/501100011033。
文摘In Power Line Communications(PLC),there are regulatory masks that restrict the transmit power spectral density for electromagnetic compatibility reasons,which creates coverage issues despite the not too long distances.Hence,PLC networks often employ repeaters/relays,especially in smart grid neighborhood area networks.Even in broadband indoor PLC systems that offer a notable data rate,relaying may pave the way to new applications like being the backbone for wireless technologies in a cost-effective manner to support the Internet-of-things paradigm.In this paper,we study Multiple-Input Multiple-Output(MIMO)PLC systems that incorporate inband full-duplex functionality in relaying networks.We present several MIMO configurations that allow end-to-end half-duplex or full-duplex operations and analyze the achievable performance with state-of-the-art PLC systems.To reach this analysis,we get channel realizations from random network layouts for indoor and outdoor scenarios.We adopt realistic MIMO channel and noise models and consider transmission techniques according to PLC standards.The concepts discussed in this work can be useful in the design of future PLC relay-aided networks for different applications that look for a coverage extension and/or throughput:smart grids with enhanced communications in outdoor scenarios,and“last meter”systems for high-speed connections everywhere in indoor ones.
基金supported by the National Natural Science Foundation of China with Grants 62301076 and 62321001。
文摘Physical layer security methods based on joint relay and jammer selection(JRJS)have been widely investigated in the study of secure wireless communications.Different from current works on JRJS schemes,which assumed that the global channel state information(CSI)of the eavesdroppers(Eves)was known beforehand,then the optimal relaying and jamming relays were determined.More importantly,the time complexity of selecting optimal jamming relay is O(N^(2)),where N is the maximum number of relays/Eves.In this paper,for the scenario where the source wants to exchange the message with the destination,via relaying scheme due to longer communication distance and limited transmission power,in the presence of multiple Eves,with the assumption of Eves'perfect CSI and average CSI,we propose two kinds of JRJS methods.In particular,the time complexity of finding the optimal jammer can be reduced to O(N).Furthermore,we present a novel JRJS scheme for no CSI of Eves by minimizing the difference between expected signal and interfering signal at the destination.Finally,simulations show that the designed methods are more effective than JRJS and other existing strategies in terms of security performance.
基金co-supported by the National Natural Science Foundation of China(Nos.62271399,61901015,GNA22001 and GAA20024)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24F010003).
文摘This paper investigates the secure communication between legitimate users in the presence of eavesdroppers, where the Intelligent Reflective Surface-Unmanned Aerial Vehicle (IRS-UAV) and Buffer-Aided (BA) relaying techniques are utilized to enhance secrecy performance. By jointly optimizing the link selection strategy, the UAV position, and the reflection coefficient of the IRS, we aim to maximize the long-term average secrecy rate. Specifically, we propose a novel buffer in/out stabilization scheme based on the Lyapunov framework, which transforms the long-term average secrecy rate maximization problem into two per-slot drift-plus-penalty minimization problems with different link selection factors. The hybrid Particle Swarm Optimization-Artificial Fish Swarm Algorithm (PSO-AFSA) is adopted to optimize the UAV position, and the IRS reflection coefficient optimization problem is solved by iterative optimization in which auxiliary variables and standard convex optimization algorithms are introduced. Finally, the delay constraint is set to ensure the timeliness of information packets. Simulation results demonstrate that our proposed scheme outperforms the comparison schemes in terms of average secrecy rate. Specifically, the addition of BA improves the average secrecy rate by 1.37 bps/Hz, and the continued optimizations of IRS reflection coefficients and UAV positions improve the average secrecy rate by 2.46 bps/Hz and 3.75 bps/Hz, respectively.
基金the Researchers Supporting Project Number(RSP2023R 102)King Saud University,Riyadh,Saudi Arabia.
文摘Recently,nano-systems based on molecular communications via diffusion(MCvD)have been implemented in a variety of nanomedical applications,most notably in targeted drug delivery system(TDDS)scenarios.Furthermore,because the MCvD is unreliable and there exists molecular noise and inter symbol interference(ISI),cooperative nano-relays can acquire the reliability for drug delivery to targeted diseased cells,especially if the separation distance between the nano transmitter and nano receiver is increased.In this work,we propose an approach for optimizing the performance of the nano system using cooperative molecular communications with a nano relay scheme,while accounting for blood flow effects in terms of drift velocity.The fractions of the molecular drug that should be allocated to the nano transmitter and nano relay positioning are computed using a collaborative optimization problem solved by theModified Central Force Optimization(MCFO)algorithm.Unlike the previous work,the probability of bit error is expressed in a closed-form expression.It is used as an objective function to determine the optimal velocity of the drug molecules and the detection threshold at the nano receiver.The simulation results show that the probability of bit error can be dramatically reduced by optimizing the drift velocity,detection threshold,location of the nano-relay in the proposed nano system,and molecular drug budget.
文摘处于改建阶段的智能变电站采样模式复杂,继电保护装置难以发现采样回路轻微异常,导致回路隐患暴露时间严重滞后。针对上述问题,分析改建时期智能变电站的采样模式和二次设备配置情况,提出基于同源录波数据比对的继电保护采样回路异常检测方法。首先,利用双向编码器表征(bidirectional encoder representations from transformers,BERT)语言模型与余弦相似度算法,实现同源录波数据的通道匹配。然后,利用重采样技术和曼哈顿距离完成波形的采样频率统一与时域对齐。最后,基于动态时间规整(dynamic time warping,DTW)算法提出改进算法,并结合采样点偏移量共同设置采样回路的异常判据。算例分析表明,该方法可以完成录波数据的同源通道匹配,实现波形的一致性对齐,并且相比于传统DTW算法,改进DTW算法对异常状态识别的灵敏性和准确性更高。根据异常判据能够有效检测继电保护采样回路的异常状态,确保了智能变电站的安全可靠运行。