A Scalable Multi-Hash( SMH) name lookup method is proposed,which is based on hierarchical name decomposition to aggregate names sharing common prefixes and multiple scalable hash tables to minimize collisions among pr...A Scalable Multi-Hash( SMH) name lookup method is proposed,which is based on hierarchical name decomposition to aggregate names sharing common prefixes and multiple scalable hash tables to minimize collisions among prefixes. We take the component instead of the entire name as a key in the hash functions. The SMH method achieves lookup speeds of 21. 45 and 20. 87 Mbps on prefix table with 2 million and 3. 6 million names,respectively. The proposed method is the fastest of the four methods considered and requires 61.63 and 89.17 Mb of memory on the prefix tables with 2 million and 3. 6 million names,respectively. The required memory is slightly larger than the best method. The scalability of SMH outperforms that of the other two methods.展开更多
互联网应用的普及使得多模态数据快速增长,跨模态检索技术已成为相关领域的关键技术之一。针对现有跨模态哈希算法存在的网络结构和量化方法等方面的问题,本文在新的深度跨模态哈希检索模型之上,提出了一种基于K-means的深度跨模态哈希...互联网应用的普及使得多模态数据快速增长,跨模态检索技术已成为相关领域的关键技术之一。针对现有跨模态哈希算法存在的网络结构和量化方法等方面的问题,本文在新的深度跨模态哈希检索模型之上,提出了一种基于K-means的深度跨模态哈希量化优化方法(K-means-based quantitative-optimization for deep crossmodal hashing,KQDH)。该方法通过K-means聚类算法对多模态数据特征向量分类,并通过集体量化方式来控制量化误差,使得哈希码更好地表示出多模态特征。实验结果表明,该方法能在多模态数据之间保持相似性并最大程度地捕获语义信息,从而提高跨模态检索的准确性和效率。展开更多
基金sponsored by the National Basic Research Program of China(973 Program)(Grant No.2011CB302605)the National High Technology Research and Development Program of China(863 Program)(Grants No.2011AA010705+5 种基金2012AA0125022012AA012506)the National Key Technology R&D Program of China(Grant No.2012BAH37B01)the National Science Foundation of China(Grant No.6120245761402149)the CNNIC(Grant No.K201211043)
文摘A Scalable Multi-Hash( SMH) name lookup method is proposed,which is based on hierarchical name decomposition to aggregate names sharing common prefixes and multiple scalable hash tables to minimize collisions among prefixes. We take the component instead of the entire name as a key in the hash functions. The SMH method achieves lookup speeds of 21. 45 and 20. 87 Mbps on prefix table with 2 million and 3. 6 million names,respectively. The proposed method is the fastest of the four methods considered and requires 61.63 and 89.17 Mb of memory on the prefix tables with 2 million and 3. 6 million names,respectively. The required memory is slightly larger than the best method. The scalability of SMH outperforms that of the other two methods.
文摘互联网应用的普及使得多模态数据快速增长,跨模态检索技术已成为相关领域的关键技术之一。针对现有跨模态哈希算法存在的网络结构和量化方法等方面的问题,本文在新的深度跨模态哈希检索模型之上,提出了一种基于K-means的深度跨模态哈希量化优化方法(K-means-based quantitative-optimization for deep crossmodal hashing,KQDH)。该方法通过K-means聚类算法对多模态数据特征向量分类,并通过集体量化方式来控制量化误差,使得哈希码更好地表示出多模态特征。实验结果表明,该方法能在多模态数据之间保持相似性并最大程度地捕获语义信息,从而提高跨模态检索的准确性和效率。