In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The e...In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The essence of cross-view geo-localization resides in matching images containing the same geographical targets from disparate platforms,such as UAV-view and satellite-view images.However,images of the same geographical targets may suffer from occlusions and geometric distortions due to variations in the capturing platform,view,and timing.The existing methods predominantly extract features by segmenting feature maps,which overlook the holistic semantic distribution and structural information of objects,resulting in loss of image information.To address these challenges,dilated neighborhood attention Transformer is employed as the feature extraction backbone,and Multi-feature representations based on Multi-scale Hierarchical Contextual Aggregation(MMHCA)is proposed.In the proposed MMHCA method,the multiscale hierarchical contextual aggregation method is utilized to extract contextual information from local to global across various granularity levels,establishing feature associations of contextual information with global and local information in the image.Subsequently,the multi-feature representations method is utilized to obtain rich discriminative feature information,bolstering the robustness of model in scenarios characterized by positional shifts,varying distances,and scale ambiguities.Comprehensive experiments conducted on the extensively utilized University-1652 and SUES-200 benchmarks indicate that the MMHCA method surpasses the existing techniques.showing outstanding results in UAV localization and navigation.展开更多
This study proposes a learner profile framework based on multi-feature fusion,aiming to enhance the precision of personalized learning recommendations by integrating learners’static attributes(e.g.,demographic data a...This study proposes a learner profile framework based on multi-feature fusion,aiming to enhance the precision of personalized learning recommendations by integrating learners’static attributes(e.g.,demographic data and historical academic performance)with dynamic behavioral patterns(e.g.,real-time interactions and evolving interests over time).The research employs Term Frequency-Inverse Document Frequency(TF-IDF)for semantic feature extraction,integrates the Analytic Hierarchy Process(AHP)for feature weighting,and introduces a time decay function inspired by Newton’s law of cooling to dynamically model changes in learners’interests.Empirical results demonstrate that this framework effectively captures the dynamic evolution of learners’behaviors and provides context-aware learning resource recommendations.The study introduces a novel paradigm for learner modeling in educational technology,combining methodological innovation with a scalable technical architecture,thereby laying a foundation for the development of adaptive learning systems.展开更多
The traditional EnFCM(Enhanced fuzzy C-means)algorithm only considers the grey-scale features in image segmentation,resulting in less than satisfactory results when the algorithm is used for remote sensing woodland im...The traditional EnFCM(Enhanced fuzzy C-means)algorithm only considers the grey-scale features in image segmentation,resulting in less than satisfactory results when the algorithm is used for remote sensing woodland image segmentation and extraction.An EnFCM remote sensing forest land extraction method based on PCA multi-feature fusion was proposed.Firstly,histogram equalization was applied to improve the image contrast.Secondly,the texture and edge features of the image were extracted,and a multi-feature fused pixel image was generated using the PCA technique.Moreover,the fused feature was used as a feature constraint to measure the difference of pixels instead of a single grey-scale feature.Finally,an improved feature distance metric calculated the similarity between the pixel points and the cluster center to complete the cluster segmentation.The experimental results showed that the error was between 1.5%and 4.0%compared with the forested area counted by experts’hand-drawing,which could obtain a high accuracy segmentation and extraction result.展开更多
Chinese Clinical Named Entity Recognition(CNER)is a crucial step in extracting medical information and is of great significance in promoting medical informatization.However,CNER poses challenges due to the specificity...Chinese Clinical Named Entity Recognition(CNER)is a crucial step in extracting medical information and is of great significance in promoting medical informatization.However,CNER poses challenges due to the specificity of clinical terminology,the complexity of Chinese text semantics,and the uncertainty of Chinese entity boundaries.To address these issues,we propose an improved CNER model,which is based on multi-feature fusion and multi-scale local context enhancement.The model simultaneously fuses multi-feature representations of pinyin,radical,Part of Speech(POS),word boundary with BERT deep contextual representations to enhance the semantic representation of text for more effective entity recognition.Furthermore,to address the model’s limitation of focusing just on global features,we incorporate Convolutional Neural Networks(CNNs)with various kernel sizes to capture multi-scale local features of the text and enhance the model’s comprehension of the text.Finally,we integrate the obtained global and local features,and employ multi-head attention mechanism(MHA)extraction to enhance the model’s focus on characters associated with medical entities,hence boosting the model’s performance.We obtained 92.74%,and 87.80%F1 scores on the two CNER benchmark datasets,CCKS2017 and CCKS2019,respectively.The results demonstrate that our model outperforms the latest models in CNER,showcasing its outstanding overall performance.It can be seen that the CNER model proposed in this study has an important application value in constructing clinical medical knowledge graph and intelligent Q&A system.展开更多
Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend o...Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend of the initial insulation fault is unknown,which brings difficulties to the distribution inspection.In order to solve the above problems,a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed.Firstly,the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network,and the relational database of the distribution network is designed based on the data and numerical characteristics of the existing distribution management system.Secondly,considering all kinds of fault factors of the distribution network and the influence of the power supply region,the evaluation method of the initial insulation fault situation of the distribution network is proposed,and the development situation of the distribution network insulation fault is classified according to the evaluation method.Then,principal component analysis was used to reduce the dimension of the training samples and test samples of the distribution network data,and the support vector machine(SVM)was trained.The optimal parameter combination of the SVM model was found by the grid search method,and a multi-class SVM model based on 1-v-1 method was constructed.Finally,the trained multi-class SVM was used to predict 6 kinds of situation level prediction samples.The results of simulation examples show that the average prediction accuracy of 6 situation levels is above 95%,and the perception accuracy of 4 situation levels is above 96%.In addition,the insulation maintenance decision scheme under different situation levels is able to be given when no fault occurs or the insulation fault is in the early stage,which can meet the needs of power distribution and inspection for accurately sensing the insulation fault situation.The correctness and effectiveness of this method are verified.展开更多
In challenging situations,such as low illumination,rain,and background clutter,the stability of the thermal infrared(TIR)spectrum can help red,green,blue(RGB)visible spectrum to improve tracking performance.However,th...In challenging situations,such as low illumination,rain,and background clutter,the stability of the thermal infrared(TIR)spectrum can help red,green,blue(RGB)visible spectrum to improve tracking performance.However,the high-level image information and the modality-specific features have not been sufficiently studied.The proposed correlation filter uses the fused saliency content map to improve filter training and extracts different features of modalities.The fused content map is intro-duced into the spatial regularization term of correlation filter to highlight the training samples in the content region.Furthermore,the fused content map can avoid the incompleteness of the con-tent region caused by challenging situations.Additionally,differ-ent features are extracted according to the modality characteris-tics and are fused by the designed response-level fusion stra-tegy.The alternating direction method of multipliers(ADMM)algorithm is used to solve the tracker training efficiently.Experi-ments on the large-scale benchmark datasets show the effec-tiveness of the proposed tracker compared to the state-of-the-art traditional trackers and the deep learning based trackers.展开更多
This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chin...This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chinese character recognition is pointed out,including its numerous categories,complex structure,and the problem of similar characters,especially the variability of handwritten Chinese characters.Subsequently,recognition methods based on feature optimization,model optimization,and fusion techniques are highlighted.The fusion studies between feature optimization and model improvement are further explored,and these studies further enhance the recognition effect through complementary advantages.Finally,the article summarizes the current challenges of Chinese character recognition technology,including accuracy improvement,model complexity,and real-time problems,and looks forward to future research directions.展开更多
Vehicle re-identification(ReID)aims to retrieve the target vehicle in an extensive image gallery through its appearances from various views in the cross-camera scenario.It has gradually become a core technology of int...Vehicle re-identification(ReID)aims to retrieve the target vehicle in an extensive image gallery through its appearances from various views in the cross-camera scenario.It has gradually become a core technology of intelligent transportation system.Most existing vehicle re-identification models adopt the joint learning of global and local features.However,they directly use the extracted global features,resulting in insufficient feature expression.Moreover,local features are primarily obtained through advanced annotation and complex attention mechanisms,which require additional costs.To solve this issue,a multi-feature learning model with enhanced local attention for vehicle re-identification(MFELA)is proposed in this paper.The model consists of global and local branches.The global branch utilizes both middle and highlevel semantic features of ResNet50 to enhance the global representation capability.In addition,multi-scale pooling operations are used to obtain multiscale information.While the local branch utilizes the proposed Region Batch Dropblock(RBD),which encourages the model to learn discriminative features for different local regions and simultaneously drops corresponding same areas randomly in a batch during training to enhance the attention to local regions.Then features from both branches are combined to provide a more comprehensive and distinctive feature representation.Extensive experiments on VeRi-776 and VehicleID datasets prove that our method has excellent performance.展开更多
The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to ide...The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification.展开更多
Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noti...Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noticeable. Urban administrators and decision-makers seek modern methods and technology to provide information support for urban growth. Recently, with the fast development of high-resolution sensor technology, more relevant data can be obtained, which is an advantage in studying the sustainable development of urban land-use. However, these data are only information sources and are a mixture of "information" and "noise". Processing, analysis and information extraction from remote sensing data is necessary to provide useful information. This paper extracts urban land-use information from a high-resolution image by using the multi-feature information of the image objects, and adopts an object-oriented image analysis approach and multi-scale image segmentation technology. A classification and extraction model is set up based on the multi-features of the image objects, in order to contribute to information for reasonable planning and effective management. This new image analysis approach offers a satisfactory solution for extracting information quickly and efficiently.展开更多
Massive open online courses(MOOC)have recently gained worldwide attention in the field of education.The manner of MOOC provides a new option for learning various kinds of knowledge.A mass of data miming algorithms hav...Massive open online courses(MOOC)have recently gained worldwide attention in the field of education.The manner of MOOC provides a new option for learning various kinds of knowledge.A mass of data miming algorithms have been proposed to analyze the learner’s characteristics and classify the learners into different groups.However,most current algorithms mainly focus on the final grade of the learners,which may result in an improper classification.To overcome the shortages of the existing algorithms,a novel multi-feature weighting based K-means(MFWK-means)algorithm is proposed in this paper.Correlations between the widely used feature grade and other features are first investigated,and then the learners are classified based on their grades and weighted features with the proposed MFWK-means algorithm.Experimental results with the Canvas Network Person-Course(CNPC)dataset demonstrate the effectiveness of our method.Moreover,a comparison between the new MFWK-means and the traditional K-means clustering algorithm is implemented to show the superiority of the proposed method.展开更多
As a new type of Denial of Service(DoS)attacks,the Low-rate Denial of Service(LDoS)attacks make the traditional method of detecting Distributed Denial of Service Attack(DDoS)attacks useless due to the characteristics ...As a new type of Denial of Service(DoS)attacks,the Low-rate Denial of Service(LDoS)attacks make the traditional method of detecting Distributed Denial of Service Attack(DDoS)attacks useless due to the characteristics of a low average rate and concealment.With features extracted from the network traffic,a new detection approach based on multi-feature fusion is proposed to solve the problem in this paper.An attack feature set containing the Acknowledge character(ACK)sequence number,the packet size,and the queue length is used to classify normal and LDoS attack traffics.Each feature is digitalized and preprocessed to fit the input of the K-Nearest Neighbor(KNN)classifier separately,and to obtain the decision contour matrix.Then a posteriori probability in the matrix is fused,and the fusion decision index D is used as the basis of detecting the LDoS attacks.Experiments proved that the detection rate of the multi-feature fusion algorithm is higher than those of the single-based detection method and other algorithms.展开更多
Smoke detection is the most commonly used method in early warning of fire and is widely used in forest detection.Most existing smoke detection methods contain empty spaces and obstacles which interfere with detection ...Smoke detection is the most commonly used method in early warning of fire and is widely used in forest detection.Most existing smoke detection methods contain empty spaces and obstacles which interfere with detection and extract false smoke roots.This study developed a new smoke roots search algorithm based on a multi-feature fusion dynamic extraction strategy.This determines smoke origin candidate points and region based on a multi-frame discrete confidence level.The results show that the new method provides a more complete smoke contour with no background interference,compared to the results using existing methods.Unlike video-based methods that rely on continuous frames,an adaptive threshold method was developed to build the judgment image set composed of non-consecutive frames.The smoke roots origin search algorithm increased the detection rate and significantly reduced false detection rate compared to existing methods.展开更多
In the smart logistics industry,unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by...In the smart logistics industry,unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by humans.Therefore,they play a critical role in smart warehousing,and semantics segmentation is an effective method to realize the intelligent identification of logistics pallets.However,most current recognition algorithms are ineffective due to the diverse types of pallets,their complex shapes,frequent blockades in production environments,and changing lighting conditions.This paper proposes a novel multi-feature fusion-guided multiscale bidirectional attention(MFMBA)neural network for logistics pallet segmentation.To better predict the foreground category(the pallet)and the background category(the cargo)of a pallet image,our approach extracts three types of features(grayscale,texture,and Hue,Saturation,Value features)and fuses them.The multiscale architecture deals with the problem that the size and shape of the pallet may appear different in the image in the actual,complex environment,which usually makes feature extraction difficult.Our study proposes a multiscale architecture that can extract additional semantic features.Also,since a traditional attention mechanism only assigns attention rights from a single direction,we designed a bidirectional attention mechanism that assigns cross-attention weights to each feature from two directions,horizontally and vertically,significantly improving segmentation.Finally,comparative experimental results show that the precision of the proposed algorithm is 0.53%–8.77%better than that of other methods we compared.展开更多
In light of degradation of particle filtering and robust weakness in the utilization of single feature tracking,this paper presents a kernel particle filtering tracking method based on multi-feature integration.In thi...In light of degradation of particle filtering and robust weakness in the utilization of single feature tracking,this paper presents a kernel particle filtering tracking method based on multi-feature integration.In this paper,a new weight upgrading method is given out during kernel particle filtering at first,and then robust tracking is realized by integrating color and texture features under the framework of kernel particle filtering.Space histogram and integral histogram is adopted to calculate color and texture features respectively.These two calculation methods effectively overcome their own defectiveness,and meanwhile,improve the real timing for particle filtering.This algorithm has also improved sampling effectiveness,resolved redundant calculation for particle filtering and degradation of particles.Finally,the experiment for target tracking is realized by using the method under complicated background and shelter.Experiment results show that the method can reliably and accurately track target and deal with target sheltering situation properly.展开更多
A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a ...A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a complicated environment.In this approach,the Harris algorithm is introduced to detect the corner points of the object,and the corner matching algorithm based on singular value decomposition is used to compute the firstorder weights and make particles centralize in the high likelihood area.Then the local binary pattern(LBP) operator is used to build the observation model of the target based on the color and texture features,by which the second-order weights of particles and the accurate location of the target can be obtained.Moreover,a backstepping controller is proposed to complete the whole tracking system.Simulations and experiments are carried out,and the results show that the HPF algorithm with the backstepping controller achieves stable and accurate tracking with good robustness in complex environments.展开更多
In order to achieve accurate classification of apple, a multi-feature fusion classification method based on image processing and improved SVM was proposed in this paper. The method was mainly divided into four parts, ...In order to achieve accurate classification of apple, a multi-feature fusion classification method based on image processing and improved SVM was proposed in this paper. The method was mainly divided into four parts, including image preprocessing, background segmentation, feature extraction and multi-feature fusion classification with improved SVM. Firstly, the homomorphic filtering algorithm was used to improve the quality of apple images. Secondly, the images were converted to HLS space. The background was segmented by the QTSU algorithm. Morphological processing was employed to remove fruit stem and surface defect areas. And apple contours were extracted with the Canny algorithm. Then, apples’ size, shape, color, defect and texture features were extracted. Finally, the cross verification method was used to optimize the penalty factor in SVM. A multi-feature fusion classification model was established. And the weight of each index was calculated by Fisher. In this study, 146 apple samples were selected for training and 61 apple samples were selected for testing. The test results showed that the accuracy of the classification method proposed in this paper was 96.72%, which can provide a reference for apple automatic classification.展开更多
Medical image fusion plays an important role in clinical applications such as image-guided surgery, image-guided radiotherapy, noninvasive diagnosis, and treatment planning. In order to retain useful information and g...Medical image fusion plays an important role in clinical applications such as image-guided surgery, image-guided radiotherapy, noninvasive diagnosis, and treatment planning. In order to retain useful information and get more reliable results, a novel medical image fusion algorithm based on pulse coupled neural networks (PCNN) and multi-feature fuzzy clustering is proposed, which makes use of the multi-feature of image and combines the advantages of the local entropy and variance of local entropy based PCNN. The results of experiments indicate that the proposed image fusion method can better preserve the image details and robustness and significantly improve the image visual effect than the other fusion methods with less information distortion.展开更多
Single-feature methods are unable to effectively track a target in an underground coal mine video due to the high background noise, low and uneven illumination, and drastic light fluctuation in the video. In this stud...Single-feature methods are unable to effectively track a target in an underground coal mine video due to the high background noise, low and uneven illumination, and drastic light fluctuation in the video. In this study, we propose an underground coal mine personnel target tracking method using multi-feature joint sparse representation. First, with a particle filter framework, the global and local multiple features of the target template and candidate particles are extracted. Second, each of the candidate particles is sparsely represented by a dictionary template, and reconstruction is achieved after solving the sparse coefficient. Last, the particle with the lowest reconstruction error is deemed the tracking result. To validate the effectiveness of the proposed algorithm, we compare the proposed method with three commonly employed tracking algorithms. The results show that the proposed method is able to reliably track the target in various scenarios, such as occlusion and illumination change, which generates better tracking results and validates the feasibility and effectiveness of the proposed method.展开更多
In order to solve the shortcomings of current fatigue detection methods such as low accuracy or poor real-time performance,a fatigue detection method based on multi-feature fusion is proposed.Firstly,the HOG face dete...In order to solve the shortcomings of current fatigue detection methods such as low accuracy or poor real-time performance,a fatigue detection method based on multi-feature fusion is proposed.Firstly,the HOG face detection algorithm and KCF target tracking algorithm are integrated and deformable convolutional neural network is introduced to identify the state of extracted eyes and mouth,fast track the detected faces and extract continuous and stable target faces for more efficient extraction.Then the head pose algorithm is introduced to detect the driver’s head in real time and obtain the driver’s head state information.Finally,a multi-feature fusion fatigue detection method is proposed based on the state of the eyes,mouth and head.According to the experimental results,the proposed method can detect the driver’s fatigue state in real time with high accuracy and good robustness compared with the current fatigue detection algorithms.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12072027,62103052,61603346 and 62103379)the Henan Key Laboratory of General Aviation Technology,China(No.ZHKF-230201)+3 种基金the Funding for the Open Research Project of the Rotor Aerodynamics Key Laboratory,China(No.RAL20200101)the Key Research and Development Program of Henan Province,China(Nos.241111222000 and 241111222900)the Key Science and Technology Program of Henan Province,China(No.232102220067)the Scholarship Funding from the China Scholarship Council(No.202206030079).
文摘In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The essence of cross-view geo-localization resides in matching images containing the same geographical targets from disparate platforms,such as UAV-view and satellite-view images.However,images of the same geographical targets may suffer from occlusions and geometric distortions due to variations in the capturing platform,view,and timing.The existing methods predominantly extract features by segmenting feature maps,which overlook the holistic semantic distribution and structural information of objects,resulting in loss of image information.To address these challenges,dilated neighborhood attention Transformer is employed as the feature extraction backbone,and Multi-feature representations based on Multi-scale Hierarchical Contextual Aggregation(MMHCA)is proposed.In the proposed MMHCA method,the multiscale hierarchical contextual aggregation method is utilized to extract contextual information from local to global across various granularity levels,establishing feature associations of contextual information with global and local information in the image.Subsequently,the multi-feature representations method is utilized to obtain rich discriminative feature information,bolstering the robustness of model in scenarios characterized by positional shifts,varying distances,and scale ambiguities.Comprehensive experiments conducted on the extensively utilized University-1652 and SUES-200 benchmarks indicate that the MMHCA method surpasses the existing techniques.showing outstanding results in UAV localization and navigation.
基金This work is supported by the Ministry of Education of Humanities and Social Science projects in China(No.20YJCZH124)Guangdong Province Education and Teaching Reform Project No.640:Research on the Teaching Practice and Application of Online Peer Assessment Methods in the Context of Artificial Intelligence.
文摘This study proposes a learner profile framework based on multi-feature fusion,aiming to enhance the precision of personalized learning recommendations by integrating learners’static attributes(e.g.,demographic data and historical academic performance)with dynamic behavioral patterns(e.g.,real-time interactions and evolving interests over time).The research employs Term Frequency-Inverse Document Frequency(TF-IDF)for semantic feature extraction,integrates the Analytic Hierarchy Process(AHP)for feature weighting,and introduces a time decay function inspired by Newton’s law of cooling to dynamically model changes in learners’interests.Empirical results demonstrate that this framework effectively captures the dynamic evolution of learners’behaviors and provides context-aware learning resource recommendations.The study introduces a novel paradigm for learner modeling in educational technology,combining methodological innovation with a scalable technical architecture,thereby laying a foundation for the development of adaptive learning systems.
基金supported by National Natural Science Foundation of China(No.61761027)Gansu Young Doctor’s Fund for Higher Education Institutions(No.2021QB-053)。
文摘The traditional EnFCM(Enhanced fuzzy C-means)algorithm only considers the grey-scale features in image segmentation,resulting in less than satisfactory results when the algorithm is used for remote sensing woodland image segmentation and extraction.An EnFCM remote sensing forest land extraction method based on PCA multi-feature fusion was proposed.Firstly,histogram equalization was applied to improve the image contrast.Secondly,the texture and edge features of the image were extracted,and a multi-feature fused pixel image was generated using the PCA technique.Moreover,the fused feature was used as a feature constraint to measure the difference of pixels instead of a single grey-scale feature.Finally,an improved feature distance metric calculated the similarity between the pixel points and the cluster center to complete the cluster segmentation.The experimental results showed that the error was between 1.5%and 4.0%compared with the forested area counted by experts’hand-drawing,which could obtain a high accuracy segmentation and extraction result.
基金This study was supported by the National Natural Science Foundation of China(61911540482 and 61702324).
文摘Chinese Clinical Named Entity Recognition(CNER)is a crucial step in extracting medical information and is of great significance in promoting medical informatization.However,CNER poses challenges due to the specificity of clinical terminology,the complexity of Chinese text semantics,and the uncertainty of Chinese entity boundaries.To address these issues,we propose an improved CNER model,which is based on multi-feature fusion and multi-scale local context enhancement.The model simultaneously fuses multi-feature representations of pinyin,radical,Part of Speech(POS),word boundary with BERT deep contextual representations to enhance the semantic representation of text for more effective entity recognition.Furthermore,to address the model’s limitation of focusing just on global features,we incorporate Convolutional Neural Networks(CNNs)with various kernel sizes to capture multi-scale local features of the text and enhance the model’s comprehension of the text.Finally,we integrate the obtained global and local features,and employ multi-head attention mechanism(MHA)extraction to enhance the model’s focus on characters associated with medical entities,hence boosting the model’s performance.We obtained 92.74%,and 87.80%F1 scores on the two CNER benchmark datasets,CCKS2017 and CCKS2019,respectively.The results demonstrate that our model outperforms the latest models in CNER,showcasing its outstanding overall performance.It can be seen that the CNER model proposed in this study has an important application value in constructing clinical medical knowledge graph and intelligent Q&A system.
基金funded by the Science and Technology Project of China Southern Power Grid(YNKJXM20210175)the National Natural Science Foundation of China(52177070).
文摘Most ground faults in distribution network are caused by insulation deterioration of power equipment.It is difficult to find the insulation deterioration of the distribution network in time,and the development trend of the initial insulation fault is unknown,which brings difficulties to the distribution inspection.In order to solve the above problems,a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed.Firstly,the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network,and the relational database of the distribution network is designed based on the data and numerical characteristics of the existing distribution management system.Secondly,considering all kinds of fault factors of the distribution network and the influence of the power supply region,the evaluation method of the initial insulation fault situation of the distribution network is proposed,and the development situation of the distribution network insulation fault is classified according to the evaluation method.Then,principal component analysis was used to reduce the dimension of the training samples and test samples of the distribution network data,and the support vector machine(SVM)was trained.The optimal parameter combination of the SVM model was found by the grid search method,and a multi-class SVM model based on 1-v-1 method was constructed.Finally,the trained multi-class SVM was used to predict 6 kinds of situation level prediction samples.The results of simulation examples show that the average prediction accuracy of 6 situation levels is above 95%,and the perception accuracy of 4 situation levels is above 96%.In addition,the insulation maintenance decision scheme under different situation levels is able to be given when no fault occurs or the insulation fault is in the early stage,which can meet the needs of power distribution and inspection for accurately sensing the insulation fault situation.The correctness and effectiveness of this method are verified.
基金supported by the National Natural Science Foundation of China(62073036,62076031)Beijing Natural Science Foundation(4242049).
文摘In challenging situations,such as low illumination,rain,and background clutter,the stability of the thermal infrared(TIR)spectrum can help red,green,blue(RGB)visible spectrum to improve tracking performance.However,the high-level image information and the modality-specific features have not been sufficiently studied.The proposed correlation filter uses the fused saliency content map to improve filter training and extracts different features of modalities.The fused content map is intro-duced into the spatial regularization term of correlation filter to highlight the training samples in the content region.Furthermore,the fused content map can avoid the incompleteness of the con-tent region caused by challenging situations.Additionally,differ-ent features are extracted according to the modality characteris-tics and are fused by the designed response-level fusion stra-tegy.The alternating direction method of multipliers(ADMM)algorithm is used to solve the tracker training efficiently.Experi-ments on the large-scale benchmark datasets show the effec-tiveness of the proposed tracker compared to the state-of-the-art traditional trackers and the deep learning based trackers.
文摘This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chinese character recognition is pointed out,including its numerous categories,complex structure,and the problem of similar characters,especially the variability of handwritten Chinese characters.Subsequently,recognition methods based on feature optimization,model optimization,and fusion techniques are highlighted.The fusion studies between feature optimization and model improvement are further explored,and these studies further enhance the recognition effect through complementary advantages.Finally,the article summarizes the current challenges of Chinese character recognition technology,including accuracy improvement,model complexity,and real-time problems,and looks forward to future research directions.
基金This work was supported,in part,by the National Nature Science Foundation of China under Grant Numbers 61502240,61502096,61304205,61773219in part,by the Natural Science Foundation of Jiangsu Province under grant numbers BK20201136,BK20191401+1 种基金in part,by the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant Numbers SJCX21_0363in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fund.
文摘Vehicle re-identification(ReID)aims to retrieve the target vehicle in an extensive image gallery through its appearances from various views in the cross-camera scenario.It has gradually become a core technology of intelligent transportation system.Most existing vehicle re-identification models adopt the joint learning of global and local features.However,they directly use the extracted global features,resulting in insufficient feature expression.Moreover,local features are primarily obtained through advanced annotation and complex attention mechanisms,which require additional costs.To solve this issue,a multi-feature learning model with enhanced local attention for vehicle re-identification(MFELA)is proposed in this paper.The model consists of global and local branches.The global branch utilizes both middle and highlevel semantic features of ResNet50 to enhance the global representation capability.In addition,multi-scale pooling operations are used to obtain multiscale information.While the local branch utilizes the proposed Region Batch Dropblock(RBD),which encourages the model to learn discriminative features for different local regions and simultaneously drops corresponding same areas randomly in a batch during training to enhance the attention to local regions.Then features from both branches are combined to provide a more comprehensive and distinctive feature representation.Extensive experiments on VeRi-776 and VehicleID datasets prove that our method has excellent performance.
基金Supported by the National Natural Science Foundation of China (50706006) and the Science and Technology Development Program of Jilin Province (20040513).
文摘The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification.
基金The paper is supported by the Research Foundation for OutstandingYoung Teachers , China University of Geosciences ( Wuhan) ( No .CUGQNL0616) Research Foundationfor State Key Laboratory of Geo-logical Processes and Mineral Resources ( No . MGMR2002-02)Hubei Provincial Depart ment of Education (B) .
文摘Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noticeable. Urban administrators and decision-makers seek modern methods and technology to provide information support for urban growth. Recently, with the fast development of high-resolution sensor technology, more relevant data can be obtained, which is an advantage in studying the sustainable development of urban land-use. However, these data are only information sources and are a mixture of "information" and "noise". Processing, analysis and information extraction from remote sensing data is necessary to provide useful information. This paper extracts urban land-use information from a high-resolution image by using the multi-feature information of the image objects, and adopts an object-oriented image analysis approach and multi-scale image segmentation technology. A classification and extraction model is set up based on the multi-features of the image objects, in order to contribute to information for reasonable planning and effective management. This new image analysis approach offers a satisfactory solution for extracting information quickly and efficiently.
文摘Massive open online courses(MOOC)have recently gained worldwide attention in the field of education.The manner of MOOC provides a new option for learning various kinds of knowledge.A mass of data miming algorithms have been proposed to analyze the learner’s characteristics and classify the learners into different groups.However,most current algorithms mainly focus on the final grade of the learners,which may result in an improper classification.To overcome the shortages of the existing algorithms,a novel multi-feature weighting based K-means(MFWK-means)algorithm is proposed in this paper.Correlations between the widely used feature grade and other features are first investigated,and then the learners are classified based on their grades and weighted features with the proposed MFWK-means algorithm.Experimental results with the Canvas Network Person-Course(CNPC)dataset demonstrate the effectiveness of our method.Moreover,a comparison between the new MFWK-means and the traditional K-means clustering algorithm is implemented to show the superiority of the proposed method.
基金the National Natural Science Foundation of China-Civil Aviation joint fund(U1933108)the Fundamental Research Funds for the Central Universities of China(3122019051).
文摘As a new type of Denial of Service(DoS)attacks,the Low-rate Denial of Service(LDoS)attacks make the traditional method of detecting Distributed Denial of Service Attack(DDoS)attacks useless due to the characteristics of a low average rate and concealment.With features extracted from the network traffic,a new detection approach based on multi-feature fusion is proposed to solve the problem in this paper.An attack feature set containing the Acknowledge character(ACK)sequence number,the packet size,and the queue length is used to classify normal and LDoS attack traffics.Each feature is digitalized and preprocessed to fit the input of the K-Nearest Neighbor(KNN)classifier separately,and to obtain the decision contour matrix.Then a posteriori probability in the matrix is fused,and the fusion decision index D is used as the basis of detecting the LDoS attacks.Experiments proved that the detection rate of the multi-feature fusion algorithm is higher than those of the single-based detection method and other algorithms.
基金supported by the National Natural Science Foundation of China(grants no.32171797 and 31800549)。
文摘Smoke detection is the most commonly used method in early warning of fire and is widely used in forest detection.Most existing smoke detection methods contain empty spaces and obstacles which interfere with detection and extract false smoke roots.This study developed a new smoke roots search algorithm based on a multi-feature fusion dynamic extraction strategy.This determines smoke origin candidate points and region based on a multi-frame discrete confidence level.The results show that the new method provides a more complete smoke contour with no background interference,compared to the results using existing methods.Unlike video-based methods that rely on continuous frames,an adaptive threshold method was developed to build the judgment image set composed of non-consecutive frames.The smoke roots origin search algorithm increased the detection rate and significantly reduced false detection rate compared to existing methods.
基金supported by the Postgraduate Scientific Research Innovation Project of Hunan Province under Grant QL20210212the Scientific Innovation Fund for Postgraduates of Central South University of Forestry and Technology under Grant CX202102043.
文摘In the smart logistics industry,unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by humans.Therefore,they play a critical role in smart warehousing,and semantics segmentation is an effective method to realize the intelligent identification of logistics pallets.However,most current recognition algorithms are ineffective due to the diverse types of pallets,their complex shapes,frequent blockades in production environments,and changing lighting conditions.This paper proposes a novel multi-feature fusion-guided multiscale bidirectional attention(MFMBA)neural network for logistics pallet segmentation.To better predict the foreground category(the pallet)and the background category(the cargo)of a pallet image,our approach extracts three types of features(grayscale,texture,and Hue,Saturation,Value features)and fuses them.The multiscale architecture deals with the problem that the size and shape of the pallet may appear different in the image in the actual,complex environment,which usually makes feature extraction difficult.Our study proposes a multiscale architecture that can extract additional semantic features.Also,since a traditional attention mechanism only assigns attention rights from a single direction,we designed a bidirectional attention mechanism that assigns cross-attention weights to each feature from two directions,horizontally and vertically,significantly improving segmentation.Finally,comparative experimental results show that the precision of the proposed algorithm is 0.53%–8.77%better than that of other methods we compared.
基金Sponsored by Natural Science Foundation of Heilongjiang Province of China(Grant No.QC2001C060)the Science and Technology Research Projectsin Office of Education of Heilongjiang province(Grant No.11531307)
文摘In light of degradation of particle filtering and robust weakness in the utilization of single feature tracking,this paper presents a kernel particle filtering tracking method based on multi-feature integration.In this paper,a new weight upgrading method is given out during kernel particle filtering at first,and then robust tracking is realized by integrating color and texture features under the framework of kernel particle filtering.Space histogram and integral histogram is adopted to calculate color and texture features respectively.These two calculation methods effectively overcome their own defectiveness,and meanwhile,improve the real timing for particle filtering.This algorithm has also improved sampling effectiveness,resolved redundant calculation for particle filtering and degradation of particles.Finally,the experiment for target tracking is realized by using the method under complicated background and shelter.Experiment results show that the method can reliably and accurately track target and deal with target sheltering situation properly.
基金supported by the National Natural Science Foundation of China(61304097)the Projects of Major International(Regional)Joint Research Program NSFC(61120106010)the Foundation for Innovation Research Groups of the National National Natural Science Foundation of China(61321002)
文摘A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a complicated environment.In this approach,the Harris algorithm is introduced to detect the corner points of the object,and the corner matching algorithm based on singular value decomposition is used to compute the firstorder weights and make particles centralize in the high likelihood area.Then the local binary pattern(LBP) operator is used to build the observation model of the target based on the color and texture features,by which the second-order weights of particles and the accurate location of the target can be obtained.Moreover,a backstepping controller is proposed to complete the whole tracking system.Simulations and experiments are carried out,and the results show that the HPF algorithm with the backstepping controller achieves stable and accurate tracking with good robustness in complex environments.
基金Supported by Natural Science Foundation of Shandong Province(ZR2021MF096)Shandong Agricultural Machinery Equipment R&D Innovation Planning Project (2018YF009)。
文摘In order to achieve accurate classification of apple, a multi-feature fusion classification method based on image processing and improved SVM was proposed in this paper. The method was mainly divided into four parts, including image preprocessing, background segmentation, feature extraction and multi-feature fusion classification with improved SVM. Firstly, the homomorphic filtering algorithm was used to improve the quality of apple images. Secondly, the images were converted to HLS space. The background was segmented by the QTSU algorithm. Morphological processing was employed to remove fruit stem and surface defect areas. And apple contours were extracted with the Canny algorithm. Then, apples’ size, shape, color, defect and texture features were extracted. Finally, the cross verification method was used to optimize the penalty factor in SVM. A multi-feature fusion classification model was established. And the weight of each index was calculated by Fisher. In this study, 146 apple samples were selected for training and 61 apple samples were selected for testing. The test results showed that the accuracy of the classification method proposed in this paper was 96.72%, which can provide a reference for apple automatic classification.
文摘Medical image fusion plays an important role in clinical applications such as image-guided surgery, image-guided radiotherapy, noninvasive diagnosis, and treatment planning. In order to retain useful information and get more reliable results, a novel medical image fusion algorithm based on pulse coupled neural networks (PCNN) and multi-feature fuzzy clustering is proposed, which makes use of the multi-feature of image and combines the advantages of the local entropy and variance of local entropy based PCNN. The results of experiments indicate that the proposed image fusion method can better preserve the image details and robustness and significantly improve the image visual effect than the other fusion methods with less information distortion.
文摘Single-feature methods are unable to effectively track a target in an underground coal mine video due to the high background noise, low and uneven illumination, and drastic light fluctuation in the video. In this study, we propose an underground coal mine personnel target tracking method using multi-feature joint sparse representation. First, with a particle filter framework, the global and local multiple features of the target template and candidate particles are extracted. Second, each of the candidate particles is sparsely represented by a dictionary template, and reconstruction is achieved after solving the sparse coefficient. Last, the particle with the lowest reconstruction error is deemed the tracking result. To validate the effectiveness of the proposed algorithm, we compare the proposed method with three commonly employed tracking algorithms. The results show that the proposed method is able to reliably track the target in various scenarios, such as occlusion and illumination change, which generates better tracking results and validates the feasibility and effectiveness of the proposed method.
文摘In order to solve the shortcomings of current fatigue detection methods such as low accuracy or poor real-time performance,a fatigue detection method based on multi-feature fusion is proposed.Firstly,the HOG face detection algorithm and KCF target tracking algorithm are integrated and deformable convolutional neural network is introduced to identify the state of extracted eyes and mouth,fast track the detected faces and extract continuous and stable target faces for more efficient extraction.Then the head pose algorithm is introduced to detect the driver’s head in real time and obtain the driver’s head state information.Finally,a multi-feature fusion fatigue detection method is proposed based on the state of the eyes,mouth and head.According to the experimental results,the proposed method can detect the driver’s fatigue state in real time with high accuracy and good robustness compared with the current fatigue detection algorithms.