期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多信使时代下中子星状态方程的贝叶斯模型选择 被引量:1
1
作者 芮星宇 缪志强 夏铖君 《原子能科学技术》 EI CAS CSCD 北大核心 2023年第4期784-790,共7页
当前中子星的观测为其状态方程提供了严格的约束条件。基于双中子星并合事件GW170817对潮汐形变的约束,以及NICER合作组对PSR J0030+0451和PSR J0740+6620的质量和半径的测量,本文对CompOSE数据库中基于相对论平均场模型统一得到的16组... 当前中子星的观测为其状态方程提供了严格的约束条件。基于双中子星并合事件GW170817对潮汐形变的约束,以及NICER合作组对PSR J0030+0451和PSR J0740+6620的质量和半径的测量,本文对CompOSE数据库中基于相对论平均场模型统一得到的16组中子星状态方程开展了贝叶斯模型选择。发现最理想的物态模型是DD2,它预测1.4倍太阳质量中子星的半径为13.19 km,潮汐形变为687。在此基础之上,进一步筛选出最符合观测的物态模型依次为DD2、TW99、DD-LZ1、DD-ME2、TM1e、FSU2H、DDME-X、PKDD、FSU2R和MTVTC。 展开更多
关键词 核物质状态方程 贝叶斯模型选择 多信使时代
在线阅读 下载PDF
An Adaptive Local Grid Nesting-based Genetic Algorithm for Multi-earth Observation Satellites' Area Target Observation
2
作者 Ligang Xing Wei Xia +2 位作者 Xiaoxuan Hu Waiming Zhu Yi Wu 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2024年第2期232-258,共27页
The Scheduling of the Multi-EOSs Area Target Observation(SMEATO)is an EOS resource schedul-ing problem highly coupled with computational geometry.The advances in EOS technology and the ex-pansion of wide-area remote s... The Scheduling of the Multi-EOSs Area Target Observation(SMEATO)is an EOS resource schedul-ing problem highly coupled with computational geometry.The advances in EOS technology and the ex-pansion of wide-area remote sensing applications have increased the practical significance of SMEATO.In this paper,an adaptive local grid nesting-based genetic algorithm(ALGN-GA)is proposed for developing SMEATO solutions.First,a local grid nesting(LGN)strategy is designed to discretize the target area into parts,so as to avoid the explosive growth of calculations.A genetic algorithm(GA)framework is then used to share reserve information for the population during iterative evolution,which can generate high-quality solutions with low computational costs.On this basis,an adaptive technique is introduced to determine whether a local region requires nesting and whether the grid scale is sufficient.The effectiveness of the proposed model is assessed experimentally with nine randomly generated tests at different scales.The results show that the ALGN-GA offers advantages over several conventional algorithms in 88.9%of instances,especially in large-scale instances.These fully demonstrate the high efficiency and stability of the ALGN-GA. 展开更多
关键词 multi-eoss scheduling area target observation adaptive genetic algorithm local grid nesting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部