Distinguishing close chirp-rates of different linear frequency modulation (LFM) signals under concentrated and complicated signal environment was studied. Firstly, detection and parameter estimation of multi-compone...Distinguishing close chirp-rates of different linear frequency modulation (LFM) signals under concentrated and complicated signal environment was studied. Firstly, detection and parameter estimation of multi-component LFM signal were used by discrete fast fractional Fourier transform (FrFT). Then the expression of chirp-rate resolution in fractional Fourier domain (FrFD) was deduced from discrete normalize time-frequency distribution, when multi-component LFM signal had only one center frequency. Furthermore, the detail influence of the sampling time, sampling frequency and chirp-rate upon the resolution was analyzed by partial differential equation. Simulation results and analysis indicate that increasing the sampling time can enhance the resolution, but the influence of the sampling frequency can he omitted. What's more, in multi-component LFM signal, the chirp-rate resolution of FrFT is no less than a minimal value, and it mainly dependent on the biggest value of chirp-rates, with which it has an approximately positive exponential relationship.展开更多
A classical time-varying signal, the multi-component Chirp signal has been widely used and the ability to estimate its instantaneous frequency (IF) is very useful. But in noisy environments, it is hard to estimate t...A classical time-varying signal, the multi-component Chirp signal has been widely used and the ability to estimate its instantaneous frequency (IF) is very useful. But in noisy environments, it is hard to estimate the 1F of a multi-component Chirp signal accurately. Wigner distribution maxima (WDM) are usually utilized for this estimation. But in practice, estimation bias increases when some points deviate from the true IF in high noise environments. This paper presents a new method of multi-component Chirp signal 1F estimation named Wigner Viterbi fit (WVF), based on Wigner-Ville distribution (WVD) and the Viterbi algorithm. First, we transform the WVD of the Chirp signal into digital image, and apply the Viterbi algorithm to separate the components and estimate their IF. At last, we establish a linear model to fit the estimation results. Theoretical analysis and simulation results prove that this new method has high precision and better performance than WDM in high noise environments, and better suppression of interference and the edge effect. Compared with WDM, WVF can reduce the mean square error (MSE) by 50% when the signal to noise ration (SNR) is in the range of-15dB to -11dB. WVF is an effective and promising 1F estimation method.展开更多
A novel algorithm based on Radon-Ambiguity Transform (RAT) and Adaptive Signal Decomposition (ASD) is presented for the detection and parameter estimation of multicompo-nent Linear Frequency Modulated (LFM) signals. T...A novel algorithm based on Radon-Ambiguity Transform (RAT) and Adaptive Signal Decomposition (ASD) is presented for the detection and parameter estimation of multicompo-nent Linear Frequency Modulated (LFM) signals. The key problem lies in the chirplet estimation. Genetic algorithm is employed to search for the optimization parameter of chirplet. High estimation accuracy can be obtained even at low Signal-to-Noisc Ratio(SNR). Finally simulation results are provided to demonstrate the performance of the proposed algorithm.展开更多
This paper proposes a linear frequency modulation (LFM signal) and biphase coding (BC signal) mixed modulation signal called LFM-BC signal. LFM-BC signal has both LFM signal and BC signal two kinds of traditional sign...This paper proposes a linear frequency modulation (LFM signal) and biphase coding (BC signal) mixed modulation signal called LFM-BC signal. LFM-BC signal has both LFM signal and BC signal two kinds of traditional signal advantages but makes up for their shortcomings. In this paper, LFM-BC signal, LFM and BC signals are studied and compared from the time characteristic and frequency characteristic of the signal, fuzzy function, pulse compression and Doppler characteristics and low probability of interception (LPI) characteristics.展开更多
In this paper,parameter estimation of linear frequency modulation(LFM)signals containing additive white Gaussian noise is studied.Because the center frequency estimation of an LFM signal is affected by the error propa...In this paper,parameter estimation of linear frequency modulation(LFM)signals containing additive white Gaussian noise is studied.Because the center frequency estimation of an LFM signal is affected by the error propagation effect,resulting in a higher signal to noise ratio(SNR)threshold,a parameter estimation method for LFM signals based on time reversal is proposed.The proposed method avoids SNR loss in the process of estimating the frequency,thus reducing the SNR threshold.The simulation results show that the threshold is reduced by 5 dB compared with the discrete polynomial transform(DPT)method,and the root-mean-square error(RMSE)of the proposed estimator is close to the Cramer-Rao lower bound(CRLB).展开更多
This paper investigates the generalized Parseval’s theorem of fractional Fourier transform (FRFT) for concentrated data. Also, in the framework of multiple FRFT domains, Parseval’s theorem reduces to an inequality w...This paper investigates the generalized Parseval’s theorem of fractional Fourier transform (FRFT) for concentrated data. Also, in the framework of multiple FRFT domains, Parseval’s theorem reduces to an inequality with lower and upper bounds associated with FRFT parameters, named as generalized Parseval’s theorem by us. These results theoretically provide potential valuable applications in filtering, and examples of filtering for LFM signals in FRFT domains are demonstrated to support the derived conclusions.展开更多
Union resolution performance of FM (frequency modulation) parameter based on Radon-Wigner transform (RWT) for multi-component LFM (linear frequency modulation) signals is studied. Firstly, the RWT output expression is...Union resolution performance of FM (frequency modulation) parameter based on Radon-Wigner transform (RWT) for multi-component LFM (linear frequency modulation) signals is studied. Firstly, the RWT output expression is offered, and the independent resolution performances of initial frequency and chirp rate are analyzed. Secondly, the RWT output approximate analytic expression is given based on quadratic Taylor's series expansion, and the contour property is analyzed. Contour can be used to picture the union resolution performance of FM parameter, and 2-D resolution performance is studied based on approximate analytic expression, and the union resolution expression of FM parameter and resolution ellipse are offered. The simulation results validate the union resolution expression, and show that the union resolution can improve the resolution performance of multi-component LFM signals, contrasted with absolute resolution performance. The paper can help the study of LFM parameter estimation and resolution performance.展开更多
Synthesis of ultra-wideband (UWB) linear frequency modulation radar signals is a very important technology for microwave imaging, target identification and detection of low radar-cross-section (RCS) targets. A new...Synthesis of ultra-wideband (UWB) linear frequency modulation radar signals is a very important technology for microwave imaging, target identification and detection of low radar-cross-section (RCS) targets. A new method of UWB radar signals generation with two-channel signal generator is presented. The realization structure is given; the principle and errors of signal synthesis are analyzed. At the same time, an automatic .adjustment measure of signal phase is proposed because of phase discontinuity of waveform in this method. The simulation experiment and analysis results indicate that radar signals with large instantaneous bandwidth can be generated by means of this method on the condition that the high-speed digital devices are limited.展开更多
This paper presents a new method of High Resolution Range (HRR) profile formation based on Linear Frequency Modulation (LFM) signal fusion of multiple radars with multiple frequency bands. The principle of the multipl...This paper presents a new method of High Resolution Range (HRR) profile formation based on Linear Frequency Modulation (LFM) signal fusion of multiple radars with multiple frequency bands. The principle of the multiple radars signal fusion improving the range resolution is analyzed. With the analysis of return signals received by two radars,it is derived that the phase difference between the echoes varies almost linearly with respect to the frequency if the distance between two radars is neg-ligible compared with the radar observation distance. To compensate the phase difference,an en-tropy-minimization principle based compensation algorithm is proposed. During the fusion process,the B-splines interpolation method is applied to resample the signals for Fourier transform imaging. The theoretical analysis and simulations results show the proposed method can effectively increase signal bandwidth and provide a high resolution range profile.展开更多
The current parameter estimation algorithms of chirp rate have high complexity and long calculation time,meantime they are difficult to achieve high estimation rate. Therefore,in order to overcome these problems,in th...The current parameter estimation algorithms of chirp rate have high complexity and long calculation time,meantime they are difficult to achieve high estimation rate. Therefore,in order to overcome these problems,in this paper,a new parameter estimation algorithm based on Holder coefficient is presented. Firstly,this algorithm calculates the correlation curve of the Holder coefficient value under different chirp rate. Secondly,this algorithm calculates the correlation curve under different SNR. Finally,the fitting curve expression can be got by the correlation curve,and then the estimation value of chirp rate can also be got. The theory analysis and simulation results show that this algorithm is simple and easy to realize,and has much better application value for real-time estimation.展开更多
The high-accuracy, wide-range frequency estimation algorithm for multi-component signals presented in this paper, is based on a numerical differentiation and central Lagrange interpolation. With the sample sequences, ...The high-accuracy, wide-range frequency estimation algorithm for multi-component signals presented in this paper, is based on a numerical differentiation and central Lagrange interpolation. With the sample sequences, which need at most 7 points and are sampled at a sample frequency of 25600 Hz, and computation sequences, using employed a formulation proposed in this paper, the frequencies of each component of the signal are all estimated at an accuracy of 0.001% over 1 Hz to 800 kHz with the amplitudes of each component of the signal varying from 1 V to 200 V and the phase angle of each component of the signal varying from 0° to 360°. The proposed algorithm needs at most a half cycle for the frequencies of each component of the signal under noisy or non-noisy conditions. A testing example is given to illustrate the proposed algorithm in Matlab environment.展开更多
A method to evaluate the influence of the laser linewidth on the linearly frequency-modulated(LFM)signals generated by heterodyning two free-running laser diodes(LDs)is proposed.The Pearson correlation coefficient bet...A method to evaluate the influence of the laser linewidth on the linearly frequency-modulated(LFM)signals generated by heterodyning two free-running laser diodes(LDs)is proposed.The Pearson correlation coefficient between the instantaneous frequency of the generated LFM signal and that of an ideal LFM signal is introduced to quantify the quality of the generated LFM signal.The closed-form solution of the correlation coefficient is given,which shows that the correlation coefficient is determined by the ratio of the LFM signal bandwidth to the square root of the total linewidth of the two LDs when the observation interval is fixed.Simulation results are also given,which proves the correctness of the theoretical results.展开更多
基金Sponsored by the National Natural Science Foundation of China (60232010 ,60572094)the National Science Foundation of China for Distin-guished Young Scholars (60625104)
文摘Distinguishing close chirp-rates of different linear frequency modulation (LFM) signals under concentrated and complicated signal environment was studied. Firstly, detection and parameter estimation of multi-component LFM signal were used by discrete fast fractional Fourier transform (FrFT). Then the expression of chirp-rate resolution in fractional Fourier domain (FrFD) was deduced from discrete normalize time-frequency distribution, when multi-component LFM signal had only one center frequency. Furthermore, the detail influence of the sampling time, sampling frequency and chirp-rate upon the resolution was analyzed by partial differential equation. Simulation results and analysis indicate that increasing the sampling time can enhance the resolution, but the influence of the sampling frequency can he omitted. What's more, in multi-component LFM signal, the chirp-rate resolution of FrFT is no less than a minimal value, and it mainly dependent on the biggest value of chirp-rates, with which it has an approximately positive exponential relationship.
基金Supported by the National Natural Science Foundation of China under Grant No. 60572098.
文摘A classical time-varying signal, the multi-component Chirp signal has been widely used and the ability to estimate its instantaneous frequency (IF) is very useful. But in noisy environments, it is hard to estimate the 1F of a multi-component Chirp signal accurately. Wigner distribution maxima (WDM) are usually utilized for this estimation. But in practice, estimation bias increases when some points deviate from the true IF in high noise environments. This paper presents a new method of multi-component Chirp signal 1F estimation named Wigner Viterbi fit (WVF), based on Wigner-Ville distribution (WVD) and the Viterbi algorithm. First, we transform the WVD of the Chirp signal into digital image, and apply the Viterbi algorithm to separate the components and estimate their IF. At last, we establish a linear model to fit the estimation results. Theoretical analysis and simulation results prove that this new method has high precision and better performance than WDM in high noise environments, and better suppression of interference and the edge effect. Compared with WDM, WVF can reduce the mean square error (MSE) by 50% when the signal to noise ration (SNR) is in the range of-15dB to -11dB. WVF is an effective and promising 1F estimation method.
文摘A novel algorithm based on Radon-Ambiguity Transform (RAT) and Adaptive Signal Decomposition (ASD) is presented for the detection and parameter estimation of multicompo-nent Linear Frequency Modulated (LFM) signals. The key problem lies in the chirplet estimation. Genetic algorithm is employed to search for the optimization parameter of chirplet. High estimation accuracy can be obtained even at low Signal-to-Noisc Ratio(SNR). Finally simulation results are provided to demonstrate the performance of the proposed algorithm.
文摘This paper proposes a linear frequency modulation (LFM signal) and biphase coding (BC signal) mixed modulation signal called LFM-BC signal. LFM-BC signal has both LFM signal and BC signal two kinds of traditional signal advantages but makes up for their shortcomings. In this paper, LFM-BC signal, LFM and BC signals are studied and compared from the time characteristic and frequency characteristic of the signal, fuzzy function, pulse compression and Doppler characteristics and low probability of interception (LPI) characteristics.
基金supported by the Regional Joint Fund for Basic and Applied Basic Research of Guangdong Province(2019B1515120009)the Defense Basic Scientific Research Program(61424132005).
文摘In this paper,parameter estimation of linear frequency modulation(LFM)signals containing additive white Gaussian noise is studied.Because the center frequency estimation of an LFM signal is affected by the error propagation effect,resulting in a higher signal to noise ratio(SNR)threshold,a parameter estimation method for LFM signals based on time reversal is proposed.The proposed method avoids SNR loss in the process of estimating the frequency,thus reducing the SNR threshold.The simulation results show that the threshold is reduced by 5 dB compared with the discrete polynomial transform(DPT)method,and the root-mean-square error(RMSE)of the proposed estimator is close to the Cramer-Rao lower bound(CRLB).
文摘This paper investigates the generalized Parseval’s theorem of fractional Fourier transform (FRFT) for concentrated data. Also, in the framework of multiple FRFT domains, Parseval’s theorem reduces to an inequality with lower and upper bounds associated with FRFT parameters, named as generalized Parseval’s theorem by us. These results theoretically provide potential valuable applications in filtering, and examples of filtering for LFM signals in FRFT domains are demonstrated to support the derived conclusions.
文摘Union resolution performance of FM (frequency modulation) parameter based on Radon-Wigner transform (RWT) for multi-component LFM (linear frequency modulation) signals is studied. Firstly, the RWT output expression is offered, and the independent resolution performances of initial frequency and chirp rate are analyzed. Secondly, the RWT output approximate analytic expression is given based on quadratic Taylor's series expansion, and the contour property is analyzed. Contour can be used to picture the union resolution performance of FM parameter, and 2-D resolution performance is studied based on approximate analytic expression, and the union resolution expression of FM parameter and resolution ellipse are offered. The simulation results validate the union resolution expression, and show that the union resolution can improve the resolution performance of multi-component LFM signals, contrasted with absolute resolution performance. The paper can help the study of LFM parameter estimation and resolution performance.
文摘Synthesis of ultra-wideband (UWB) linear frequency modulation radar signals is a very important technology for microwave imaging, target identification and detection of low radar-cross-section (RCS) targets. A new method of UWB radar signals generation with two-channel signal generator is presented. The realization structure is given; the principle and errors of signal synthesis are analyzed. At the same time, an automatic .adjustment measure of signal phase is proposed because of phase discontinuity of waveform in this method. The simulation experiment and analysis results indicate that radar signals with large instantaneous bandwidth can be generated by means of this method on the condition that the high-speed digital devices are limited.
文摘This paper presents a new method of High Resolution Range (HRR) profile formation based on Linear Frequency Modulation (LFM) signal fusion of multiple radars with multiple frequency bands. The principle of the multiple radars signal fusion improving the range resolution is analyzed. With the analysis of return signals received by two radars,it is derived that the phase difference between the echoes varies almost linearly with respect to the frequency if the distance between two radars is neg-ligible compared with the radar observation distance. To compensate the phase difference,an en-tropy-minimization principle based compensation algorithm is proposed. During the fusion process,the B-splines interpolation method is applied to resample the signals for Fourier transform imaging. The theoretical analysis and simulations results show the proposed method can effectively increase signal bandwidth and provide a high resolution range profile.
基金Sponsored by the Nation Nature Science Foundation of China(Grant No.61201237)the Nature Science Foundation of Heilongjiang Province of China(Grant No.QC2012C069)the Fundamental Research Funds for the Central Universities(Grant No.HEUCFZ1129,HEUCF130810,HEUCF130817)
文摘The current parameter estimation algorithms of chirp rate have high complexity and long calculation time,meantime they are difficult to achieve high estimation rate. Therefore,in order to overcome these problems,in this paper,a new parameter estimation algorithm based on Holder coefficient is presented. Firstly,this algorithm calculates the correlation curve of the Holder coefficient value under different chirp rate. Secondly,this algorithm calculates the correlation curve under different SNR. Finally,the fitting curve expression can be got by the correlation curve,and then the estimation value of chirp rate can also be got. The theory analysis and simulation results show that this algorithm is simple and easy to realize,and has much better application value for real-time estimation.
文摘The high-accuracy, wide-range frequency estimation algorithm for multi-component signals presented in this paper, is based on a numerical differentiation and central Lagrange interpolation. With the sample sequences, which need at most 7 points and are sampled at a sample frequency of 25600 Hz, and computation sequences, using employed a formulation proposed in this paper, the frequencies of each component of the signal are all estimated at an accuracy of 0.001% over 1 Hz to 800 kHz with the amplitudes of each component of the signal varying from 1 V to 200 V and the phase angle of each component of the signal varying from 0° to 360°. The proposed algorithm needs at most a half cycle for the frequencies of each component of the signal under noisy or non-noisy conditions. A testing example is given to illustrate the proposed algorithm in Matlab environment.
基金supported by the National Key R&D Program of China(No.2017YFE0121500)the National Natural Science Foundation of China(Nos.61971193 and 61601297)+1 种基金the Open Fund of State Key Laboratory of Advanced Optical Communication Systems and Networks,Peking University,China(No.2020GZKF005)the Fundamental Research Funds for the Central Universities。
文摘A method to evaluate the influence of the laser linewidth on the linearly frequency-modulated(LFM)signals generated by heterodyning two free-running laser diodes(LDs)is proposed.The Pearson correlation coefficient between the instantaneous frequency of the generated LFM signal and that of an ideal LFM signal is introduced to quantify the quality of the generated LFM signal.The closed-form solution of the correlation coefficient is given,which shows that the correlation coefficient is determined by the ratio of the LFM signal bandwidth to the square root of the total linewidth of the two LDs when the observation interval is fixed.Simulation results are also given,which proves the correctness of the theoretical results.