Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that e...Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that each material object, including living creatures, is concomitant with a fraction of the charged complex masses of DM and DE in proportion to its mass. This perception provides new insights into the physics of nature and its constituents from subatomic to cosmic scales. This complex nature of DM and DE explains our inability to see DM or harvest DE for the last several decades. The positive complex DM is responsible for preserving the integrity of galaxies and all material systems. The negative complex charged DE induces a positive repelling force with the positively charged DM and contributes to the universe’s expansion. Both fields are Lorentz invariants in all directions and entangle the whole universe. The paper uses CFT to investigate zero-point energy, particle-wave duality, relativistic mass increase, and entanglement phenomenon and unifies Coulomb’s and Newton’s laws. The paper also verifies the existence of tachyons and explains the spooky action of quantum mechanics at a distance. The paper encourages further research into how CFT might resolve several physical mysteries in physics.展开更多
Understanding the nature of dark matter remains one of the most enigmatic and unresolved issues in astrophysics.Certain theoretical models address this by introducing a novel component to account for dark matter.In th...Understanding the nature of dark matter remains one of the most enigmatic and unresolved issues in astrophysics.Certain theoretical models address this by introducing a novel component to account for dark matter.In this study,we propose a new scalar field derived from string T-duality,where its associated density represents the density of the surrounding matter field,in the spherically symmetric and static medium.Our exploration reveals that this scalar field behaves as the baryonic fluid,characterized by a positive effective state equation,ωe>0.Furthermore,a detailed investigation demonstrates that this model satisfies all energy conditions beyond the event horizon of a central black hole.Considering the light deflection and radar echo delay suggests that in this scalar field,the dark matter grows up in the halo and surrounding regions of galaxy systems.This indicates that dark matter accumulates as an effective field outside the observable regions of galaxies.展开更多
In this paper we consider a static spherically symmetric black hole(BH)embedded in a Dehnen-(1,4,0)-type dark matter(DM)halo in the presence of a cloud string.We examine and present data on how the core density of the...In this paper we consider a static spherically symmetric black hole(BH)embedded in a Dehnen-(1,4,0)-type dark matter(DM)halo in the presence of a cloud string.We examine and present data on how the core density of the DM halo parameter and the cloud string parameter affect BH attributes such as quasinormal modes(QNMs)and shadow cast.To do this,we first look into the effective potential of perturbation equations for three types of perturbation fields with different spins:massless scalar field,electromagnetic field and gravitational field.Then,using the sixth-order Wentzel-Kramers-Brillouin approximation,we examine QNMs of the BH disturbed by the three fields and derive quasinormal frequencies.The changes in QNM versus the core density parameter and the cloud string parameter for three disturbances are explored.We also investigate how the core density and the cloud string parameter affect the photon sphere and shadow radius.Interestingly,the study shows that the influence of Dehnen-type DM and cloud strings increases both the photon sphere and the shadow radius.Finally,we employ observational data from Sgr A^(*) and M87^(*) to set limitations on the BH parameters.展开更多
While cold dark matter is widely supported by a range of cosmological observations,it encounters several difficulties at smaller scales.These issues have prompted the investigation of various alternative dark matter c...While cold dark matter is widely supported by a range of cosmological observations,it encounters several difficulties at smaller scales.These issues have prompted the investigation of various alternative dark matter candidates,leaving the question“What is dark matter?”still open.In this work,we propose a new cosmological model that considers dark matter as a barotropic fluid with a constant equation of state parameter and interprets dark energy as the phenomenological emergent dark energy rather than a cosmological constant.We then place constraints on our new model using the Planck 2018 Cosmic Microwave Background(CMB)anisotropy measurements,Baryon Acoustic Oscillation measurements from the Dark Energy Spectroscopic Instrument(DESI),the Pantheon Plus(PP)compilation of Type Ia supernovae,and the Redshift Space Distortions(RSD)data from Gold 2018.The results show statistically significant signal for positive dark matter equation of state and square of sound speed w_(dm)=c_(s,dm)^(2)(10^(7) w_(dm)=4.0_(-2.3)^(+2.5)at the 95%confidence level)for the data combination CMB+DESI+PP+RSD.However,Bayesian evidence indicates that this data combination favors theΛCDM model with very strong evidence.展开更多
The axion,a leading dark matter(DM)candidate,can convert to photons in neutron star(NS)magnetospheres via the Primakoff effect,producing narrow-band radio emission that may be detected with high-sensitivity radio tele...The axion,a leading dark matter(DM)candidate,can convert to photons in neutron star(NS)magnetospheres via the Primakoff effect,producing narrow-band radio emission that may be detected with high-sensitivity radio telescopes.Previous studies searched for axion DM-induced signals from the isolated NS J0806.4-4123 using observations of the Meer KAT UHF band(544–1088 MHz),but excluded the 1051–1088 MHz subband to mitigate potential sideband contamination.To probe this unexplored parameter space,we reprocessed the 1000–1088 MHz subband data using optimized radio frequency interference(RFI)flagging and meticulous sideband calibration.The flux stability of the calibrators and the consistency with Meer KAT’s system equivalent flux density confirmed the reliability of the data within the 1000–1080 MHz range,while the 1080–1088 MHz subband was omitted due to flux anomalies.No significant signals exceeding 5σsignificance were detected within the axion mass range of 4.136–4.467μe V(1000–1080 MHz),including the previously unprobed range 4.347–4.467μe V(1051–1080 MHz).Our null detection sets new stringent constraints with Meer KAT NS data,excluding axion-photon couplings|g_(aγγ)|?8.2×10^(-12)Ge V^(-1)at the 95%confidence level for DM masses between 4.347 and 4.467μe V.展开更多
This study examines the properties of standard cold dark matter(CDM),fuzzy dark matter(FDM),and selfinteracting dark matter(SIDM)haloes by analyzing the rotation curves of selected dwarf galaxies from SPARC and LITTLE...This study examines the properties of standard cold dark matter(CDM),fuzzy dark matter(FDM),and selfinteracting dark matter(SIDM)haloes by analyzing the rotation curves of selected dwarf galaxies from SPARC and LITTLE THINGS in 3D catalogs.Utilizing the Markov Chain Monte Carlo(MCMC)method for model fitting and Bayesian Information Criterion for model comparison,we find that compared to CDM,both FDM and SIDM haloes generally provide better fits to the observed rotation curves.Our findings reveal that the concentration–mass relation derived from the dark matter-only simulations is not followed by concentrations or masses obtained from the rotation curve data.Our analysis highlights a positive correlation between the core sizes of FDM and SIDM haloes and the effective radius of the galaxy,attributable to gravitational couplings between baryonic and dark matter components.Moreover,our exploration of dark matter fractions at characteristic radii indicates considerable diversity in dark matter distributions across dwarf galaxies.Notably,FDM and SIDM exhibit greater diversity than CDM in this respect.展开更多
In this paper,we study the rotation curves of the Milky Way galaxy and Andromeda galaxy(M31)by considering their bulge,disk,and halo components.We model the bulge region by the widely accepted de Vaucouleur’s law and...In this paper,we study the rotation curves of the Milky Way galaxy and Andromeda galaxy(M31)by considering their bulge,disk,and halo components.We model the bulge region by the widely accepted de Vaucouleur’s law and the disk region by the well established exponential profile.In order to understand the distribution of dark matter in the halo region,we consider three different dark matter profiles in the framework of the standardΛCDM model namely,Navarro-Frenk-White(NFW),Hernquist and Einasto profiles.We use recent data sets of rotation curves of the Milky Way and Andromeda galaxy.The data consist of rotation velocities of the stars and gas in the galaxy as a function of the radial distance from the center.Using Bayesian statistics,we perform an overall fit including all the components,i.e.,bulge,disk and halo with the data.Our results indicate that the NFW and Hernquist profiles are in concordance with the observational data points.However,the Einasto profile poorly explains the behavior of dark matter in both the galaxies.展开更多
The Hubble tension persists as a challenge in cosmology.Even early dark energy(EDE)models,initially considered the most promising for alleviating the Hubble tension,fall short of addressing the issue without exacerbat...The Hubble tension persists as a challenge in cosmology.Even early dark energy(EDE)models,initially considered the most promising for alleviating the Hubble tension,fall short of addressing the issue without exacerbating other tensions,such as the S_(8)tension.Considering that a negative dark matter(DM)equation of state(EoS)parameter is conducive to reduce the value of the σ_(8)parameter,we extend the axion-like EDE model in this paper by replacing the cold dark matter(CDM)with DM characterized by a constant EoS w_(dm)(referred to as WDM hereafter).We then impose constraints on this axion-like EDE extension model,along with three other models:the axion-like EDE model,ΛWDM,and ΛCDM.These constraints are derived from a comprehensive analysis incorporating data from the Planck 2018 cosmic microwave background,baryon acoustic oscillations,and the Pantheon compilation,as well as a prior on H_(0)(i.e.H_(0)=73.04±1.04,based on the latest local measurement by Riess et al)and a Gaussianized prior on S_(8)(i.e.S_(8)=0.766±0.017,determined through the joint analysis of KID1000+BOSS+2dLenS).We find that although the new model maintains the ability to alleviate the Hubble tension to~1.4σ,it still exacerbates the S_(8)tension to a level similar to that of the axion-like EDE model.展开更多
We propose a new gravitational theory with torsion based on Riemann-Cartan geometry,in which all physical quantities are dynamical.In addition to the spacetime metric,the gravitational degrees of freedom in this theor...We propose a new gravitational theory with torsion based on Riemann-Cartan geometry,in which all physical quantities are dynamical.In addition to the spacetime metric,the gravitational degrees of freedom in this theory also include the torsion and two scalar fields.The energy-momentum tensor of the matter fields in this theory is also proposed.A spherically symmetric static vacuum solution of the theory is obtained.It turns out that this solution can fit the observational data of the rotation curve outside the stellar disk in the Milky Way.Therefore,the galactic dark matter may just be the gravitational effect of the theory with torsion.展开更多
We conducted a study on a simplified dark matter model that introduces a vector-like intermediate particle,facilitating exclusive interactions between dark matter and the top quark in the Standard Model.The analysis f...We conducted a study on a simplified dark matter model that introduces a vector-like intermediate particle,facilitating exclusive interactions between dark matter and the top quark in the Standard Model.The analysis focused on the relic density of Dirac-type fermion dark matter and highlighted the complementary role of direct detection in constraining the dark matter model.Notably,in instances when dark matter mass is small,the tree-level two-body annihilation process experiences suppression.In such scenarios,the contributions of the threebody process(χχ→tbW-)and the one-loop process(χχ→gg)dominate the relic abundance.With regard to direct detection,calculations were performed for the two-loop contribution to the dark-matter-gluon interaction,yielding the corresponding spin-independent scattering cross section.展开更多
We study the relic density of asymmetric dark matter with long-range interactions by considering the Sommerfeld effect. We find that the annihilation cross section of asymmetric dark matter is enhanced by the Sommerfe...We study the relic density of asymmetric dark matter with long-range interactions by considering the Sommerfeld effect. We find that the annihilation cross section of asymmetric dark matter is enhanced by the Sommerfeld effect and thus the relic density is decreased. Then we use the Planck data to constrain the asymmetry factor, coupling, and to derive the upper bounds on the dark matter mass in s-wave and p-wave annihilation cases.展开更多
We investigate the impact of inelastic collisions between dark matter(DM)and heavy cosmic ray(CR)nuclei on CR propagation.We approximate the fragmentation cross-sections for DM-CR collisions using collider-measured pr...We investigate the impact of inelastic collisions between dark matter(DM)and heavy cosmic ray(CR)nuclei on CR propagation.We approximate the fragmentation cross-sections for DM-CR collisions using collider-measured proton-nuclei scattering cross-sections,allowing us to assess how these collisions affect the spectra of CR boron and carbon.We derive new CR spectra from DM-CR collisions by incorporating their cross-sections into the source terms and solving the diffusion equation for the complete network of reactions involved in generating secondary species.In a specific example with a coupling strength of b_(χ)=0.1 and a DM mass of m_(χ)=0.1 GeV,considering a simplified scenario where DM interacts exclusively with oxygen,a notable modification in the boron-to-carbon spectrum due to the DM-CR interaction is observed.Particularly,the peak within the spectrum,spanning from 0.1 to 10 GeV,experiences an enhancement of approximately 1.5 times.However,in a more realistic scenario where DM particles interact with all CRs,this peak can be amplified to twice its original value.Utilizing the latest data from AMS-02 and DAMPE on the boron-to-carbon ratio,we estimate a 95%upper limit for the effective inelastic cross-section of DM-proton as a function of DM mass.Our findings reveal that at m_(χ)?2 MeV,the effective inelastic cross-section between DM and protons must be less than O(10^(-32))cm^(2).展开更多
A significant excess of the stellar mass density at high redshift has been discovered from the early data release of James Webb Space Telescope(JWST),and it may require a high star formation efficiency.However,this wi...A significant excess of the stellar mass density at high redshift has been discovered from the early data release of James Webb Space Telescope(JWST),and it may require a high star formation efficiency.However,this will lead to large number density of ionizing photons in the epoch of reionization(EoR),so that the reionization history will be changed,which can arise tension with the current EoR observations.Warm dark matter(WDM),via the free streaming effect,can suppress the formation of small-scale structure as well as low-mass galaxies.This provides an effective way to decrease the ionizing photons when considering a large star formation efficiency in high-z massive galaxies without altering the cosmic reionization history.On the other hand,the constraints on the properties of WDM can be derived from the JWST observations.In this work,we study WDM as a possible solution to reconcile the JWST stellar mass density of high-z massive galaxies and reionization history.We find that,the JWST high-z comoving cumulative stellar mass density alone has no significant preference for either CDM or WDM model.But using the observational data of other stellar mass density measurements and reionization history,we obtain that the WDM particle mass with mw=0.51_(-0.12)^(+0.22) keV and star formation efficiency parameter f_(*)^(0)> 0.39 in 2σ confidence level can match both the JWST high-z comoving cumulative stellar mass density and the reionization history.展开更多
This paper develops an original theory of dark matter in the current ΛCDM framework, whose main hypothesis is that DM is generated by the own gravitational field, according to an unknown quantum gravitational phenome...This paper develops an original theory of dark matter in the current ΛCDM framework, whose main hypothesis is that DM is generated by the own gravitational field, according to an unknown quantum gravitational phenomenon. This work is the best version of the theory, which I have been developing and publishing since 2014. The hypothesis of DM by quantum gravitation, DMbQG hereafter, has two main consequences: the first one is that the law of DM generation has to be the same, in the halo region, for all the galaxies and the second one is that the haloes are unbounded, so the total DM goes up without limit as the gravitational field is unbounded as well. The first one consequence is backed by the fact that M31 and MW has a fitted function with the same power exponent for the rotation curve at the halo region and both giant galaxies are the only ones whose rotation curves at the halo region may be studied with accuracy. This paper is firstly developed all the theory with M31 rotation curve data up to Chapter 9. The most important formula of the theory is the called Direct mass, which calculates the total mass at a specific radius into the halo region. Chapter 10 is dedicated to apply the theory to Milky Way, it is calculated its total mass at different radius into the halo and such results have been validated successfully using the data of masses at different radius published by two researcher teams. In Chapter 11, it is calculated the direct mass for the Local Group, and it is shown how the DMbQG theory is able to calculate the total mass at 770 kpc, that the dynamical methods estimate to be 5×1012MΘ. In Chapter 12, it is shown a method to estimate the Direct mass formula for a cluster of galaxies, using only its virial mass and virial radius. By this method, it is estimated the parameter a2 of the Local Group, which match with the one calculated in previous chapter by a different method. Also are calculated the parameters a2 associated to Virgo and Coma clusters. In Chapter 13, it is demonstrated how the DE is able to counterbalance the DM at cluster scale, as the Direct mass grows up with the square root of radius whereas the DE grows up with the cubic power. The chapter is an introduction to the DMbQG theory for cluster of galaxies, which has been developed fully by the author in other works. This theory aims to be a powerful method to study DM in the halo region of galaxies and cluster of galaxies and conversely the measures in galaxies and clusters offer the possibility to validate the theory.展开更多
This paper develops the Dark Matter by Quantum Gravitation theory, DMbQG theory hereafter, in clusters of galaxies in the cosmologic model ΛCDM of the Universe. Originally this theory was developed by the author for ...This paper develops the Dark Matter by Quantum Gravitation theory, DMbQG theory hereafter, in clusters of galaxies in the cosmologic model ΛCDM of the Universe. Originally this theory was developed by the author for galaxies, especially using MW and M31 rotation curves. An important result got by the DMbQG theory is that the total mass associated to a galactic halo depend on the square root of radius, being its dominion unbounded. Apparently, this result would be absurd because of divergence of the total mass. As the DE is negligible at galactic scale, it is needed to extend the theory to clusters in order to study the capacity of DE to counterbalance to DM. Thanks this property, the DMbQG theory finds unexpected theoretical results. In this work, it is defined, the total mass as baryonic matter plus DM and the gravitating mass as the addition of the total mass plus the negative mass associated to dark energy. In clusters it is defined the zero gravity radius (RZG hereafter) as the radius needed by the dark energy to counterbalance the total mass. It has been found that the ratio RZG/RVIRIAL ≈ 7.3 and its Total mass associated at RZG is ≈2.7 MVIRIAL. In addition, it has been calculated that the sphere with the extended halo radius RE = 1.85 RZG has a ratio DM density versus DE density equal to 3/7 and its total mass associated at RE is ≈3.6 MVIRIAL. This works postulates that the factor 3.6 may equilibrate perfectly the strong imbalance between the Local mater density parameter (0.08) versus the current Global matter density one (0.3). Currently, this fact is a big conundrum in cosmology, see chapter 7. Also it has been found that the zero velocity radius, RZV hereafter, i.e. the cluster border because of the Hubble flow, is ≈0.6 RZG and its gravitating mass is ≈ 1.5 MVIR. By derivation of gravitating mass function, it is calculated that at 0.49 RZG, this function reaches its maximum whose value is ≈1.57 MVIR. Throughout the paper, some of these results have been validated with recent data published for the Virgo cluster. As Virgo is the nearest big cluster, it is the perfect benchmark to validate any new theory about DM and DE. These new theoretical findings offer to scientific community a wide number of tests to validate or reject the theory. The validation of DMbQG theory would mean to know the nature of DM that at the present, it is an important challenge for the astrophysics science.展开更多
The article considers a conceptual universe model as a periodic lattice (network) with nodes defined by the wave function in a background-independent Hamiltonian based on their relations and interactions. This model g...The article considers a conceptual universe model as a periodic lattice (network) with nodes defined by the wave function in a background-independent Hamiltonian based on their relations and interactions. This model gives rise to energy bands, similar to those in semiconductor solid-state models. In this context, valence band holes are described as dark matter particles with a heavy effective mass. The conducting band, with a spontaneously symmetry-breaking energy profile, contains particles with several times lighter effective mass, which can represent luminous matter. Some possible analogies with solid-state physics, such as the comparison between dark and luminous matter, are discussed. Additionally, tiny dark energy, as intrinsic lattice Casimir energy, is calculated for a lattice with a large number of lattice nodes.展开更多
The pictures from the James Webb Space Telescope (JWST) suggest that massive galaxies were already at the beginning of the expansion of the Universe because there was too short time to create them. It is consistent wi...The pictures from the James Webb Space Telescope (JWST) suggest that massive galaxies were already at the beginning of the expansion of the Universe because there was too short time to create them. It is consistent with the new cosmology presented within the Scale-Symmetric Theory (SST). The phase transitions of the initial inflation field described in SST lead to the Protoworld—its core was built of dark matter (DM). We show that the DAMA/LIBRA annual-modulation amplitude forced by the change of the Earth’s velocity (i.e. baryonic-matter (BM) velocity) in relation to the spinning DM field in our Galaxy’s halo should be very low. We calculated that in the DM-BM weak interactions are created single and entangled spacetime condensates with a lowest mass/energy of 0.807 keV—as the Higgs boson they can decay to two photons, so we can indirectly detect DM. Our results are consistent with the averaged DAMA/LIBRA/COSINE-100 curve describing the dependence of the event rate on the photon energy in single-hit events. We calculated the mean dark-matter-halo (DMH) mass around quasars, we also described the origin of the plateaux in the rotation curves for the massive spiral galaxies, the role of DM-loops in magnetars, the origin of CMB, the AGN-jet and galactic-halo production, and properties of dark energy (DE).展开更多
In the background of f(R,L_(m))gravity,this work investigates three distinct dark matter halo profiles to test the possibility of generalised wormhole geometry within the galactic halo regions.The current study aims t...In the background of f(R,L_(m))gravity,this work investigates three distinct dark matter halo profiles to test the possibility of generalised wormhole geometry within the galactic halo regions.The current study aims to accomplish these goals by examining various dark matter profiles including universal rotation curves(URC),Navarro-Frenk-White(NFW)model-Ⅰ,and NFW model-Ⅱinside two distinct f(R,L_(m))gravity models.According to the f(R,L_(m))=R/2+L^(a)_(m)model,the dark matter(DM)halo density profiles produce suitable shape functions that meet all the necessary requirements for exhibiting the wormhole geometries with appropriate choice of free parameters.In addition,to examine DM profiles under the f(R,L_(m))=R/2+(1+λR)L_(m) model,we consider a specific shape function.Further,we observed that the derived solution from both two models violates the null energy constraints,confirming that the DM supports wormholes to maintain in the galactic halo.展开更多
The modified cosmology like quintessence model with kination phase predicted the Hubble expansion rate of the universe before Big Bang Nucleosynthesis is different from the standard cosmological scenario. The modified...The modified cosmology like quintessence model with kination phase predicted the Hubble expansion rate of the universe before Big Bang Nucleosynthesis is different from the standard cosmological scenario. The modified expansion rate leaves its imprint on the relic density of asymmetric dark matter. In this work, we review the calculation of relic density of asymmetric WIMP dark matter in the standard cosmological scenario and quintessence model with kination phase. Then we use the Planck data to find constraints on the annihilation cross section and the mass of the asymmetric dark matter in those models.展开更多
Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction a...Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further.展开更多
文摘Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that each material object, including living creatures, is concomitant with a fraction of the charged complex masses of DM and DE in proportion to its mass. This perception provides new insights into the physics of nature and its constituents from subatomic to cosmic scales. This complex nature of DM and DE explains our inability to see DM or harvest DE for the last several decades. The positive complex DM is responsible for preserving the integrity of galaxies and all material systems. The negative complex charged DE induces a positive repelling force with the positively charged DM and contributes to the universe’s expansion. Both fields are Lorentz invariants in all directions and entangle the whole universe. The paper uses CFT to investigate zero-point energy, particle-wave duality, relativistic mass increase, and entanglement phenomenon and unifies Coulomb’s and Newton’s laws. The paper also verifies the existence of tachyons and explains the spooky action of quantum mechanics at a distance. The paper encourages further research into how CFT might resolve several physical mysteries in physics.
文摘Understanding the nature of dark matter remains one of the most enigmatic and unresolved issues in astrophysics.Certain theoretical models address this by introducing a novel component to account for dark matter.In this study,we propose a new scalar field derived from string T-duality,where its associated density represents the density of the surrounding matter field,in the spherically symmetric and static medium.Our exploration reveals that this scalar field behaves as the baryonic fluid,characterized by a positive effective state equation,ωe>0.Furthermore,a detailed investigation demonstrates that this model satisfies all energy conditions beyond the event horizon of a central black hole.Considering the light deflection and radar echo delay suggests that in this scalar field,the dark matter grows up in the halo and surrounding regions of galaxy systems.This indicates that dark matter accumulates as an effective field outside the observable regions of galaxies.
基金supported by the National Natural Science Foundation of China under Grant No.11675143the National Key Research and Development Program of China under Grant No.2020YFC2201503。
文摘In this paper we consider a static spherically symmetric black hole(BH)embedded in a Dehnen-(1,4,0)-type dark matter(DM)halo in the presence of a cloud string.We examine and present data on how the core density of the DM halo parameter and the cloud string parameter affect BH attributes such as quasinormal modes(QNMs)and shadow cast.To do this,we first look into the effective potential of perturbation equations for three types of perturbation fields with different spins:massless scalar field,electromagnetic field and gravitational field.Then,using the sixth-order Wentzel-Kramers-Brillouin approximation,we examine QNMs of the BH disturbed by the three fields and derive quasinormal frequencies.The changes in QNM versus the core density parameter and the cloud string parameter for three disturbances are explored.We also investigate how the core density and the cloud string parameter affect the photon sphere and shadow radius.Interestingly,the study shows that the influence of Dehnen-type DM and cloud strings increases both the photon sphere and the shadow radius.Finally,we employ observational data from Sgr A^(*) and M87^(*) to set limitations on the BH parameters.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(grant No.2024A1515012573)National key R&D Program of China(grant No.2020YFC2201600)+1 种基金National Natural Science Foundation of China(NSFC,grant No.12073088)National SKA Program of China(grant No.2020SKA0110402)。
文摘While cold dark matter is widely supported by a range of cosmological observations,it encounters several difficulties at smaller scales.These issues have prompted the investigation of various alternative dark matter candidates,leaving the question“What is dark matter?”still open.In this work,we propose a new cosmological model that considers dark matter as a barotropic fluid with a constant equation of state parameter and interprets dark energy as the phenomenological emergent dark energy rather than a cosmological constant.We then place constraints on our new model using the Planck 2018 Cosmic Microwave Background(CMB)anisotropy measurements,Baryon Acoustic Oscillation measurements from the Dark Energy Spectroscopic Instrument(DESI),the Pantheon Plus(PP)compilation of Type Ia supernovae,and the Redshift Space Distortions(RSD)data from Gold 2018.The results show statistically significant signal for positive dark matter equation of state and square of sound speed w_(dm)=c_(s,dm)^(2)(10^(7) w_(dm)=4.0_(-2.3)^(+2.5)at the 95%confidence level)for the data combination CMB+DESI+PP+RSD.However,Bayesian evidence indicates that this data combination favors theΛCDM model with very strong evidence.
基金supported by the National Natural Science Foundation of China(NSFC,grant No.12220101003)the Leading Innovation and Entrepreneurship Team of Zhejiang Province of China(grant No.2023R01008)the National Key R&D Program of China No.2023YFE0110500。
文摘The axion,a leading dark matter(DM)candidate,can convert to photons in neutron star(NS)magnetospheres via the Primakoff effect,producing narrow-band radio emission that may be detected with high-sensitivity radio telescopes.Previous studies searched for axion DM-induced signals from the isolated NS J0806.4-4123 using observations of the Meer KAT UHF band(544–1088 MHz),but excluded the 1051–1088 MHz subband to mitigate potential sideband contamination.To probe this unexplored parameter space,we reprocessed the 1000–1088 MHz subband data using optimized radio frequency interference(RFI)flagging and meticulous sideband calibration.The flux stability of the calibrators and the consistency with Meer KAT’s system equivalent flux density confirmed the reliability of the data within the 1000–1080 MHz range,while the 1080–1088 MHz subband was omitted due to flux anomalies.No significant signals exceeding 5σsignificance were detected within the axion mass range of 4.136–4.467μe V(1000–1080 MHz),including the previously unprobed range 4.347–4.467μe V(1051–1080 MHz).Our null detection sets new stringent constraints with Meer KAT NS data,excluding axion-photon couplings|g_(aγγ)|?8.2×10^(-12)Ge V^(-1)at the 95%confidence level for DM masses between 4.347 and 4.467μe V.
基金financially supporting this research through PPMI KK 2024 Program,contract number 616BO/IT1.C02/KU/2024。
文摘This study examines the properties of standard cold dark matter(CDM),fuzzy dark matter(FDM),and selfinteracting dark matter(SIDM)haloes by analyzing the rotation curves of selected dwarf galaxies from SPARC and LITTLE THINGS in 3D catalogs.Utilizing the Markov Chain Monte Carlo(MCMC)method for model fitting and Bayesian Information Criterion for model comparison,we find that compared to CDM,both FDM and SIDM haloes generally provide better fits to the observed rotation curves.Our findings reveal that the concentration–mass relation derived from the dark matter-only simulations is not followed by concentrations or masses obtained from the rotation curve data.Our analysis highlights a positive correlation between the core sizes of FDM and SIDM haloes and the effective radius of the galaxy,attributable to gravitational couplings between baryonic and dark matter components.Moreover,our exploration of dark matter fractions at characteristic radii indicates considerable diversity in dark matter distributions across dwarf galaxies.Notably,FDM and SIDM exhibit greater diversity than CDM in this respect.
基金supported by the Startup Research Fund of the Henan Academy of Sciences under grant No.241841219。
文摘In this paper,we study the rotation curves of the Milky Way galaxy and Andromeda galaxy(M31)by considering their bulge,disk,and halo components.We model the bulge region by the widely accepted de Vaucouleur’s law and the disk region by the well established exponential profile.In order to understand the distribution of dark matter in the halo region,we consider three different dark matter profiles in the framework of the standardΛCDM model namely,Navarro-Frenk-White(NFW),Hernquist and Einasto profiles.We use recent data sets of rotation curves of the Milky Way and Andromeda galaxy.The data consist of rotation velocities of the stars and gas in the galaxy as a function of the radial distance from the center.Using Bayesian statistics,we perform an overall fit including all the components,i.e.,bulge,disk and halo with the data.Our results indicate that the NFW and Hernquist profiles are in concordance with the observational data points.However,the Einasto profile poorly explains the behavior of dark matter in both the galaxies.
基金supported by the National Key R&D Program of China(Grant No.2020YFC2201600)the National Natural Science Foundation of China(NSFC)under Grant No.12073088the National SKA Program of China No.2020SKA0110402.
文摘The Hubble tension persists as a challenge in cosmology.Even early dark energy(EDE)models,initially considered the most promising for alleviating the Hubble tension,fall short of addressing the issue without exacerbating other tensions,such as the S_(8)tension.Considering that a negative dark matter(DM)equation of state(EoS)parameter is conducive to reduce the value of the σ_(8)parameter,we extend the axion-like EDE model in this paper by replacing the cold dark matter(CDM)with DM characterized by a constant EoS w_(dm)(referred to as WDM hereafter).We then impose constraints on this axion-like EDE extension model,along with three other models:the axion-like EDE model,ΛWDM,and ΛCDM.These constraints are derived from a comprehensive analysis incorporating data from the Planck 2018 cosmic microwave background,baryon acoustic oscillations,and the Pantheon compilation,as well as a prior on H_(0)(i.e.H_(0)=73.04±1.04,based on the latest local measurement by Riess et al)and a Gaussianized prior on S_(8)(i.e.S_(8)=0.766±0.017,determined through the joint analysis of KID1000+BOSS+2dLenS).We find that although the new model maintains the ability to alleviate the Hubble tension to~1.4σ,it still exacerbates the S_(8)tension to a level similar to that of the axion-like EDE model.
基金supported by the National Science Foundation of China with Grant No.12275022.
文摘We propose a new gravitational theory with torsion based on Riemann-Cartan geometry,in which all physical quantities are dynamical.In addition to the spacetime metric,the gravitational degrees of freedom in this theory also include the torsion and two scalar fields.The energy-momentum tensor of the matter fields in this theory is also proposed.A spherically symmetric static vacuum solution of the theory is obtained.It turns out that this solution can fit the observational data of the rotation curve outside the stellar disk in the Milky Way.Therefore,the galactic dark matter may just be the gravitational effect of the theory with torsion.
基金supported in part by the National Science Foundation of China under Grant Nos. 12222502 and 12075257。
文摘We conducted a study on a simplified dark matter model that introduces a vector-like intermediate particle,facilitating exclusive interactions between dark matter and the top quark in the Standard Model.The analysis focused on the relic density of Dirac-type fermion dark matter and highlighted the complementary role of direct detection in constraining the dark matter model.Notably,in instances when dark matter mass is small,the tree-level two-body annihilation process experiences suppression.In such scenarios,the contributions of the threebody process(χχ→tbW-)and the one-loop process(χχ→gg)dominate the relic abundance.With regard to direct detection,calculations were performed for the two-loop contribution to the dark-matter-gluon interaction,yielding the corresponding spin-independent scattering cross section.
基金supported by the National Natural Science Foundation of China (U2031204, 11 765 021)Natural Science Foundation of Xinjiang Uygur Autonomous Region (2022D01C52)。
文摘We study the relic density of asymmetric dark matter with long-range interactions by considering the Sommerfeld effect. We find that the annihilation cross section of asymmetric dark matter is enhanced by the Sommerfeld effect and thus the relic density is decreased. Then we use the Planck data to constrain the asymmetry factor, coupling, and to derive the upper bounds on the dark matter mass in s-wave and p-wave annihilation cases.
基金supported by the National Key Research and Development Program of China(2022YFF0503304,2020YFC2201600,2018YFA0404504 and 2018YFA0404601)the Ministry of Science and Technology of China(2020SKA0110402,2020SKA0110401 and 2020SKA0110100)+4 种基金the National Natural Science Foundation of China(11890691,12205388 and 12220101003)the CAS Project for Young Scientists in Basic Research(YSBR-061,YSBR-092)the China Manned Space Project with No.CMS-CSST-2021(A02,A03 and B01)the Major Key Project of PCLthe 111 project(B20019)。
文摘We investigate the impact of inelastic collisions between dark matter(DM)and heavy cosmic ray(CR)nuclei on CR propagation.We approximate the fragmentation cross-sections for DM-CR collisions using collider-measured proton-nuclei scattering cross-sections,allowing us to assess how these collisions affect the spectra of CR boron and carbon.We derive new CR spectra from DM-CR collisions by incorporating their cross-sections into the source terms and solving the diffusion equation for the complete network of reactions involved in generating secondary species.In a specific example with a coupling strength of b_(χ)=0.1 and a DM mass of m_(χ)=0.1 GeV,considering a simplified scenario where DM interacts exclusively with oxygen,a notable modification in the boron-to-carbon spectrum due to the DM-CR interaction is observed.Particularly,the peak within the spectrum,spanning from 0.1 to 10 GeV,experiences an enhancement of approximately 1.5 times.However,in a more realistic scenario where DM particles interact with all CRs,this peak can be amplified to twice its original value.Utilizing the latest data from AMS-02 and DAMPE on the boron-to-carbon ratio,we estimate a 95%upper limit for the effective inelastic cross-section of DM-proton as a function of DM mass.Our findings reveal that at m_(χ)?2 MeV,the effective inelastic cross-section between DM and protons must be less than O(10^(-32))cm^(2).
基金support of the National Key R&D Program of China No. 2022YFF0503404, 2020SKA0110402,MOST-2018YFE0120800,NSFC-11822305, NSFC-11773031,NSFC-11633004, NSFC-11473044, NSFC-11973047the CAS Project for Young Scientists in Basic Research (No. YSBR-092)+1 种基金the Chinese Academy of Sciences grants QYZDJ-SSWSLH017, XDB 23040100, and XDA15020200supported by the science research grants from the China Manned Space Project with NO.CMS-CSST-2021-B01 and CMS-CSST-2021-A01。
文摘A significant excess of the stellar mass density at high redshift has been discovered from the early data release of James Webb Space Telescope(JWST),and it may require a high star formation efficiency.However,this will lead to large number density of ionizing photons in the epoch of reionization(EoR),so that the reionization history will be changed,which can arise tension with the current EoR observations.Warm dark matter(WDM),via the free streaming effect,can suppress the formation of small-scale structure as well as low-mass galaxies.This provides an effective way to decrease the ionizing photons when considering a large star formation efficiency in high-z massive galaxies without altering the cosmic reionization history.On the other hand,the constraints on the properties of WDM can be derived from the JWST observations.In this work,we study WDM as a possible solution to reconcile the JWST stellar mass density of high-z massive galaxies and reionization history.We find that,the JWST high-z comoving cumulative stellar mass density alone has no significant preference for either CDM or WDM model.But using the observational data of other stellar mass density measurements and reionization history,we obtain that the WDM particle mass with mw=0.51_(-0.12)^(+0.22) keV and star formation efficiency parameter f_(*)^(0)> 0.39 in 2σ confidence level can match both the JWST high-z comoving cumulative stellar mass density and the reionization history.
文摘This paper develops an original theory of dark matter in the current ΛCDM framework, whose main hypothesis is that DM is generated by the own gravitational field, according to an unknown quantum gravitational phenomenon. This work is the best version of the theory, which I have been developing and publishing since 2014. The hypothesis of DM by quantum gravitation, DMbQG hereafter, has two main consequences: the first one is that the law of DM generation has to be the same, in the halo region, for all the galaxies and the second one is that the haloes are unbounded, so the total DM goes up without limit as the gravitational field is unbounded as well. The first one consequence is backed by the fact that M31 and MW has a fitted function with the same power exponent for the rotation curve at the halo region and both giant galaxies are the only ones whose rotation curves at the halo region may be studied with accuracy. This paper is firstly developed all the theory with M31 rotation curve data up to Chapter 9. The most important formula of the theory is the called Direct mass, which calculates the total mass at a specific radius into the halo region. Chapter 10 is dedicated to apply the theory to Milky Way, it is calculated its total mass at different radius into the halo and such results have been validated successfully using the data of masses at different radius published by two researcher teams. In Chapter 11, it is calculated the direct mass for the Local Group, and it is shown how the DMbQG theory is able to calculate the total mass at 770 kpc, that the dynamical methods estimate to be 5×1012MΘ. In Chapter 12, it is shown a method to estimate the Direct mass formula for a cluster of galaxies, using only its virial mass and virial radius. By this method, it is estimated the parameter a2 of the Local Group, which match with the one calculated in previous chapter by a different method. Also are calculated the parameters a2 associated to Virgo and Coma clusters. In Chapter 13, it is demonstrated how the DE is able to counterbalance the DM at cluster scale, as the Direct mass grows up with the square root of radius whereas the DE grows up with the cubic power. The chapter is an introduction to the DMbQG theory for cluster of galaxies, which has been developed fully by the author in other works. This theory aims to be a powerful method to study DM in the halo region of galaxies and cluster of galaxies and conversely the measures in galaxies and clusters offer the possibility to validate the theory.
文摘This paper develops the Dark Matter by Quantum Gravitation theory, DMbQG theory hereafter, in clusters of galaxies in the cosmologic model ΛCDM of the Universe. Originally this theory was developed by the author for galaxies, especially using MW and M31 rotation curves. An important result got by the DMbQG theory is that the total mass associated to a galactic halo depend on the square root of radius, being its dominion unbounded. Apparently, this result would be absurd because of divergence of the total mass. As the DE is negligible at galactic scale, it is needed to extend the theory to clusters in order to study the capacity of DE to counterbalance to DM. Thanks this property, the DMbQG theory finds unexpected theoretical results. In this work, it is defined, the total mass as baryonic matter plus DM and the gravitating mass as the addition of the total mass plus the negative mass associated to dark energy. In clusters it is defined the zero gravity radius (RZG hereafter) as the radius needed by the dark energy to counterbalance the total mass. It has been found that the ratio RZG/RVIRIAL ≈ 7.3 and its Total mass associated at RZG is ≈2.7 MVIRIAL. In addition, it has been calculated that the sphere with the extended halo radius RE = 1.85 RZG has a ratio DM density versus DE density equal to 3/7 and its total mass associated at RE is ≈3.6 MVIRIAL. This works postulates that the factor 3.6 may equilibrate perfectly the strong imbalance between the Local mater density parameter (0.08) versus the current Global matter density one (0.3). Currently, this fact is a big conundrum in cosmology, see chapter 7. Also it has been found that the zero velocity radius, RZV hereafter, i.e. the cluster border because of the Hubble flow, is ≈0.6 RZG and its gravitating mass is ≈ 1.5 MVIR. By derivation of gravitating mass function, it is calculated that at 0.49 RZG, this function reaches its maximum whose value is ≈1.57 MVIR. Throughout the paper, some of these results have been validated with recent data published for the Virgo cluster. As Virgo is the nearest big cluster, it is the perfect benchmark to validate any new theory about DM and DE. These new theoretical findings offer to scientific community a wide number of tests to validate or reject the theory. The validation of DMbQG theory would mean to know the nature of DM that at the present, it is an important challenge for the astrophysics science.
文摘The article considers a conceptual universe model as a periodic lattice (network) with nodes defined by the wave function in a background-independent Hamiltonian based on their relations and interactions. This model gives rise to energy bands, similar to those in semiconductor solid-state models. In this context, valence band holes are described as dark matter particles with a heavy effective mass. The conducting band, with a spontaneously symmetry-breaking energy profile, contains particles with several times lighter effective mass, which can represent luminous matter. Some possible analogies with solid-state physics, such as the comparison between dark and luminous matter, are discussed. Additionally, tiny dark energy, as intrinsic lattice Casimir energy, is calculated for a lattice with a large number of lattice nodes.
文摘The pictures from the James Webb Space Telescope (JWST) suggest that massive galaxies were already at the beginning of the expansion of the Universe because there was too short time to create them. It is consistent with the new cosmology presented within the Scale-Symmetric Theory (SST). The phase transitions of the initial inflation field described in SST lead to the Protoworld—its core was built of dark matter (DM). We show that the DAMA/LIBRA annual-modulation amplitude forced by the change of the Earth’s velocity (i.e. baryonic-matter (BM) velocity) in relation to the spinning DM field in our Galaxy’s halo should be very low. We calculated that in the DM-BM weak interactions are created single and entangled spacetime condensates with a lowest mass/energy of 0.807 keV—as the Higgs boson they can decay to two photons, so we can indirectly detect DM. Our results are consistent with the averaged DAMA/LIBRA/COSINE-100 curve describing the dependence of the event rate on the photon energy in single-hit events. We calculated the mean dark-matter-halo (DMH) mass around quasars, we also described the origin of the plateaux in the rotation curves for the massive spiral galaxies, the role of DM-loops in magnetars, the origin of CMB, the AGN-jet and galactic-halo production, and properties of dark energy (DE).
基金University Grant Commission(UGC),Govt.of India,New Delhi,for awarding JRF(NTA Ref.No.:191620024300)University Grants Commission(UGC),New Delhi,India,for awarding National Fellowship for Scheduled Caste Students(UGC-Ref.No.:201610123801)+1 种基金PKS acknowledges the National Board for Higher Mathematics(NBHM)under the Department of Atomic Energy(DAE),Govt.of India,for financial support to carry out the Research project No.:02011/3/2022 NBHM(R.P.)/R&D II/2152 Dt.14.02.2022IUCAA,Pune,India for providing support through the visiting Associateship program.
文摘In the background of f(R,L_(m))gravity,this work investigates three distinct dark matter halo profiles to test the possibility of generalised wormhole geometry within the galactic halo regions.The current study aims to accomplish these goals by examining various dark matter profiles including universal rotation curves(URC),Navarro-Frenk-White(NFW)model-Ⅰ,and NFW model-Ⅱinside two distinct f(R,L_(m))gravity models.According to the f(R,L_(m))=R/2+L^(a)_(m)model,the dark matter(DM)halo density profiles produce suitable shape functions that meet all the necessary requirements for exhibiting the wormhole geometries with appropriate choice of free parameters.In addition,to examine DM profiles under the f(R,L_(m))=R/2+(1+λR)L_(m) model,we consider a specific shape function.Further,we observed that the derived solution from both two models violates the null energy constraints,confirming that the DM supports wormholes to maintain in the galactic halo.
文摘The modified cosmology like quintessence model with kination phase predicted the Hubble expansion rate of the universe before Big Bang Nucleosynthesis is different from the standard cosmological scenario. The modified expansion rate leaves its imprint on the relic density of asymmetric dark matter. In this work, we review the calculation of relic density of asymmetric WIMP dark matter in the standard cosmological scenario and quintessence model with kination phase. Then we use the Planck data to find constraints on the annihilation cross section and the mass of the asymmetric dark matter in those models.
文摘Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further.