The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr...The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.展开更多
Attribute reduction through the combined approach of Rough Sets(RS)and algebraic topology is an open research topic with significant potential for applications.Several research works have introduced a strong relations...Attribute reduction through the combined approach of Rough Sets(RS)and algebraic topology is an open research topic with significant potential for applications.Several research works have introduced a strong relationship between RS and topology spaces for the attribute reduction problem.However,the mentioned recent methods followed a strategy to construct a new measure for attribute selection.Meanwhile,the strategy for searching for the reduct is still to select each attribute and gradually add it to the reduct.Consequently,those methods tended to be inefficient for high-dimensional datasets.To overcome these challenges,we use the separability property of Hausdorff topology to quickly identify distinguishable attributes,this approach significantly reduces the time for the attribute filtering stage of the algorithm.In addition,we propose the concept of Hausdorff topological homomorphism to construct candidate reducts,this method significantly reduces the number of candidate reducts for the wrapper stage of the algorithm.These are the two main stages that have the most effect on reducing computing time for the attribute reduction of the proposed algorithm,which we call the Cluster Filter Wrapper algorithm based on Hausdorff Topology.Experimental validation on the UCI Machine Learning Repository Data shows that the proposed method achieves efficiency in both the execution time and the size of the reduct.展开更多
Attribute reduction is a research hotspot in rough set theory. Traditional heuristic attribute reduction methods add the most important attribute to the decision attribute set each time, resulting in multiple redundan...Attribute reduction is a research hotspot in rough set theory. Traditional heuristic attribute reduction methods add the most important attribute to the decision attribute set each time, resulting in multiple redundant attribute calculations, high time consumption, and low reduction efficiency. In this paper, based on the idea of sequential three-branch decision classification domain, attributes are treated as objects of three-branch division, and attributes are divided into core attributes, relatively necessary attributes, and unnecessary attributes using attribute importance and thresholds. Core attributes are added to the decision attribute set, unnecessary attributes are rejected from being added, and relatively necessary attributes are repeatedly divided until the reduction result is obtained. Experiments were conducted on 8 groups of UCI datasets, and the results show that, compared to traditional reduction methods, the method proposed in this paper can effectively reduce time consumption while ensuring classification performance.展开更多
For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm u...For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm using discernment as the heuristic information was proposed.The reduction algorithm comprehensively considers the dependency degree and neighborhood granulation degree of attributes,allowing for a more accurate measurement of the importance degrees of attributes.Example analyses and experimental results demonstrate the feasibility and effectiveness of the algorithm.展开更多
In order to improve the performance of the attribute reduction algorithm to deal with the noisy and uncertain large data, a novel co-evolutionary cloud-based attribute ensemble multi-agent reduction(CCAEMR) algorith...In order to improve the performance of the attribute reduction algorithm to deal with the noisy and uncertain large data, a novel co-evolutionary cloud-based attribute ensemble multi-agent reduction(CCAEMR) algorithm is proposed.First, a co-evolutionary cloud framework is designed under the M apReduce mechanism to divide the entire population into different co-evolutionary subpopulations with a self-adaptive scale. Meanwhile, these subpopulations will share their rewards to accelerate attribute reduction implementation.Secondly, a multi-agent ensemble strategy of co-evolutionary elitist optimization is constructed to ensure that subpopulations can exploit any correlation and interdependency between interacting attribute subsets with reinforcing noise tolerance.Hence, these agents are kept within the stable elitist region to achieve the optimal profit. The experimental results show that the proposed CCAEMR algorithm has better efficiency and feasibility to solve large-scale and uncertain dataset problems with complex noise.展开更多
Due to the fact that conventional heuristic attribute reduction algorithms are poor in running efficiency and difficult in accomplishing the co-evolutionary reduction mechanism in the decision table, an adaptive multi...Due to the fact that conventional heuristic attribute reduction algorithms are poor in running efficiency and difficult in accomplishing the co-evolutionary reduction mechanism in the decision table, an adaptive multicascade attribute reduction algorithm based on quantum-inspired mixed co-evolution is proposed. First, a novel and efficient self- adaptive quantum rotation angle strategy is designed to direct the participating populations to mutual adaptive evolution and to accelerate convergence speed. Then, a multicascade model of cooperative and competitive mixed co-evolution is adopted to decompose the evolutionary attribute species into subpopulations according to their historical performance records, which can increase the diversity of subpopulations and select some elitist individuals so as to strengthen the sharing ability of their searching experience. So the global optimization reduction set can be obtained quickly. The experimental results show that, compared with the existing algorithms, the proposed algorithm can achieve a higher performance for attribute reduction, and it can be considered as a more competitive heuristic algorithm on the efficiency and accuracy of minimum attribute reduction.展开更多
Particle swarm optimization (PSO) is a new heuristic algorithm which has been applied to many optimization problems successfully. Attribute reduction is a key studying point of the rough set theory, and it has been ...Particle swarm optimization (PSO) is a new heuristic algorithm which has been applied to many optimization problems successfully. Attribute reduction is a key studying point of the rough set theory, and it has been proven that computing minimal reduc- tion of decision tables is a non-derterministic polynomial (NP)-hard problem. A new cooperative extended attribute reduction algorithm named Co-PSAR based on improved PSO is proposed, in which the cooperative evolutionary strategy with suitable fitness func- tions is involved to learn a good hypothesis for accelerating the optimization of searching minimal attribute reduction. Experiments on Benchmark functions and University of California, Irvine (UCI) data sets, compared with other algorithms, verify the superiority of the Co-PSAR algorithm in terms of the convergence speed, efficiency and accuracy for the attribute reduction.展开更多
Attribute reduction in the rough set theory is an important feature selection method, but finding a minimum attribute reduction has been proven to be a non-deterministic polynomial (NP)-hard problem. Therefore, it i...Attribute reduction in the rough set theory is an important feature selection method, but finding a minimum attribute reduction has been proven to be a non-deterministic polynomial (NP)-hard problem. Therefore, it is necessary to investigate some fast and effective approximate algorithms. A novel and enhanced quantum-inspired shuffled frog leaping based minimum attribute reduction algorithm (QSFLAR) is proposed. Evolutionary frogs are represented by multi-state quantum bits, and both quantum rotation gate and quantum mutation operators are used to exploit the mechanisms of frog population diversity and convergence to the global optimum. The decomposed attribute subsets are co-evolved by the elitist frogs with a quantum-inspired shuffled frog leaping algorithm. The experimental results validate the better feasibility and effectiveness of QSFLAR, comparing with some representa- tive algorithms. Therefore, QSFLAR can be considered as a more competitive algorithm on the efficiency and accuracy for minimum attribute reduction.展开更多
For the issue of evaluation of capability of enterprise agent coalition,an evaluation model based on information fusion and entropy weighting method is presented. The attribute reduction method is utilized to reduce i...For the issue of evaluation of capability of enterprise agent coalition,an evaluation model based on information fusion and entropy weighting method is presented. The attribute reduction method is utilized to reduce indicators of the capability according to the theory of rough set. The new indicator system can be determined. Attribute reduction can also reduce the workload and remove the redundant information,when there are too many indicators or the indicators have strong correlation. The research complexity can be reduced and the efficiency can be improved. Entropy weighting method is used to determine the weights of the remaining indicators,and the importance of indicators is analyzed. The information fusion model based on nearest neighbor method is developed and utilized to evaluate the capability of multiple agent coalitions,compared to cloud evaluation model and D-S evidence method. Simulation results are reasonable and with obvious distinction. Thus they verify the effectiveness and feasibility of the model. The information fusion model can provide more scientific,rational decision support for choosing the best agent coalition,and provide innovative steps for the evaluation process of capability of agent coalitions.展开更多
In order to increase the fault diagnosis efficiency and make the fault data mining be realized, the decision table containing numerical attributes must be discretized for further calculations. The discernibility matri...In order to increase the fault diagnosis efficiency and make the fault data mining be realized, the decision table containing numerical attributes must be discretized for further calculations. The discernibility matrix-based reduction method depends on whether the numerical attributes can be properly discretized or not.So a discretization algorithm based on particle swarm optimization(PSO) is proposed. Moreover, hybrid weights are adopted in the process of particles evolution. Comparative calculations for certain equipment are completed to demonstrate the effectiveness of the proposed algorithm. The results indicate that the proposed algorithm has better performance than other popular algorithms such as class-attribute interdependence maximization(CAIM)discretization method and entropy-based discretization method.展开更多
To improve the efficiency of the attribute reduction, we present an attribute reduction algorithm based on background knowledge and information entropy by making use of background knowledge from research fields. Under...To improve the efficiency of the attribute reduction, we present an attribute reduction algorithm based on background knowledge and information entropy by making use of background knowledge from research fields. Under the condition of known background knowledge, the algorithm can not only greatly improve the efficiency of attribute reduction, but also avoid the defection of information entropy partial to attribute with much value. The experimental result verifies that the algorithm is effective. In the end, the algorithm produces better results when applied in the classification of the star spectra data.展开更多
This paper deals with the problem of attribute discernibility reduction and proposes some new concepts to rough set theory (RST) based on the discernibility matrix of Skowron, such as secondary core, regeneration ma...This paper deals with the problem of attribute discernibility reduction and proposes some new concepts to rough set theory (RST) based on the discernibility matrix of Skowron, such as secondary core, regeneration matrix and the degree of attribute discernibility (DAD). This paper puts forward an attribute reduction algorithm based on maximum discernibility degree, which opens up an effective way of gaining minimum attribute reduction of decision table. The efficacy of this algorithm has been verified by practical application in a diagnostic system of loader, which substantially decreases information gathering requirement and lowers the overall cost with no loss of accuracy.展开更多
The logging attribute optimization is an important task in the well-logging interpretation. A method of attribute reduction is presented based on rough set. Firstly, the core information of the sample by a general red...The logging attribute optimization is an important task in the well-logging interpretation. A method of attribute reduction is presented based on rough set. Firstly, the core information of the sample by a general reductive method is determined. Then, the significance of dispensable attribute in the reduction-table is calculated. Finally, the minimum relative reduction set is achieved. The typical calculation and quantitative computation of reservoir parameter in oil logging show that the method of attribute reduction is greatly effective and feasible in logging interpretation.展开更多
The quantity of well logging data is increasing exponentially, hence methods of extracting the useful information or attribution from the logging database are becoming very important in logging interpretation. So, the...The quantity of well logging data is increasing exponentially, hence methods of extracting the useful information or attribution from the logging database are becoming very important in logging interpretation. So, the method of logging attribute reduction is presented based on a rough set, i.e., first determining the core of the information table, then calculating the significance of each attribute, and finally obtaining the relative reduction table. The application result shows that the method of attribute reduction is feasible and can be used for optimizing logging attributes, and decreasing redundant logging information to a great extent.展开更多
Classical rough set has a limited processing capacity in fuzzy decision table. Combining fuzzy set with classical rough set,attribute reduction algorithm on fuzzy decision table is studied. First,new similarity degree...Classical rough set has a limited processing capacity in fuzzy decision table. Combining fuzzy set with classical rough set,attribute reduction algorithm on fuzzy decision table is studied. First,new similarity degree and new similarity category are defined. In the meantime,similarity category clusters which are divided by condition attribute are provided. And then,two theorems are presented. Subsequently,a new attribute reduction algorithm is proposed. Finally,the new attribute reduction algorithm is verified through a performance evaluation decision table of the self-repairing flight-control system. The result shows the proposed attribute reduction algorithm is able to deal with fuzzy decision table to a certain extent.展开更多
Attribute reduction is an important process in rough set theory.Finding minimum attribute reduction has been proven to help the user-oriented make better knowledge discovery in some cases.In this paper,an efficient mi...Attribute reduction is an important process in rough set theory.Finding minimum attribute reduction has been proven to help the user-oriented make better knowledge discovery in some cases.In this paper,an efficient minimum attribute reduction algorithm is proposed based on the multilevel evolutionary tree with self-adaptive subpopulations.A model of multilevel evolutionary tree with self-adaptive subpopulations is constructed,and interacting attribute sets are better decomposed into subsets by the self-adaptive mechanism of elitist populations.Moreover it can self-adapt the subpopulation sizes according to the historical performance record so that interacting attribute decision variables are captured into the same grouped subpopulation,which will be extended to better performance in both quality of solution and competitive computation complexity for minimum attribute reduction.The conducted experiments show the proposed algorithm is better on both efficiency and accuracy of minimum attribute reduction than some representative algorithms.Finally the proposed algorithm is applied to magnetic resonance image(MRI)segmentation,and its stronger applicability is further demonstrated by the effective and robust segmentation results.展开更多
This paper proposes,from the viewpoint of relation matrix,a new algorithm of attribute reduction for decision systems.Two new and relative reasonable indices are first defined to measure significance of the attributes...This paper proposes,from the viewpoint of relation matrix,a new algorithm of attribute reduction for decision systems.Two new and relative reasonable indices are first defined to measure significance of the attributes in decision systems and then a heuristic algorithm of attribute reduction is formulated.Moreover,the time complexity of the algorithm is analyzed and it is proved to be complete.Some numerical experiments are also conducted to access the performance of the presented algorithm and the results demonstrate that it is not only effective but also efficient.展开更多
The Rough Sets Theory is used in data mining with emphasis on the treatment of uncertain or vague information. In the case of classification, this theory implicitly calculates reducts of the full set of attributes, el...The Rough Sets Theory is used in data mining with emphasis on the treatment of uncertain or vague information. In the case of classification, this theory implicitly calculates reducts of the full set of attributes, eliminating those that are redundant or meaningless. Such reducts may even serve as input to other classifiers other than Rough Sets. The typical high dimensionality of current databases precludes the use of greedy methods to find optimal or suboptimal reducts in the search space and requires the use of stochastic methods. In this context, the calculation of reducts is typically performed by a genetic algorithm, but other metaheuristics have been proposed with better performance. This work proposes the innovative use of two known metaheuristics for this calculation, the Variable Neighborhood Search, the Variable Neighborhood Descent, besides a third heuristic called Decrescent Cardinality Search. The last one is a new heuristic specifically proposed for reduct calculation. Considering some databases commonly found in the literature of the area, the reducts that have been obtained present lower cardinality, i.e., a lower number of attributes.展开更多
The attribute reduction algorithms of decision table based on discernible matrix are required to construct discernible matrix, which reduces efficiency of algorithms. In this paper, the relationship between attribute ...The attribute reduction algorithms of decision table based on discernible matrix are required to construct discernible matrix, which reduces efficiency of algorithms. In this paper, the relationship between attribute discernible matrix and its discernibility is first established for general information systems. Based on the idea that the equivalent discernible matrix has a same attribute reduction, existing matrices are modified and a formula of attribute discernibility associated with algebraic reduction for decision table is proposed. A heuristic attribute reduction algorithm based on attribute discernibility is presented. Experimental results indicate that the algorithm can more easily explore an optimal or sub-optimal reduction, and is efficient.展开更多
基金Anhui Province Natural Science Research Project of Colleges and Universities(2023AH040321)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.
基金funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant Number 102.05-2021.10.
文摘Attribute reduction through the combined approach of Rough Sets(RS)and algebraic topology is an open research topic with significant potential for applications.Several research works have introduced a strong relationship between RS and topology spaces for the attribute reduction problem.However,the mentioned recent methods followed a strategy to construct a new measure for attribute selection.Meanwhile,the strategy for searching for the reduct is still to select each attribute and gradually add it to the reduct.Consequently,those methods tended to be inefficient for high-dimensional datasets.To overcome these challenges,we use the separability property of Hausdorff topology to quickly identify distinguishable attributes,this approach significantly reduces the time for the attribute filtering stage of the algorithm.In addition,we propose the concept of Hausdorff topological homomorphism to construct candidate reducts,this method significantly reduces the number of candidate reducts for the wrapper stage of the algorithm.These are the two main stages that have the most effect on reducing computing time for the attribute reduction of the proposed algorithm,which we call the Cluster Filter Wrapper algorithm based on Hausdorff Topology.Experimental validation on the UCI Machine Learning Repository Data shows that the proposed method achieves efficiency in both the execution time and the size of the reduct.
文摘Attribute reduction is a research hotspot in rough set theory. Traditional heuristic attribute reduction methods add the most important attribute to the decision attribute set each time, resulting in multiple redundant attribute calculations, high time consumption, and low reduction efficiency. In this paper, based on the idea of sequential three-branch decision classification domain, attributes are treated as objects of three-branch division, and attributes are divided into core attributes, relatively necessary attributes, and unnecessary attributes using attribute importance and thresholds. Core attributes are added to the decision attribute set, unnecessary attributes are rejected from being added, and relatively necessary attributes are repeatedly divided until the reduction result is obtained. Experiments were conducted on 8 groups of UCI datasets, and the results show that, compared to traditional reduction methods, the method proposed in this paper can effectively reduce time consumption while ensuring classification performance.
基金Anhui Provincial University Research Project(Project Number:2023AH051659)Tongling University Talent Research Initiation Fund Project(Project Number:2022tlxyrc31)+1 种基金Tongling University School-Level Scientific Research Project(Project Number:2021tlxytwh05)Tongling University Horizontal Project(Project Number:2023tlxyxdz237)。
文摘For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm using discernment as the heuristic information was proposed.The reduction algorithm comprehensively considers the dependency degree and neighborhood granulation degree of attributes,allowing for a more accurate measurement of the importance degrees of attributes.Example analyses and experimental results demonstrate the feasibility and effectiveness of the algorithm.
基金The National Natural Science Foundation of China(No.61300167)the Open Project Program of State Key Laboratory for Novel Software Technology of Nanjing University(No.KFKT2015B17)+3 种基金the Natural Science Foundation of Jiangsu Province(No.BK20151274)Qing Lan Project of Jiangsu Provincethe Open Project Program of Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education(No.JYB201606)the Program for Special Talent in Six Fields of Jiangsu Province(No.XYDXXJS-048)
文摘In order to improve the performance of the attribute reduction algorithm to deal with the noisy and uncertain large data, a novel co-evolutionary cloud-based attribute ensemble multi-agent reduction(CCAEMR) algorithm is proposed.First, a co-evolutionary cloud framework is designed under the M apReduce mechanism to divide the entire population into different co-evolutionary subpopulations with a self-adaptive scale. Meanwhile, these subpopulations will share their rewards to accelerate attribute reduction implementation.Secondly, a multi-agent ensemble strategy of co-evolutionary elitist optimization is constructed to ensure that subpopulations can exploit any correlation and interdependency between interacting attribute subsets with reinforcing noise tolerance.Hence, these agents are kept within the stable elitist region to achieve the optimal profit. The experimental results show that the proposed CCAEMR algorithm has better efficiency and feasibility to solve large-scale and uncertain dataset problems with complex noise.
基金The National Natural Science Foundation of China(No. 61139002,61171132)the Funding of Jiangsu Innovation Program for Graduate Education (No. CXZZ11_0219 )+2 种基金the Natural Science Foundation of Jiangsu Province (No. BK2010280)the Open Project of Jiangsu Provincial Key Laboratory of Computer Information Processing Technology (No. KJS1023)the Applying Study Foundation of Nantong(No. BK2011062)
文摘Due to the fact that conventional heuristic attribute reduction algorithms are poor in running efficiency and difficult in accomplishing the co-evolutionary reduction mechanism in the decision table, an adaptive multicascade attribute reduction algorithm based on quantum-inspired mixed co-evolution is proposed. First, a novel and efficient self- adaptive quantum rotation angle strategy is designed to direct the participating populations to mutual adaptive evolution and to accelerate convergence speed. Then, a multicascade model of cooperative and competitive mixed co-evolution is adopted to decompose the evolutionary attribute species into subpopulations according to their historical performance records, which can increase the diversity of subpopulations and select some elitist individuals so as to strengthen the sharing ability of their searching experience. So the global optimization reduction set can be obtained quickly. The experimental results show that, compared with the existing algorithms, the proposed algorithm can achieve a higher performance for attribute reduction, and it can be considered as a more competitive heuristic algorithm on the efficiency and accuracy of minimum attribute reduction.
基金supported by the National Natural Science Foundation of China (60873069 61171132)+3 种基金the Jiangsu Government Scholarship for Overseas Studies (JS-2010-K005)the Funding of Jiangsu Innovation Program for Graduate Education (CXZZ11 0219)the Open Project Program of Jiangsu Provincial Key Laboratory of Computer Information Processing Technology (KJS1023)the Applying Study Foundation of Nantong (BK2011062)
文摘Particle swarm optimization (PSO) is a new heuristic algorithm which has been applied to many optimization problems successfully. Attribute reduction is a key studying point of the rough set theory, and it has been proven that computing minimal reduc- tion of decision tables is a non-derterministic polynomial (NP)-hard problem. A new cooperative extended attribute reduction algorithm named Co-PSAR based on improved PSO is proposed, in which the cooperative evolutionary strategy with suitable fitness func- tions is involved to learn a good hypothesis for accelerating the optimization of searching minimal attribute reduction. Experiments on Benchmark functions and University of California, Irvine (UCI) data sets, compared with other algorithms, verify the superiority of the Co-PSAR algorithm in terms of the convergence speed, efficiency and accuracy for the attribute reduction.
基金supported by the National Natural Science Foundation of China(6113900261171132)+4 种基金the Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11 0219)the Natural Science Foundation of Jiangsu Education Department(12KJB520013)the Applying Study Foundation of Nantong(BK2011062)the Open Project Program of State Key Laboratory for Novel Software Technology,Nanjing University(KFKT2012B28)the Natural Science Pre-Research Foundation of Nantong University(12ZY016)
文摘Attribute reduction in the rough set theory is an important feature selection method, but finding a minimum attribute reduction has been proven to be a non-deterministic polynomial (NP)-hard problem. Therefore, it is necessary to investigate some fast and effective approximate algorithms. A novel and enhanced quantum-inspired shuffled frog leaping based minimum attribute reduction algorithm (QSFLAR) is proposed. Evolutionary frogs are represented by multi-state quantum bits, and both quantum rotation gate and quantum mutation operators are used to exploit the mechanisms of frog population diversity and convergence to the global optimum. The decomposed attribute subsets are co-evolved by the elitist frogs with a quantum-inspired shuffled frog leaping algorithm. The experimental results validate the better feasibility and effectiveness of QSFLAR, comparing with some representa- tive algorithms. Therefore, QSFLAR can be considered as a more competitive algorithm on the efficiency and accuracy for minimum attribute reduction.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61173052)the China Postdoctoral Scinece Foundation(Grant No.2014M561363)
文摘For the issue of evaluation of capability of enterprise agent coalition,an evaluation model based on information fusion and entropy weighting method is presented. The attribute reduction method is utilized to reduce indicators of the capability according to the theory of rough set. The new indicator system can be determined. Attribute reduction can also reduce the workload and remove the redundant information,when there are too many indicators or the indicators have strong correlation. The research complexity can be reduced and the efficiency can be improved. Entropy weighting method is used to determine the weights of the remaining indicators,and the importance of indicators is analyzed. The information fusion model based on nearest neighbor method is developed and utilized to evaluate the capability of multiple agent coalitions,compared to cloud evaluation model and D-S evidence method. Simulation results are reasonable and with obvious distinction. Thus they verify the effectiveness and feasibility of the model. The information fusion model can provide more scientific,rational decision support for choosing the best agent coalition,and provide innovative steps for the evaluation process of capability of agent coalitions.
基金the National Natural Science Foundation of China(No.51775090)the General Program of Civil Aviation Flight University of China(No.J2015-39)
文摘In order to increase the fault diagnosis efficiency and make the fault data mining be realized, the decision table containing numerical attributes must be discretized for further calculations. The discernibility matrix-based reduction method depends on whether the numerical attributes can be properly discretized or not.So a discretization algorithm based on particle swarm optimization(PSO) is proposed. Moreover, hybrid weights are adopted in the process of particles evolution. Comparative calculations for certain equipment are completed to demonstrate the effectiveness of the proposed algorithm. The results indicate that the proposed algorithm has better performance than other popular algorithms such as class-attribute interdependence maximization(CAIM)discretization method and entropy-based discretization method.
基金Supported by the National Natural Science Foundation of China(No. 60573075), the National High Technology Research and Development Program of China (No. 2003AA133060) and the Natural Science Foundation of Shanxi Province (No. 200601104).
文摘To improve the efficiency of the attribute reduction, we present an attribute reduction algorithm based on background knowledge and information entropy by making use of background knowledge from research fields. Under the condition of known background knowledge, the algorithm can not only greatly improve the efficiency of attribute reduction, but also avoid the defection of information entropy partial to attribute with much value. The experimental result verifies that the algorithm is effective. In the end, the algorithm produces better results when applied in the classification of the star spectra data.
文摘This paper deals with the problem of attribute discernibility reduction and proposes some new concepts to rough set theory (RST) based on the discernibility matrix of Skowron, such as secondary core, regeneration matrix and the degree of attribute discernibility (DAD). This paper puts forward an attribute reduction algorithm based on maximum discernibility degree, which opens up an effective way of gaining minimum attribute reduction of decision table. The efficacy of this algorithm has been verified by practical application in a diagnostic system of loader, which substantially decreases information gathering requirement and lowers the overall cost with no loss of accuracy.
基金Supported by the National Natural Science Foundation of China (No.60308002)
文摘The logging attribute optimization is an important task in the well-logging interpretation. A method of attribute reduction is presented based on rough set. Firstly, the core information of the sample by a general reductive method is determined. Then, the significance of dispensable attribute in the reduction-table is calculated. Finally, the minimum relative reduction set is achieved. The typical calculation and quantitative computation of reservoir parameter in oil logging show that the method of attribute reduction is greatly effective and feasible in logging interpretation.
文摘The quantity of well logging data is increasing exponentially, hence methods of extracting the useful information or attribution from the logging database are becoming very important in logging interpretation. So, the method of logging attribute reduction is presented based on a rough set, i.e., first determining the core of the information table, then calculating the significance of each attribute, and finally obtaining the relative reduction table. The application result shows that the method of attribute reduction is feasible and can be used for optimizing logging attributes, and decreasing redundant logging information to a great extent.
基金supported by the Foundation and Frontier Technologies Research Plan Projects of Henan Province of China under Grant No. 102300410266
文摘Classical rough set has a limited processing capacity in fuzzy decision table. Combining fuzzy set with classical rough set,attribute reduction algorithm on fuzzy decision table is studied. First,new similarity degree and new similarity category are defined. In the meantime,similarity category clusters which are divided by condition attribute are provided. And then,two theorems are presented. Subsequently,a new attribute reduction algorithm is proposed. Finally,the new attribute reduction algorithm is verified through a performance evaluation decision table of the self-repairing flight-control system. The result shows the proposed attribute reduction algorithm is able to deal with fuzzy decision table to a certain extent.
基金Supported by the National Natural Science Foundation of China(61139002,61171132)the Natural Science Foundation of Jiangsu Education Department(12KJB520013)+2 种基金the Fundamental Research Funds for the Central Universitiesthe Funding of Jiangsu Innovation Program for Graduate Education(CXZZ110219)the Open Project Program of State Key Lab for Novel Software Technology in Nanjing University(KFKT2012B28)
文摘Attribute reduction is an important process in rough set theory.Finding minimum attribute reduction has been proven to help the user-oriented make better knowledge discovery in some cases.In this paper,an efficient minimum attribute reduction algorithm is proposed based on the multilevel evolutionary tree with self-adaptive subpopulations.A model of multilevel evolutionary tree with self-adaptive subpopulations is constructed,and interacting attribute sets are better decomposed into subsets by the self-adaptive mechanism of elitist populations.Moreover it can self-adapt the subpopulation sizes according to the historical performance record so that interacting attribute decision variables are captured into the same grouped subpopulation,which will be extended to better performance in both quality of solution and competitive computation complexity for minimum attribute reduction.The conducted experiments show the proposed algorithm is better on both efficiency and accuracy of minimum attribute reduction than some representative algorithms.Finally the proposed algorithm is applied to magnetic resonance image(MRI)segmentation,and its stronger applicability is further demonstrated by the effective and robust segmentation results.
基金supported by grants from the National Natural Science Foundation of China(No.70861001)the Natural Science Foundation of Hainan Province in China(No.109005).
文摘This paper proposes,from the viewpoint of relation matrix,a new algorithm of attribute reduction for decision systems.Two new and relative reasonable indices are first defined to measure significance of the attributes in decision systems and then a heuristic algorithm of attribute reduction is formulated.Moreover,the time complexity of the algorithm is analyzed and it is proved to be complete.Some numerical experiments are also conducted to access the performance of the presented algorithm and the results demonstrate that it is not only effective but also efficient.
文摘The Rough Sets Theory is used in data mining with emphasis on the treatment of uncertain or vague information. In the case of classification, this theory implicitly calculates reducts of the full set of attributes, eliminating those that are redundant or meaningless. Such reducts may even serve as input to other classifiers other than Rough Sets. The typical high dimensionality of current databases precludes the use of greedy methods to find optimal or suboptimal reducts in the search space and requires the use of stochastic methods. In this context, the calculation of reducts is typically performed by a genetic algorithm, but other metaheuristics have been proposed with better performance. This work proposes the innovative use of two known metaheuristics for this calculation, the Variable Neighborhood Search, the Variable Neighborhood Descent, besides a third heuristic called Decrescent Cardinality Search. The last one is a new heuristic specifically proposed for reduct calculation. Considering some databases commonly found in the literature of the area, the reducts that have been obtained present lower cardinality, i.e., a lower number of attributes.
文摘The attribute reduction algorithms of decision table based on discernible matrix are required to construct discernible matrix, which reduces efficiency of algorithms. In this paper, the relationship between attribute discernible matrix and its discernibility is first established for general information systems. Based on the idea that the equivalent discernible matrix has a same attribute reduction, existing matrices are modified and a formula of attribute discernibility associated with algebraic reduction for decision table is proposed. A heuristic attribute reduction algorithm based on attribute discernibility is presented. Experimental results indicate that the algorithm can more easily explore an optimal or sub-optimal reduction, and is efficient.