期刊文献+
共找到1,372篇文章
< 1 2 69 >
每页显示 20 50 100
A YOLOv11-Based Deep Learning Framework for Multi-Class Human Action Recognition
1
作者 Nayeemul Islam Nayeem Shirin Mahbuba +4 位作者 Sanjida Islam Disha Md Rifat Hossain Buiyan Shakila Rahman M.Abdullah-Al-Wadud Jia Uddin 《Computers, Materials & Continua》 2025年第10期1541-1557,共17页
Human activity recognition is a significant area of research in artificial intelligence for surveillance,healthcare,sports,and human-computer interaction applications.The article benchmarks the performance of You Only... Human activity recognition is a significant area of research in artificial intelligence for surveillance,healthcare,sports,and human-computer interaction applications.The article benchmarks the performance of You Only Look Once version 11-based(YOLOv11-based)architecture for multi-class human activity recognition.The article benchmarks the performance of You Only Look Once version 11-based(YOLOv11-based)architecture for multi-class human activity recognition.The dataset consists of 14,186 images across 19 activity classes,from dynamic activities such as running and swimming to static activities such as sitting and sleeping.Preprocessing included resizing all images to 512512 pixels,annotating them in YOLO’s bounding box format,and applying data augmentation methods such as flipping,rotation,and cropping to enhance model generalization.The proposed model was trained for 100 epochs with adaptive learning rate methods and hyperparameter optimization for performance improvement,with a mAP@0.5 of 74.93%and a mAP@0.5-0.95 of 64.11%,outperforming previous versions of YOLO(v10,v9,and v8)and general-purpose architectures like ResNet50 and EfficientNet.It exhibited improved precision and recall for all activity classes with high precision values of 0.76 for running,0.79 for swimming,0.80 for sitting,and 0.81 for sleeping,and was tested for real-time deployment with an inference time of 8.9 ms per image,being computationally light.Proposed YOLOv11’s improvements are attributed to architectural advancements like a more complex feature extraction process,better attention modules,and an anchor-free detection mechanism.While YOLOv10 was extremely stable in static activity recognition,YOLOv9 performed well in dynamic environments but suffered from overfitting,and YOLOv8,while being a decent baseline,failed to differentiate between overlapping static activities.The experimental results determine proposed YOLOv11 to be the most appropriate model,providing an ideal balance between accuracy,computational efficiency,and robustness for real-world deployment.Nevertheless,there exist certain issues to be addressed,particularly in discriminating against visually similar activities and the use of publicly available datasets.Future research will entail the inclusion of 3D data and multimodal sensor inputs,such as depth and motion information,for enhancing recognition accuracy and generalizability to challenging real-world environments. 展开更多
关键词 Human activity recognition YOLOv11 deep learning real-time detection anchor-free detection attention mechanisms object detection image classification multi-class recognition surveillance applications
在线阅读 下载PDF
Enhancing Multi-Class Cyberbullying Classification with Hybrid Feature Extraction and Transformer-Based Models
2
作者 Suliman Mohamed Fati Mohammed A.Mahdi +4 位作者 Mohamed A.G.Hazber Shahanawaj Ahamad Sawsan A.Saad Mohammed Gamal Ragab Mohammed Al-Shalabi 《Computer Modeling in Engineering & Sciences》 2025年第5期2109-2131,共23页
Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or... Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or indirect slurs.To address this gap,we propose a hybrid framework combining Term Frequency-Inverse Document Frequency(TF-IDF),word-to-vector(Word2Vec),and Bidirectional Encoder Representations from Transformers(BERT)based models for multi-class cyberbullying detection.Our approach integrates TF-IDF for lexical specificity and Word2Vec for semantic relationships,fused with BERT’s contextual embeddings to capture syntactic and semantic complexities.We evaluate the framework on a publicly available dataset of 47,000 annotated social media posts across five cyberbullying categories:age,ethnicity,gender,religion,and indirect aggression.Among BERT variants tested,BERT Base Un-Cased achieved the highest performance with 93%accuracy(standard deviation across±1%5-fold cross-validation)and an average AUC of 0.96,outperforming standalone TF-IDF(78%)and Word2Vec(82%)models.Notably,it achieved near-perfect AUC scores(0.99)for age and ethnicity-based bullying.A comparative analysis with state-of-the-art benchmarks,including Generative Pre-trained Transformer 2(GPT-2)and Text-to-Text Transfer Transformer(T5)models highlights BERT’s superiority in handling ambiguous language.This work advances cyberbullying detection by demonstrating how hybrid feature extraction and transformer models improve multi-class classification,offering a scalable solution for moderating nuanced harmful content. 展开更多
关键词 Cyberbullying classification multi-class classification BERT models machine learning TF-IDF Word2Vec social media analysis transformer models
在线阅读 下载PDF
A review of multi-class change detection for satellite remote sensing imagery 被引量:4
3
作者 Qiqi Zhu Xi Guo +1 位作者 Ziqi Li Deren Li 《Geo-Spatial Information Science》 CSCD 2024年第1期1-15,共15页
Change Detection(CD)provides a research basis for environmental monitoring,urban expansion and reconstruction as well as disaster assessment,by identifying the changes of ground objects in different time periods.Tradi... Change Detection(CD)provides a research basis for environmental monitoring,urban expansion and reconstruction as well as disaster assessment,by identifying the changes of ground objects in different time periods.Traditional CD focused on the Binary Change Detection(BCD),focusing solely on the change and no-change regions.Due to the dynamic progress of earth observation satellite techniques,the spatial resolution of remote sensing images continues to increase,Multi-class Change Detection(MCD)which can reflect more detailed land change has become a hot research direction in the field of CD.Although many scholars have reviewed change detection at present,most of the work still focuses on BCD.This paper focuses on the recent progress in MCD,which includes five major aspects:challenges,datasets,methods,applications and future research direction.Specifically,the background of MCD is first introduced.Then,the major difficulties and challenges in MCD are discussed and delineated.The benchmark datasets for MCD are described,and the available open datasets are listed.Moreover,MCD is further divided into three categories and the specific techniques are described,respectively.Subsequently,the common applications of MCD are described.Finally,the relevant literature in the main journals of remote sensing in the past five years are analyzed and the development and future research direction of MCD are discussed.This review will help researchers understand this field and provide a reference for the subsequent development of MCD.Our collections of MCD benchmark datasets are available at:https://zenodo.org/record/6809804#.YsfvxXZByUk. 展开更多
关键词 Remote sensing information extraction change detection multi-class change detection REVIEW
原文传递
Data fusion for fault diagnosis using multi-class Support Vector Machines 被引量:1
4
作者 胡中辉 蔡云泽 +1 位作者 李远贵 许晓鸣 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第10期1030-1039,共10页
Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine... Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine information from several data sources. In the centralized scheme, all information from several data sources is centralized to construct an input space. Then a multi-class Support Vector Machine classifier is trained. In the distributed schemes, the individual data sources are proc-essed separately and modelled by using the multi-class Support Vector Machine. Then new data fusion strategies are proposed to combine the information from the individual multi-class Support Vector Machine models. Our proposed fusion strategies take into account that an Support Vector Machine (SVM) classifier achieves classification by finding the optimal classification hyperplane with maximal margin. The proposed methods are applied for fault diagnosis of a diesel engine. The experimental results showed that almost all the proposed approaches can largely improve the diagnostic accuracy. The robustness of diagnosis is also improved because of the implementation of data fusion strategies. The proposed methods can also be applied in other fields. 展开更多
关键词 Data fusion Fault diagnosis multi-class classification multi-class Support Vector Machines Diesel engine
在线阅读 下载PDF
Time varying congestion pricing for multi-class and multi-mode transportation system with asymmetric cost functions
5
作者 钟绍鹏 邓卫 《Journal of Southeast University(English Edition)》 EI CAS 2011年第1期77-82,共6页
This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combin... This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combined applications of the space-time expanded network(STEN) and the conventional network equilibrium modeling techniques,a multi-class,multi-mode and multi-criteria traffic network equilibrium model is developed.Travelers of different classes have distinctive value of times(VOTs),and travelers from the same class perceive their travel disutility or generalized costs on a route according to different weights of travel time and travel costs.Moreover,the symmetric cost function model is extended to deal with the interactions between buses and private cars.It is found that there exists a uniform(anonymous) link toll pattern which can drive a multi-class,multi-mode and multi-criteria user equilibrium flow pattern to a system optimum when the system's objective function is measured in terms of money.It is also found that the marginal cost pricing models with a symmetric travel cost function do not reflect the interactions between traffic flows of different road sections,and the obtained congestion pricing toll is smaller than the real value. 展开更多
关键词 time varying congestion pricing ASYMMETRIC multi-class MULTI-MODE MULTI-CRITERIA
在线阅读 下载PDF
Multi-Class Classification Methods of Cost-Conscious LS-SVM for Fault Diagnosis of Blast Furnace 被引量:15
6
作者 LIU Li-mei WANG An-na SHA Mo ZHAO Feng-yun 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第10期17-23,33,共8页
Aiming at the limitations of rapid fault diagnosis of blast furnace, a novel strategy based on cost-conscious least squares support vector machine (LS-SVM) is proposed to solve this problem. Firstly, modified discre... Aiming at the limitations of rapid fault diagnosis of blast furnace, a novel strategy based on cost-conscious least squares support vector machine (LS-SVM) is proposed to solve this problem. Firstly, modified discrete particle swarm optimization is applied to optimize the feature selection and the LS-SVM parameters. Secondly, cost-con- scious formula is presented for fitness function and it contains in detail training time, recognition accuracy and the feature selection. The CLS-SVM algorithm is presented to increase the performance of the LS-SVM classifier. The new method can select the best fault features in much shorter time and have fewer support vectbrs and better general- ization performance in the application of fault diagnosis of the blast furnace. Thirdly, a gradual change binary tree is established for blast furnace faults diagnosis. It is a multi-class classification method based on center-of-gravity formula distance of cluster. A gradual change classification percentage ia used to select sample randomly. The proposed new metbod raises the sped of diagnosis, optimizes the classifieation scraraey and has good generalization ability for fault diagnosis of the application of blast furnace. 展开更多
关键词 blast furnace fault diagnosis eosc-conscious LS-SVM multi-class classification
原文传递
A relaxation scheme for a multi-class Lighthill-Whitham-Richards traffic flow model 被引量:6
7
作者 Jian-zhong CHEN Zhong-ke SHI Yan-mei HU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第12期1835-1844,共10页
We present a high-resolution relaxation scheme for a multi-class Lighthill-Whitham-Richards (MCLWR) traffic flow model. This scheme is based on high-order reconstruction for spatial discretization and an implicit-expl... We present a high-resolution relaxation scheme for a multi-class Lighthill-Whitham-Richards (MCLWR) traffic flow model. This scheme is based on high-order reconstruction for spatial discretization and an implicit-explicit Runge-Kutta method for time integration. The resulting method retains the simplicity of the relaxation schemes. There is no need to involve Riemann solvers and characteristic decomposition. Even the computation of the eigenvalues is not required. This makes the scheme particularly well suited for the MCLWR model in which the analytical expressions of the eigenvalues are difficult to obtain for more than four classes of road users. The numerical results illustrate the effectiveness of the presented method. 展开更多
关键词 Relaxation scheme multi-class LWR model Traffic flow CWENO reconstruction Implicit-explicit Runge-Kutta
原文传递
Multi-class Classification Methods of Enhanced LS-TWSVM for Strip Steel Surface Defects 被引量:4
8
作者 Mao-xiang CHU An-na WANG +1 位作者 Rong-fen GONG Mo SHA 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第2期174-180,共7页
Considering strip steel surface defect samples, a multi-class classification method was proposed based on enhanced least squares twin support vector machines (ELS-TWSVMs) and binary tree. Firstly, pruning region sam... Considering strip steel surface defect samples, a multi-class classification method was proposed based on enhanced least squares twin support vector machines (ELS-TWSVMs) and binary tree. Firstly, pruning region samples center method with adjustable pruning scale was used to prune data samples. This method could reduce classifierr s training time and testing time. Secondly, ELS-TWSVM was proposed to classify the data samples. By introducing error variable contribution parameter and weight parameter, ELS-TWSVM could restrain the impact of noise sam- ples and have better classification accuracy. Finally, multi-class classification algorithms of ELS-TWSVM were pro- posed by combining ELS-TWSVM and complete binary tree. Some experiments were made on two-dimensional data- sets and strip steel surface defect datasets. The experiments showed that the multi-class classification methods of ELS-TWSVM had higher classification speed and accuracy for the datasets with large-scale, unbalanced and noise samples. 展开更多
关键词 multi-class classification least squares twin support vector machine error variable contribution WEIGHT binary tree strip steel surface
原文传递
Fault Diagnosis for Aero-engine Applying a New Multi-class Support Vector Algorithm 被引量:4
9
作者 徐启华 师军 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第3期175-182,共8页
Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based... Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based on H-SVM is proposed and applied to aero-engine. Before SVM training, the training data are first clustered according to their class-center Euclid distances in some feature spaces. The samples which have close distances are divided into the same sub-classes for training, and this makes the H-SVM have reasonable hierarchical construction and good generalization performance. Instead of the common C-SVM, the v-SVM is selected as the binary classifier, in which the parameter v varies only from 0 to 1 and can be determined more easily. The simulation results show that the designed H-SVMs can fast diagnose the multi-class single faults and combination faults for the gas path components of an aero-engine. The fault classifiers have good diagnosis accuracy and can keep robust even when the measurement inputs are disturbed by noises. 展开更多
关键词 support vector machine fault diagnosis multi-class classification
在线阅读 下载PDF
A combined algorithm of K-means and MTRL for multi-class classification 被引量:2
10
作者 XUE Mengfan HAN Lei PENG Dongliang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期875-885,共11页
The basic idea of multi-class classification is a disassembly method,which is to decompose a multi-class classification task into several binary classification tasks.In order to improve the accuracy of multi-class cla... The basic idea of multi-class classification is a disassembly method,which is to decompose a multi-class classification task into several binary classification tasks.In order to improve the accuracy of multi-class classification in the case of insufficient samples,this paper proposes a multi-class classification method combining K-means and multi-task relationship learning(MTRL).The method first uses the split method of One vs.Rest to disassemble the multi-class classification task into binary classification tasks.K-means is used to down sample the dataset of each task,which can prevent over-fitting of the model while reducing training costs.Finally,the sampled dataset is applied to the MTRL,and multiple binary classifiers are trained together.With the help of MTRL,this method can utilize the inter-task association to train the model,and achieve the purpose of improving the classification accuracy of each binary classifier.The effectiveness of the proposed approach is demonstrated by experimental results on the Iris dataset,Wine dataset,Multiple Features dataset,Wireless Indoor Localization dataset and Avila dataset. 展开更多
关键词 machine LEARNING multi-class classification K-MEANS MULTI-TASK RELATIONSHIP LEARNING (MTRL) OVER-FITTING
在线阅读 下载PDF
Multi-class classification method for strip steel surface defects based on support vector machine with adjustable hyper-sphere 被引量:2
11
作者 Mao-xiang Chu Xiao-ping Liu +1 位作者 Rong-fen Gong Jie Zhao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第7期706-716,共11页
Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated f... Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated from support vector data description, AHSVM adopts hyper-sphere to solve classification problem. AHSVM can obey two principles: the margin maximization and inner-class dispersion minimization. Moreover, the hyper-sphere of AHSVM is adjustable, which makes the final classification hyper-sphere optimal for training dataset. On the other hand, AHSVM is combined with binary tree to solve multi-class classification for steel surface defects. A scheme of samples pruning in mapped feature space is provided, which can reduce the number of training samples under the premise of classification accuracy, resulting in the improvements of classification speed. Finally, some testing experiments are done for eight types of strip steel surface defects. Experimental results show that multi-class AHSVM classifier exhibits satisfactory results in classification accuracy and efficiency. 展开更多
关键词 Strip steel surface defect multi-class classification Supporting vector machine Adjustable hyper-sphere
原文传递
Multi-class classification method for steel surface defects with feature noise 被引量:2
12
作者 Mao-xiang Chu Yao Feng +1 位作者 Yong-hui Yang Xin Deng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2021年第3期303-315,共13页
Defect classification is the key task of a steel surface defect detection system.The current defect classification algorithms have not taken the feature noise into consideration.In order to reduce the adverse impact o... Defect classification is the key task of a steel surface defect detection system.The current defect classification algorithms have not taken the feature noise into consideration.In order to reduce the adverse impact of feature noise,an anti-noise multi-class classification method was proposed for steel surface defects.On the one hand,a novel anti-noise support vector hyper-spheres(ASVHs)classifier was formulated.For N types of defects,the ASVHs classifier built N hyper-spheres.These hyper-spheres were insensitive to feature and label noise.On the other hand,in order to reduce the costs of online time and storage space,the defect samples were pruned by support vector data description with parameter iteration adjustment strategy.In the end,the ASVHs classifier was built with sparse defect samples set and auxiliary information.Experimental results show that the novel multi-class classification method has high efficiency and accuracy for corrupted defect samples in steel surface. 展开更多
关键词 Steel surface defect multi-class classification Anti-noise support vector hyper-sphere Parameter iteration adjustment Feature noise
原文传递
Multi-Class Support Vector Machine Classifier Based on Jeffries-Matusita Distance and Directed Acyclic Graph 被引量:1
13
作者 Miao Zhang Zhen-Zhou Lai +1 位作者 Dan Li Yi Shen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第5期113-118,共6页
Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise... Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method. 展开更多
关键词 multi-class classification support vector machine directed acyclic graph Jeffries-Matusitadistance hyperspcctral data
在线阅读 下载PDF
Power Quality Disturbance Classification Method Based on Wavelet Transform and SVM Multi-class Algorithms 被引量:1
14
作者 Xiao Fei 《Energy and Power Engineering》 2013年第4期561-565,共5页
The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wav... The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wavelet transform coefficients and wavelet transform energy distribution constitute feature vectors. These vectors are then trained and tested using SVM multi-class algorithms. Experimental results demonstrate that the SVM multi-class algorithms, which use the Gaussian radial basis function, exponential radial basis function, and hyperbolic tangent function as basis functions, are suitable methods for power quality disturbance classification. 展开更多
关键词 Power Quality DISTURBANCE Classification WAVELET TRANSFORM SVM multi-class ALGORITHMS
在线阅读 下载PDF
Scheduler Algorithm for Multi-Class Switch with Priority Threshold
15
作者 Abdul Aziz Abdul Rahman Kamaruzzaman Seman +2 位作者 Kamarudin Saadan Ahmad Kamsani Samingan Azreen Azman 《International Journal of Communications, Network and System Sciences》 2012年第6期313-320,共8页
The requirement for guaranteed Quality of Service (QoS) have become very essential since there are numerous network base application is available such as video conferencing, data streaming, data transfer and many more... The requirement for guaranteed Quality of Service (QoS) have become very essential since there are numerous network base application is available such as video conferencing, data streaming, data transfer and many more. This has led to the multi-class switch architecture to cater for the needs for different QoS requirements. The introduction of threshold in multi-class switch to solve the starvation problems in loss sensitive class has increased the mean delay for delay sensitive class. In this research, a new scheduling architecture is introduced to improve mean delay in delay sensitive class when the threshold is active. The proposed architecture has been simulated under uniform and non-uniform traffic to show performance of the switch in terms of mean delay. The results show that the proposed architecture has achieved better performance as compared to Weighted Fair Queueing (WFQ) and Priority Queue (PQ). 展开更多
关键词 SCHEDULER PRIORITY Thresholds multi-class Quality of Service (QOS)
在线阅读 下载PDF
Pashto Characters Recognition Using Multi-Class Enabled Support Vector Machine
16
作者 Sulaiman Khan Shah Nazir +1 位作者 Habib Ullah Khan Anwar Hussain 《Computers, Materials & Continua》 SCIE EI 2021年第6期2831-2844,共14页
During the last two decades signicant work has been reported in the eld of cursive language’s recognition especially,in the Arabic,the Urdu and the Persian languages.The unavailability of such work in the Pashto lang... During the last two decades signicant work has been reported in the eld of cursive language’s recognition especially,in the Arabic,the Urdu and the Persian languages.The unavailability of such work in the Pashto language is because of:the absence of a standard database and of signicant research work that ultimately acts as a big barrier for the research community.The slight change in the Pashto characters’shape is an additional challenge for researchers.This paper presents an efcient OCR system for the handwritten Pashto characters based on multi-class enabled support vector machine using manifold feature extraction techniques.These feature extraction techniques include,tools such as zoning feature extractor,discrete cosine transform,discrete wavelet transform,and Gabor lters and histogram of oriented gradients.A hybrid feature map is developed by combining the manifold feature maps.This research work is performed by developing a medium-sized dataset of handwritten Pashto characters that encapsulate 200 handwritten samples for each 44 characters in the Pashto language.Recognition results are generated for the proposed model based on a manifold and hybrid feature map.An overall accuracy rates of 63.30%,65.13%,68.55%,68.28%,67.02%and 83%are generated based on a zoning technique,HoGs,Gabor lter,DCT,DWT and hybrid feature maps respectively.Applicability of the proposed model is also tested by comparing its results with a convolution neural network model.The convolution neural network-based model generated an accuracy rate of 81.02%smaller than the multi-class support vector machine.The highest accuracy rate of 83%for the multi-class SVM model based on a hybrid feature map reects the applicability of the proposed model. 展开更多
关键词 Pashto multi-class support vector machine handwritten characters database ZONING and histogram of oriented gradients
在线阅读 下载PDF
Research on Intrusion Detection Algorithm Based on Multi-Class SVM in Wireless Sensor Networks
17
作者 Hangxia Zhou Qian Liu Chen Cui 《Communications and Network》 2013年第3期524-528,共5页
A multi-class method is proposed based on Error Correcting Output Codes algorithm in order to get better performance of attack recognition in Wireless Sensor Networks. Aiming to enhance the accuracy of attack detectio... A multi-class method is proposed based on Error Correcting Output Codes algorithm in order to get better performance of attack recognition in Wireless Sensor Networks. Aiming to enhance the accuracy of attack detection, the multi-class method is constructed with Hadamard matrix and two-class Support Vector Machines. In order to minimize the complexity of the algorithm, sparse coding method is applied in this paper. The comprehensive experimental results show that this modified multi-class method has better attack detection rate compared with other three coding algorithms, and its time efficiency is higher than Hadamard coding algorithm. 展开更多
关键词 WIRELESS SENSOR NETWORK multi-class NETWORK SECURITY
在线阅读 下载PDF
基于Multi-class SVM的车辆换道行为识别模型研究 被引量:17
18
作者 陈亮 冯延超 李巧茹 《安全与环境学报》 CAS CSCD 北大核心 2020年第1期193-199,共7页
自动安全换道是车辆实现无人驾驶的关键,为精确识别行驶车辆换道状态,保证行车安全,设计了一种基于多分类支持向量机(Multi-class Support Vector Machine,Multiclass SVM)的车辆换道识别模型。从NGSIM数据集中选取美国101公路车辆轨迹... 自动安全换道是车辆实现无人驾驶的关键,为精确识别行驶车辆换道状态,保证行车安全,设计了一种基于多分类支持向量机(Multi-class Support Vector Machine,Multiclass SVM)的车辆换道识别模型。从NGSIM数据集中选取美国101公路车辆轨迹数据进行分类处理,并将车辆换道过程划分为车辆跟驰阶段、车辆换道准备阶段和车辆换道执行阶段。采用网格搜索结合粒子群优化算法(Grid Search-PSO)对SVM模型中惩罚参数C和核参数g进行寻优标定,利用多分类支持向量机换道识别模型对样本数据进行训练和测试,模型测试精度达97.68%。研究表明,模型能够很好地识别车辆在换道过程中的行为状态,为车辆换道阶段的研究提供支持。 展开更多
关键词 安全工程 多分类支持向量机 NGSIM数据 车辆换道识别
原文传递
Predicting Causes of Traffic Road Accidents Using Multi-class Support Vector Machines
19
作者 Elfadil A. Mohamed 《通讯和计算机(中英文版)》 2014年第5期441-447,共7页
关键词 道路交通事故 支持向量机 原因 预测 阿拉伯联合酋长国 多级 数据挖掘技术 肇事车辆
在线阅读 下载PDF
Detection of multi-class coconut clusters for robotic picking under occlusion conditions
20
作者 Yuxing Fu Hongcheng Zheng +2 位作者 Zongbin Wang Jinyang Huang Wei Fu 《International Journal of Agricultural and Biological Engineering》 2025年第1期267-278,共12页
With the development of tree-climbing robots and robotic end-effectors,it is possible to develop automated coconutpicking robots with the help of machine vision technology.Coconuts grow in clusters in the canopy and a... With the development of tree-climbing robots and robotic end-effectors,it is possible to develop automated coconutpicking robots with the help of machine vision technology.Coconuts grow in clusters in the canopy and are easily occluded by leaves.Therefore,the detection of multi-class coconut clusters according to the occlusion condition is necessary for robots to develop picking strategies.The coconut detection model,named YOLO-Coco,was developed based on the YOLOv7-tiny network.It detected coconuts in different conditions such as not-occluded,leaves-occluded,and trunk-occluded fruit.The developed model used Efficient Channel Attention(ECA)to enhance the feature weights extracted by the backbone network.Re-parameterization Convolution(RepConv)made the model convolution layers deeper and provided more semantic information for the detection head.Finally,the Bi-directional Feature Pyramid Network(BiFPN)was used to optimize the head network structure of YOLO-Coco to achieve the balanced fusion of multi-scale features.The results showed that the mean average precision(mAP)of YOLO-Coco for detecting multi-class coconut clusters was 93.6%,and the average precision(AP)of not-occluded,leaves-occluded,and trunk-occluded fruit were 90.5%,93.8%,and 96.4%,respectively.The detection accuracy of YOLO-Coco for yellow coconuts was 5.1%higher than that for green coconuts.Compared with seven mainstream deep learning networks,YOLO-Coco achieved the highest detection accuracy in detecting multi-class coconut clusters,while maintaining advantages in detection speed and model size.The developed model can accurately detect coconuts in complex canopy environments,providing technical support for the visual system of coconut-picking robots. 展开更多
关键词 coconut clusters picking robot leaves-occluded multi-class detection YOLOv7-tiny
原文传递
上一页 1 2 69 下一页 到第
使用帮助 返回顶部