With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A mag...With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A magnetic phase-coding meta-atom(MPM)is formed by the heterogeneous integration of La:YIG magneto-optical(MO)materials and Si microstructures.The MPM couples the magnetic induction phase of spin states with the propagation phase and can simultaneously satisfy the required output phase for dual frequencies under various external magnetic fields to realize the dynamic beam steering among multiple channels at 0.25 and 0.5 THz.The energy ratio of the target direction can reach 96.5%,and the nonreciprocal one-way transmission with a max isolation of 29.8 dB is realized due to the nonreciprocal phase shift of the MO layer.This nonreciprocal mechanism of magnetic induction reshaping of wavefront significantly holds promise for advancing integrated multi-functional THz devices with the characteristics of low-crosstalk,multi-channel,and multi-frequency,and has great potential to promote the development of THz large-capacity and high-speed communication.展开更多
Rotational feeding combined with shift feeding electrochemical trepanning(RF-SF ECTr)is an effective method for machining aeroengine blisks.However,given the variable relative motion of the electrodes and the complex ...Rotational feeding combined with shift feeding electrochemical trepanning(RF-SF ECTr)is an effective method for machining aeroengine blisks.However,given the variable relative motion of the electrodes and the complex flow channels around the bending and twisting blades,the accessibility and uniformity of the flow field are poor in blisk RF-SF ECTr using the traditional electrolyte supply(TES)mode,resulting in poor machining stability and low machining efficiency.To improve the distribution of the flow field,a new multi-channel electrolyte supply(MCES)mode is proposed for blisk RF-SF ECTr,in which the position and volume of the electrolyte supply are controlled effectively by setting multiple inlet channels in the liquid inlet area.A flow-field simulation comparison between TES and MCES shows that better accessibility and uniformity of the flow-field distribution are achieved under MCES.To clarify further the flow-field distribution characteristics under RF-SF ECTr,a series of flow-field simulations was conducted at different machining depths.Based on the obtained dynamic change law for the flow field,to enhance further its uniformity and accessibility,a global coverage strategy for the electrolyte supply and a flow-field structure optimization method for MCES are proposed,which involve optimizing the number,diameter,and location of the inlet channels.After many simulations,the optimal MCES structure was achieved whereby the electrolyte covers all positions effectively in the processing area.To verify the proposed method as effective and correct,a series of RF-SF ECTr experiments was carried out.Under the optimized MCES mode,the feeding rate was increased from 0.8 mm/min with the TES mode to 2.0 mm/min,and the processing stability and efficiency were improved significantly.The methods presented here offer an effective guide for flow-field optimization when machining other components with complex spatial structures.展开更多
Vortex beams carrying orbital angular momentum(OAM)are of great significance for high-capacity communication and super-resolution imaging.However,there is a huge gap between the free-space vortices(FVs)and plasmonic v...Vortex beams carrying orbital angular momentum(OAM)are of great significance for high-capacity communication and super-resolution imaging.However,there is a huge gap between the free-space vortices(FVs)and plasmonic vortices(PVs)on chips,and active manipulation as well as multiplexing in more channels have become a pressing demand.In this work,we demonstrate a terahertz(THz)cascaded metadevice composed of a helical plasmonic metasurface,a liquid crystal(LC)layer,and a helical dielectric metasurface.By spin-orbital angular momentum coupling and photon state superposition,PVs and FVs are generated with mode purity of over 85%on average.Due to the inversion asymmetric design of the helical metasurfaces,the parity symmetry breaking of OAM is realized(the topological charge numbers no longer occur in positive and negative pairs,but all are positive),generating 6 independent channels associated with the decoupled spin states and the near-/far-field positions.Moreover,by the LC integration,dynamic mode switching and energy distribution can be realized,finally obtaining up to 12 modes with a modulation ratio of above 70%.This active tuning and multi-channel multiplexing metadevice establishes a bridge connection between the PVs and FVs,exhibiting promising applications in THz communication,intelligent perception,and information processing.展开更多
BACKGROUND Radical gastrectomy(RGE)for gastric carcinoma(GC)has exerted definite therapeutic efficacy in treating patients with GC.However,a notable risk of postoperative complications(POCs)persists among middle-aged ...BACKGROUND Radical gastrectomy(RGE)for gastric carcinoma(GC)has exerted definite therapeutic efficacy in treating patients with GC.However,a notable risk of postoperative complications(POCs)persists among middle-aged and elderly patients with compromised physiological functions.Hence,developing and implementing reliable nursing interventions to optimize the comprehensive management of these patients is deemed imperative.AIM To analyze the association of multi-channel continuous nursing intervention with POCs,negative emotions(NEs),and quality of life(QoL)of patients undergoing RGE for GC.METHODS This retrospective study selected 99 patients who underwent RGE for GC in our hospital from May 2020 to May 2023.Participants were categorized into the control(n=49 cases)and research groups(n=50 cases)receiving routine and multi-channel continuous nursing care,respectively.Comparative analysis involved data on postoperative rehabilitation(time to first anal exhaust,oral feeding and ambulation,and hospital stay),complications(nausea and vomiting,delayed gastric emptying,and abdominal distension),NEs[Self-rating Anxiety(SAS)/Depression Scale(SDS)],treatment compliance,self-efficacy,and QoL[World Health Organization QoL Brief Version(WHOQOL-BREF)].RESULTS Compared to the control group,the research group demonstrated earlier first postoperative anal exhaust,oral feeding,and ambulation,shorter hospital stay,lower POC rate,and more reduced SAS and SDS scores postintervention,which was significantly lower than the baseline.The treatment compliance scores were significantly higher in the research group than in the control group in terms of medication adherence,daily exercise,reasonable diet,and regular review.Further,the research group demonstrated increased self-efficacy scores in terms of positive attitude,self-stress relief,and self-decision-making,as well as the overall score postintervention,which were higher than the control group.Moreover,the research group reported notably higher WHOQOL-BREF scores in domains such as physiology,psychology,social relations,and environment.CONCLUSION Multi-channel continuous nursing intervention prevents POCs in patients undergoing RGE for GC as well as significantly alleviates patients’NEs and boosts their QoL.展开更多
基金supported by the National Natural Science Foun-dation of China(Grant Nos.62371258,62335012,62205160,and 62435010)the Tianjin Youth Science and Technology Talent Project(Grant No.QN20230227)+1 种基金the Natural Science Foundation of Tianjin(Grant No.24JCYBJC01860)the Fundamental Research Funds for the Central Universities,Nan-kai University(Grant No.075-63253215).
文摘With the urgently increasing demand for high-speed and large-capacity communication trans-mission,there remains a critical need for tunable terahertz(THz)devices with multi-channel in 5G/6G communication systems.A magnetic phase-coding meta-atom(MPM)is formed by the heterogeneous integration of La:YIG magneto-optical(MO)materials and Si microstructures.The MPM couples the magnetic induction phase of spin states with the propagation phase and can simultaneously satisfy the required output phase for dual frequencies under various external magnetic fields to realize the dynamic beam steering among multiple channels at 0.25 and 0.5 THz.The energy ratio of the target direction can reach 96.5%,and the nonreciprocal one-way transmission with a max isolation of 29.8 dB is realized due to the nonreciprocal phase shift of the MO layer.This nonreciprocal mechanism of magnetic induction reshaping of wavefront significantly holds promise for advancing integrated multi-functional THz devices with the characteristics of low-crosstalk,multi-channel,and multi-frequency,and has great potential to promote the development of THz large-capacity and high-speed communication.
基金Supported by National Natural Science Foundation of China(Grant Nos.52275435,52075465,52375519)Open Fund Project of Jiangsu Key Laboratory of Precision and Micro-manufacturing Technology(Grant No.JSKL2324K03)Key Research and Development Program of Hunan Province of China(Grant No.2023GK2026)。
文摘Rotational feeding combined with shift feeding electrochemical trepanning(RF-SF ECTr)is an effective method for machining aeroengine blisks.However,given the variable relative motion of the electrodes and the complex flow channels around the bending and twisting blades,the accessibility and uniformity of the flow field are poor in blisk RF-SF ECTr using the traditional electrolyte supply(TES)mode,resulting in poor machining stability and low machining efficiency.To improve the distribution of the flow field,a new multi-channel electrolyte supply(MCES)mode is proposed for blisk RF-SF ECTr,in which the position and volume of the electrolyte supply are controlled effectively by setting multiple inlet channels in the liquid inlet area.A flow-field simulation comparison between TES and MCES shows that better accessibility and uniformity of the flow-field distribution are achieved under MCES.To clarify further the flow-field distribution characteristics under RF-SF ECTr,a series of flow-field simulations was conducted at different machining depths.Based on the obtained dynamic change law for the flow field,to enhance further its uniformity and accessibility,a global coverage strategy for the electrolyte supply and a flow-field structure optimization method for MCES are proposed,which involve optimizing the number,diameter,and location of the inlet channels.After many simulations,the optimal MCES structure was achieved whereby the electrolyte covers all positions effectively in the processing area.To verify the proposed method as effective and correct,a series of RF-SF ECTr experiments was carried out.Under the optimized MCES mode,the feeding rate was increased from 0.8 mm/min with the TES mode to 2.0 mm/min,and the processing stability and efficiency were improved significantly.The methods presented here offer an effective guide for flow-field optimization when machining other components with complex spatial structures.
基金supported by the National Natural Science Foundation of China(62335012,62371258,624B2075,62205160,62435010)Young Scientific and Technological Talents in Tianjin(QN20230227)Fundamental Research Funds for the Central Universities,Nankai University(63231159).
文摘Vortex beams carrying orbital angular momentum(OAM)are of great significance for high-capacity communication and super-resolution imaging.However,there is a huge gap between the free-space vortices(FVs)and plasmonic vortices(PVs)on chips,and active manipulation as well as multiplexing in more channels have become a pressing demand.In this work,we demonstrate a terahertz(THz)cascaded metadevice composed of a helical plasmonic metasurface,a liquid crystal(LC)layer,and a helical dielectric metasurface.By spin-orbital angular momentum coupling and photon state superposition,PVs and FVs are generated with mode purity of over 85%on average.Due to the inversion asymmetric design of the helical metasurfaces,the parity symmetry breaking of OAM is realized(the topological charge numbers no longer occur in positive and negative pairs,but all are positive),generating 6 independent channels associated with the decoupled spin states and the near-/far-field positions.Moreover,by the LC integration,dynamic mode switching and energy distribution can be realized,finally obtaining up to 12 modes with a modulation ratio of above 70%.This active tuning and multi-channel multiplexing metadevice establishes a bridge connection between the PVs and FVs,exhibiting promising applications in THz communication,intelligent perception,and information processing.
文摘BACKGROUND Radical gastrectomy(RGE)for gastric carcinoma(GC)has exerted definite therapeutic efficacy in treating patients with GC.However,a notable risk of postoperative complications(POCs)persists among middle-aged and elderly patients with compromised physiological functions.Hence,developing and implementing reliable nursing interventions to optimize the comprehensive management of these patients is deemed imperative.AIM To analyze the association of multi-channel continuous nursing intervention with POCs,negative emotions(NEs),and quality of life(QoL)of patients undergoing RGE for GC.METHODS This retrospective study selected 99 patients who underwent RGE for GC in our hospital from May 2020 to May 2023.Participants were categorized into the control(n=49 cases)and research groups(n=50 cases)receiving routine and multi-channel continuous nursing care,respectively.Comparative analysis involved data on postoperative rehabilitation(time to first anal exhaust,oral feeding and ambulation,and hospital stay),complications(nausea and vomiting,delayed gastric emptying,and abdominal distension),NEs[Self-rating Anxiety(SAS)/Depression Scale(SDS)],treatment compliance,self-efficacy,and QoL[World Health Organization QoL Brief Version(WHOQOL-BREF)].RESULTS Compared to the control group,the research group demonstrated earlier first postoperative anal exhaust,oral feeding,and ambulation,shorter hospital stay,lower POC rate,and more reduced SAS and SDS scores postintervention,which was significantly lower than the baseline.The treatment compliance scores were significantly higher in the research group than in the control group in terms of medication adherence,daily exercise,reasonable diet,and regular review.Further,the research group demonstrated increased self-efficacy scores in terms of positive attitude,self-stress relief,and self-decision-making,as well as the overall score postintervention,which were higher than the control group.Moreover,the research group reported notably higher WHOQOL-BREF scores in domains such as physiology,psychology,social relations,and environment.CONCLUSION Multi-channel continuous nursing intervention prevents POCs in patients undergoing RGE for GC as well as significantly alleviates patients’NEs and boosts their QoL.